Efficient in situ Three-component Formation of Chiral Oxazoline-Schiff Base

Copper(II) Complexes: Towards Combinatorial Library of Chiral Catalysts

for Asymmetric Henry Reaction

Wen Yang,^a Han Liu,^b Da-Ming Du*^a

 ^aSchool of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China
^bBeijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, Peoples's Republic of China E-mail: <u>dudm@bit.edu.cn</u>

Supporting information

Synthesis of nitrobenzamides

A solution of 2-nitrobenzoic acid (835 mg, 5.0 mmol) and thionyl chloride (5 mL) was refluxed for 3 h. The excess thionyl chloride was removed under reduced pressure to afford 2-nitrobenzoyl chloride. The above chloride in CH_2Cl_2 (25 mL) was added dropwise to a solution of chiral amino alcohol (5.0 mmoL) and Et_3N (1.8 mL, 12.5 mmol) in CH_2Cl_2 (20 mL) at 0 °C, then stirred at room temperature for 10 h. The reaction mixture was successively washed with saturated NH_4Cl (aq), HCl (1M), saturated $NaHCO_3$ (aq) and brine. The organic layer was dried over anhydrous Na_2SO_4 , concentrated and purified by silica gel column chromatography (ethyl acetate-petroleum ether 1:1 V/V) to afford the nitrobenzamides.

N-((*S*)-2-Hydroxy-1-phenylethyl)-2-nitrobenzamide

White solid, yield 86%; m.p. 138–139 °C. $[\alpha]_D^{25} = +27.2$ (c = 0.94, CH₂Cl₂); ¹H NMR (300M, d⁶-DMSO): $\delta = 9.07$ (d, J = 8.1 Hz, 1H), 8.03 (d, J = 7.8 Hz, 1H), 7.80 (t, J = 7.5 Hz, 1H), 7.72–7.66 (m, 2H), 7.41–7.26 (m, 5H), 5.00 (dd, J = 6.9 Hz, J = 14.1 Hz, 1H), 4.93 (t, J = 5.7 Hz, 1H), 3.71–3.58 (m, 2H); ¹³C NMR (75M, d⁶-DMSO): $\delta = 165.0$, 147.0, 140.5, 133.4, 132.5, 130.6, 129.2, 128.0, 127.0, 126.8, 123.9, 64.4, 55.5; IR (KBr): v 3315, 2960, 1648, 1575, 1531, 1453, 1350, 1318, 1052, 853, 735, 704 cm⁻¹; HR-ESIMS: m/z cacld for C₁₅H₁₅N₂O₄ (M+H): 287.09871. Found: 287.10263.

N-((*S*)-1-Hydroxymethyl-2-phenylethyl)-2-nitrobenzamide

Pale yellow oil, yield 98%. $[\alpha]_D^{25} = -6.8$ (c = 1.68, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.83$ (d, J = 7.8 Hz, 1H), 7.48–7.36 (m, 2H), 7.28–7.15 (m, 5H), 6.93 (d, J = 8.4 Hz, 1H), 4.21–4.19 (m, 1H), 3.59 (dd, J = 3.3 Hz, J = 10.8 Hz, 1H), 3.48 (dd, J = 4.5 Hz, J = 11.1 Hz, 1H), 3.37 (br s, 1H), 2.84 (d, J = 6.9 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 166.8$, 145.8, 137.6, 133.6, 132.4, 130.1, 129.1, 128.5, 128.4, 126.4, 124.1, 62.7, 53.1, 36.3; IR (KBr): v 3467, 2958, 1624, 1549, 1523, 1476, 1340, 1294, 1096, 825, 751 cm⁻¹; HR-ESIMS: m/z cacld for C₁₆H₁₇N₂O₄ (M+H): 301.11436. Found: 301.11828.

N-((S)-1-Hydroxymethyl-3-methylbutyl)-2-nitrobenzamide

White solid, yield 89%; m.p. 108–109 °C. $[\alpha]_D^{25} = -20.2$ (c = 1.08, CH₂Cl₂); ¹H NMR (300M, CDCl₃): $\delta = 8.03$ (d, J = 7.8 Hz, 1H), 7.66 (t, J = 7.2 Hz, 1H), 7.58–7.51 (m, 2H), 6.25 (d, J = 7.8 Hz, 1H), 3.92–3.73 (m, 3H), 2.37 (br s, 1H), 2.02–1.91 (m, 1H), 1.02 (d, J = 7.2 Hz, 6H); ¹³C NMR (75M, d⁶-DMSO): $\delta = 165.4$, 146.9, 133.3, 133.1, 130.3, 129.2, 123.8, 60.9, 56.3, 28.1, 19.6, 17.9; IR (KBr): v 3429, 3320, 2963, 1627, 1548, 1523, 1417, 1351, 1074, 853, 789, 698 cm⁻¹; HR-ESIMS: m/z cacld for C₁₂H₁₇N₂O₄ (M+H): 253.11436. Found: 253.11828.

N-((*S*)-1-Hydroxymethyl-2,2-dimethylpropyl)-2-nitrobenzamide

White solid, yield 85%; m.p. 137–138 °C. $[\alpha]_D^{25} = -60.5$ (c = 3.65, EtOH); ¹H NMR (300M, CDCl₃): $\delta = 8.04$ (d, J = 7.8 Hz, 1H), 7.68 (t, J = 7.5 Hz, 1H), 7.60–7.54 (m, 2H), 6.17 (d, J = 9.0 Hz, 1H), 4.08–4.01 (m, 1H), 3.95 (dd, J = 3.6 Hz, J = 11.4 Hz, 1H), 3.70 (dd, J = 7.2 Hz, J = 11.4 Hz, 1H), 2.25 (br s, 1H), 1.03 (s, 9H); ¹³C NMR (75M, d⁶-DMSO): $\delta = 165.6$, 147.1, 133.14, 133.11, 130.3, 129.4, 123.7, 60.5, 59.5, 33.9, 26.9; IR (KBr): v 3420, 3230, 3076, 2957, 1645, 1562, 1540, 1469, 1367, 1315, 1048, 871, 779, 728, 696 cm⁻¹; HR-ESIMS: m/z cacld for C₁₃H₁₉N₂O₄ (M+H): 267.13001. Found: 267.13393.

Synthesis of 2-(2-nitrophenyl)oxazolines

To a ice-cold solution of nitrobenzamide (4.0 mmol) and Et₃N (1.4 mL, 10.0 mmol) in CH₂Cl₂ (30 mL) was added methanesulfonyl chloride (0.39 mL, 0.5 mmol) via a syringe. After stirred for 6 h at room temperature, the reaction mixture was concentrated under reduced pressure to afford the crude product. The crude product was dissolved in methanol (15 mL), and a solution of NaOH(0.5 g) in water (5 mL) was added. The reaction mixture was refluxed for 3 h, then cooled to room temperature. The methanol was removed under reduced pressure and the residue was extracted with CH_2Cl_2 (3×25 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, concentrated and purified by silica gel column chromatography (ethyl acetate-petroleum ether 1:10 *V*/*V*) to afford the 2-(2-nitrophenyl)oxazolines.

(S)- 4-Phenyl-2-(2-nitrophenyl)- oxazoline

Pale yellow oil, yield 92%. $[\alpha]_D^{25} = -50.1$ (c = 1.23, CH₂Cl₂); ¹H NMR (200 MHz, CDCl₃): $\delta = 7.93-7.86$ (m, 2H), 7.66–7.60 (m, 2H), 7.38–7.27 (m, 5H), 5.40 (dd, J = 9.0 Hz, J = 10.0 Hz, 1H), 4.80 (dd, J = 8.4 Hz, J = 10.2 Hz, 1H), 4.28 (t, J = 8.6 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): $\delta = 162.3$, 149.1, 141.5, 132.5, 131.5, 131.2, 128.7, 127.7, 126.8, 123.9, 123.1, 75.8, 70.4; IR (KBr): v 3065, 1642, 1529, 1349, 1039, 850, 789, 701 cm⁻¹; HR-ESIMS: m/z cacld for C₁₅H₁₃N₂O₃ (M+H): 269.08815. Found: 269.09207.

(S)- 4-Benzyl-2-(2-nitrophenyl)-oxazoline

White soild, yield 89%; m.p. 55–56 °C. $[\alpha]_D^{25} = +9.0$ (c = 1.15, CH₂Cl₂); ¹H NMR (200 MHz, CDCl₃): $\delta = 7.87-7.76$ (m, 2H), 7.66–7.56 (m, 2H), 7.32–7.22 (m, 5H), 4.65–4.53 (m, 1H), 4.37 (t, J = 8.8 Hz, 1H), 4.16 (dd, J = 7.4 Hz, J = 8.4 Hz, 1H), 3.21 (dd, J = 5.6 Hz, J = 13.8 Hz, 1H), 2.81 (dd, J = 8.2 Hz, J = 13.8 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): $\delta = 161.3$, 149.1, 137.6, 132.3, 131.3, 130.9, 129.2, 128.5, 126.5, 123.8, 123.3, 72.8, 68.1, 41.2; IR (KBr): v 3060, 1659, 1605, 1532, 1357, 1060, 948, 852, 754, 700 cm⁻¹; HR-ESIMS: m/z cacld for C₁₆H₁₅N₂O₃ (M+H): 235.10380. Found: 235.10772.

(S)-4-(1-Methylethyl)-2-(2-nitrophenyl)oxazoline

Pale yellow oil, yield 94%. $[\alpha]_D^{25} = -66.8 \ (c = 1.87, CH_2Cl_2); {}^{1}H NMR \ (200 MHz, CDCl_3): \delta = 7.86-7.80 \ (m, 2H), 7.64-7.57 \ (m, 2H), 4.30 \ (dd, J = 5.0 Hz, J = 6.6 Hz, 1H), 4.19-4.10 \ (m, 2H), 1.98-1.82 \ (m, 1H), 1.04 \ (d, J = 6.8 Hz), 0.97 \ (d, J = 6.8 Hz); {}^{13}C NMR \ (50 MHz, CDCl_3): \delta = 160.7, 149.0, 132.2, 131.2, 130.9, 123.7, 123.3, 72.9, 71.1, 32.5, 18.6, 18.2; IR \ (KBr): v 2961, 1662, 1608, 1536, 1357, 1063, 955, 852, 784, 705 \ cm^{-1}; HR-ESIMS: m/z \ cacld \ for \ C_{12}H_{15}N_2O_3 \ (M+H): 283.10380. Found: 283.10772.$

(S)-4-(1,1-Dimethylethyl)-2-(2-nitrophenyl)oxazoline

Pale yellow oil, yield 90%. $[\alpha]_D^{25} = -92.7$ (c = 1.09, CH₂Cl₂); ¹H NMR (200 MHz, CDCl₃): $\delta = 7.86-7.80$ (m, 2H), 7.64–7.57 (m, 2H), 4.37 (dd, J = 8.4 Hz, J = 10.2 Hz, 1H), 4.24 (t, J = 8.2 Hz, 1H), 4.08 (dd, J = 8.2 Hz, J = 10.2 Hz, 1H), 0.98 (s, 9H); ¹³C NMR (50 MHz, CDCl₃): $\delta = 160.7$, 149.1, 132.3, 131.2, 131.0, 123.7, 123.4, 76.6, 69.7, 34.0, 25.9; IR (KBr): v 2956, 1663, 1536, 1357, 1062, 955, 851, 782, 705 cm⁻¹; HR-ESIMS: m/z cacld for C₁₃H₁₇N₂O₃ (M+H): 249.11945. Found: 249.12337.

Synthesis of 2-(2-aminophenyl)oxazolines 1a-d

To a solution of 2-(2-nitrophenyl)oxazoline (3.0 mmol) in EtOAc (25 mL) was added Pd/C (50 mg). The reaction was placed under an atmosphere of H_2 in a rubber balloon and stirred for 10 h. The reaction mixture was filtered through Celite to remove Pd/C, concentrated and purified by silica gel column chromatography (ethyl acetate-petroleum ether 1:20 V/V) to afford the 2-(2-aminophenyl)oxazolines.

(S)-2-(2-Aminophenyl)-4-phenyloxazoline 1a

White soild, yield 91%; m.p. 74–75 °C. $[\alpha]_D^{25} = +207.6$ (c = 0.50, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.77$ (d, J = 8.1 Hz, 1H), 7.36–7.18 (m, 6H), 6.69–6.65 (m, 2H), 6.11 (br, 2H), 5.42 (t, J = 9.0 Hz, 1H), 4.65 (t, J = 9.0 Hz, 1H), 4.10 (t, J = 8.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 165.0$, 148.8, 142.7, 132.2, 129.7, 128.6 127.5, 126.6, 116.0,115.7, 108.6, 73.0, 70.1. lit.¹ m.p. 74–77 °C. $[\alpha]_D = +185.1$ (c = 1.0, CHCl₃).

(S)-2-(2-Aminophenyl)-4-benzyloxazoline 1b

White soild, yield 91%; m.p. 57–58 °C. $[\alpha]_D^{25} = +43.3$ (c = 0.51, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.68$ (d, J = 7.8 Hz, 1H), 7.32–7.16 (m, 6H), 6.68–6.61 (m, 2H), 6.08 (br s, 2H), 4.64–4.53 (m, 1H), 4.25 (t, J = 8.7 Hz, 1H), 4.00 (t, J = 7.8 Hz, 1H), 3.11 (dd, J = 6.0 Hz, J = 13.5 Hz, 1H), 2.74 (dd, J = 8.1 Hz, J = 13.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 164.0$, 148.6, 138.3, 132.0, 129.5, 129.1, 128.4, 126.3, 115.9, 115.6, 108.9, 70.2, 68.0, 42.2. lit.¹ m.p. 56–57 °C. $[\alpha]_D = +24.7$ (c = 1.0, CHCl₃).

(S)-2-(2-Aminophenyl)-4-isopropyloxazoline 1c

White soild, yield 91%; m.p. 64–65 °C. $[\alpha]_D^{25} = +23.2$ (c = 0.50, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.67$ (d, J = 7.8 Hz, 1H), 7.24–7.16 (m, 1H), 6.69–6.62 (m, 2H), 5.98 (br, 2H), 4.30 (t, J = 8.4 Hz, 1H), 4.14–4.06 (m, 1H), 3.99 (t, J = 7.8 Hz, 1H), 1.81–1.72 (m, 1H), 1.02 (d, J = 6.6 Hz, 1H), 0.93 (d, J = 6.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 163.5$, 148.5, 131.9, 129.5, 115.9, 115.6, 109.1, 72.8, 68.7, 33.1, 18.9, 18.5. lit.¹ m.p. 64–65 °C. $[\alpha]_D = +10.2$ (c = 1.0, CHCl₃).

(S)-2-(2-Aminophenyl)-4-tert-butyloxazoline 1d

White soild, yield 90%; m.p. 67–68 °C. $[\alpha]_D^{25} = +34.8 \ (c = 0.50, CH_2Cl_2)$; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.67 \ (d, J = 7.8 \ Hz, 1H)$, 7.24–7.16 (m, 1H), 6.70–6.62 (m, 2H), 6.15 (br s, 2H), 4.27–4.19 (m, 1H), 4.13–4.08 (m, 2H), 0.93 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 163.4$, 148.6, 131.8, 129.5, 115.9, 115.6, 109.1, 76.3, 66.8, 33.8, 25.8. lit.¹ m.p. 66–67 °C. $[\alpha]_D = +35 \ (c = 1.0, \text{EtOH})$.

Entry	T(°C)	Additive	Time (h)	Yield $(\%)^{b}$	$ee (\%)^{c}$
 1	r.t.	none	24	90	69
2	r.t.	10 mol% Et ₃ N	12	99	20
3	r.t.	10 mol% NaOH	12	94	6
4	r.t.	100 mg 4 Å MS	20	98	56
5	r.t.	Na ₂ SO ₄	24	81	70
6	50	none	7	95	63
7	10	none	72	94	71
8	0	none	168	95	78

Table S1 Validation of the reproducibility and optimization of reaction temperature.^a

^a Reactions were performed with 0.5 mmol of 4-nitrobenzaldehyde and 5.0 mmol of nitromethane in 2 mL of EtOH in the presence of 10 mol % catalyst **4db** at room temperature. ^b Isolated yields after column chromatography purification. ^c Determined by HPLC using a Daicel Chiracel OD-H column (*n*-hexane–isopropanol 80:20 *V*/*V*, 1.0 mL/min, 254 nm).

Entry	Solvent	Yield (%) ^b	ee (%) ^c
1	EtOH	90	69
2	95% EtOH	95	66
3	CF ₃ CH ₂ OH	trace	nd
4	MeOH	79	64
5	<i>i</i> -PrOH	87	67
6	THF	96	74
7	dioxane	trace	nd
8	TBME	93	76
9	toluene	34	80
10 ^d	toluene	39	77
11	benzene	32	77
12	CH_2Cl_2	38	76
13	Et ₂ O	96	82
14 ^e	Et ₂ O	90	74
15 ^f	Et_2O	61	70

Table S2 Optimization of solvents and catalyst loading.^a

^a Reactions were performed with 0.5 mmol of 4-nitrobenzaldehyde and 5.0 mmol of nitromethane in 2 mL of solvent in the presence of 10 mol % catalyst **4db** at room temperature for 24 h. ^b Isolated yields after column chromatography purification. ^c Determined by HPLC using a Daicel Chiracel OD-H column (*n*-hexane–isopropanol 80:20 *V/V*, 1.0 mL/min, 254 nm). ^d Catalyst **4db** was formed in EtOH, while the Henry reaction was carried out in toluene. ^e 5 mol % catalyst loading was employed. ^f 2.5 mol % catalyst loading was employed.

General procedure for asymmetric Henry reaction catalyzed by *in situ* three-component generated complex catalyst

A solution of 2-(2-aminophenyl)oxazoline **1d** (10.9 mg, 0.05 mmol), 5-nitrosalicylaldehyde **2b** (8.4 mg, 0.05 mmol), and diethyl ether (2 mL) was stirred for 30 min at room temperature. Anhydrous $Cu(OAc)_2$ (9.1 mg, 0.05 mmol) was added and stirred for another 30 min, and the reaction mixture turned dark green. Aldehyde (0.5 mmol) and nitromethane (5.0 mmol, 0.26 mL) were added and stirred for 24–96 h at room temperature. The reaction mixture was concentrated and purified by silica gel column chromatography using petroleum ether-ethyl acetate 5:1 as eluent.

(S)-1-(4-Nitrophenyl)-2-nitroethanol 7a

Compound **7a** was prepared according to the general procedure to give a colourless solid (97 mg, 92% yield); m.p. 84–85 °C. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 80:20 V/V, 1.0 mL/min, 254 nm); minor enantiomer t_r =

11.1 min, major enantiomer $t_r = 13.3$ min; 82% ee; $[\alpha]_D^{25} = +29.1$ (c = 0.75, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 8.28 - 8.23$ (m, 2H), 7.67–7.60 (m, 2H), 5.64–5.58 (m, 1H), 4.62–4.58 (m, 2H), 3.28 (d, J = 4.0 Hz, 1H). lit.² $[\alpha]_D^{25} = +29.4$ (c = 2.36, CH₂Cl₂).

(S)-1-(3-Nitrophenyl)-2-nitroethanol 7b

Compound **7b** was prepared according to the general procedure to give a colourless solid (101 mg, 95% yield); m.p. 70–71 °C. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 85:15 *V/V*, 1.0 mL/min, 254 nm); minor enantiomer $t_r = 14.5$ min, major enantiomer $t_r = 16.2$ min; 76% ee; $[\alpha]_D^{25} = +34.1$ (c = 1.12, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 8.34-8.32$ (m, 1H), 8.25–8.21 (m, 1H), 7.82–7.79 (m, 1H), 7.62 (t, J = 7.8 Hz, 1H), 5.64–5.58 (m, 1H), 4.71–4.61 (m, 2H), 3.25 (d, J = 4.0 Hz, 1H). lit.³ $[\alpha]_D^{25} = +32.6$ (c = 0.13, CH₂Cl₂).

(S)-1-(2-Nitrophenyl)-2-nitroethanol 7c

Compound 7c was prepared according to the general procedure to give a brown solid (103 mg, 97% yield); m.p. 80–82 °C. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 85:15 *V*/*V*, 1.0 mL/min, 254 nm); minor enantiomer $t_r = 9.5$ min, major enantiomer $t_r = 10.3$ min; 84% ee; $[\alpha]_D^{25} = -158.8$ (c = 0.17, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 8.08$ (dd, J = 8.4 Hz, J = 1.4 Hz, 1H), 7.96 (dd, J = 7.8 Hz, J = 1.4 Hz, 1H), 7.80–7.72 (m, 1H), 7.60–7.52 (m, 1H), 6.09–6.03 (m, 1H), 4.88 (dd, J = 13.6 Hz, J = 2.4 Hz, 1H), 4.55 (dd, J = 13.8 Hz, J = 9.0 Hz, 1H), 3.28 (d, J = 4.0 Hz, 1H). lit.³ $[\alpha]_D^{25} = -185$ (c = 0.19, CH₂Cl₂).

(S)-1-(4-Chlorophenyl)-2-nitroethanol 7d

Compound **7d** was prepared according to the general procedure to give a yellow oil (87 mg, 86% yield); Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 80:20 *V/V*, 1.0 mL/min, 210nm); minor enantiomer $t_r = 7.1$ min, major enantiomer $t_r = 8.5$ min; 87% ee; $[\alpha]_D^{25} = +29.3$ (c = 0.71, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 7.42-7.32$ (m, 4H), 5.45 (d, J = 8.8 Hz, 1H), 4.64–4.44 (m, 2H), 2.99 (br s, 1H). lit.³ $[\alpha]_D^{25} = +29.5$ (c = 0.11, CH₂Cl₂).

(S)-1-(4-Bromophenyl)-2-nitroethanol 7e

Compound **7e** was prepared according to the general procedure to give a yellow oil (99 mg, 81% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 80:20 *V/V*, 1.0 mL/min, 210nm); minor enantiomer $t_r = 8.2$ min, major enantiomer $t_r = 10.1$ min; 79% ee; $[\alpha]_D^{25} = +26.0$ (c = 1.63, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 7.56-7.49$ (m, 2H), 7.28–7.23 (m, 2H), 5.44–5.36 (m, 1H), 4.61–4.43 (m, 2H), 3.04 (d, J = 3.6 Hz, 1H). lit.⁴ $[\alpha]_D^{23} = +29.4$ (c = 0.67, CH₂Cl₂).

(S)- 2-nitro-1-phenyl-ethanol 7f

Compound **7f** was prepared according to the general procedure to give a colourless oil (71 mg, 85% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 80:20 *V*/*V*, 1.0 mL/min, 210nm); minor enantiomer $t_r = 7.6$ min, major enantiomer $t_r = 8.9$ min; 83% ee; $[\alpha]_D^{25} = +36.8$ (c = 1.06, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 7.43-7.35$ (m, 5H), 5.51–5.43 (m, 1H), 4.62 (dd, J = 13.8 Hz, J = 9.2 Hz, 1H), 4.46 (dd, J = 13.2 Hz, J = 5.4 Hz, 1H), 2.84 (d, J = 4.0 Hz, 1H). lit.² $[\alpha]_D^{25} = +36.8$ (c = 4.04, CH₂Cl₂).

(S)-1-(4-Methoxyphenyl)-2-nitroethanol 7g

Compound **7g** was prepared according to the general procedure to give a yellow oil (42 mg, 43% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 80:20 *V/V*, 1.0 mL/min, 210nm); minor enantiomer $t_r = 9.7$ min, major enantiomer $t_r = 11.6$ min; 75% ee; $[\alpha]_D^{25} = +30.0$ (c = 0.32, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 7.35-7.29$ (m, 2H), 6.96–6.90 (m, 2H), 5.41 (d, J = 9.4 Hz, 1H), 4.61 (dd, J = 13.8 Hz, J = 9.0 Hz, 1H), 4.47 (dd, J = 13.8 Hz, J = 3.2 Hz, 1H), 3.82 (s, 3H), 2.76 (d, J = 2.2 Hz, 1H). lit.⁵ $[\alpha]_D^{23} = +32.3$ (c = 1.05, CH₂Cl₂).

(S)-1-(4-Methylphenyl)-2-nitroethanol 7h

Compound **7h** was prepared according to the general procedure to give a yellow oil (64 mg, 71% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 85:15 *V/V*, 1.0 mL/min, 210nm); minor enantiomer $t_r = 9.4$ min, major enantiomer $t_r = 11.5$ min; 80% ee; $[\alpha]_D^{25} = +35.7$ (c = 0.51, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 7.29-7.16$ (m, 4H), 5.41–5.35 (m, 1H), 4.58 (dd, J = 13.2 Hz, J = 9.2 Hz, 1H), 4.45 (dd, J = 13.2 Hz, J = 3.4 Hz, 1H), 2.89 (d, J = 3.6 Hz, 1H), 2.35 (s, 3H). lit.⁶ $[\alpha]_D^{25} = +20.2$ (c = 0.85, CH₂Cl₂).

(S)-1-(1-Naphthyl)-2-nitroethanol 7i

Compound 7i was prepared according to the general procedure to give a yellow oil (70 mg, 65% yield); Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 80:20 *V/V*, 1.0 mL/min, 210nm); minor enantiomer $t_r = 9.5$ min, major enantiomer $t_r = 13.0$ min; 80% ee; $[\alpha]_D^{25} = +29.1$ (c = 1.10, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 8.04$ (d, J = 7.8 Hz, 1H), 7.95–7.85 (m, 2H), 7.78 (d, J = 7.0 Hz, 1H), 7.65–7.49 (m, 3H), 6.32–6.24 (m, 1H), 4.70–4.67 (m, 2H), 2.86 (d, J = 3.6 Hz, 1H). lit.⁷ $[\alpha]_D^{25} = +24.1$ (c = 1.03, CH₂Cl₂).

(R)-Nitromethyl-2-furanmethanol 7j

Compound **7j** was prepared according to the general procedure to give a yellow oil (44 mg, 56% yield). Enantiomeric excess was determined by HPLC with a Chiralcel IA column (*n*-hexane-isopropanol 95:5 *V/V*, 1.0 mL/min, 210nm); minor enantiomer $t_r = 18.3$ min, major enantiomer $t_r = 20.4$ min; 88% ee; $[\alpha]_D^{25} = +34.3$ (c = 1.05, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 7.43-7.42$ (m, 1H), 6.41–6.37 (m, 1H), 5.52–5.44 (m, 1H), 4.80 (dd, J = 13.6 Hz, J = 8.8 Hz, 1H), 4.67 (dd, J = 13.4 Hz, J = 3.8 Hz, 1H), 3.00 (br s, 1H). lit.⁴ $[\alpha]_D^{22} = +34.0$ (c = 0.3, CH₂Cl₂).

(2*S*, 3*E*)-1-Nitro-4-phenyl-3-buten-2-ol 7k

Compound **7k** was prepared according to the general procedure to give a colourless solid (76 mg, 79% yield); m.p. 82–83 °C. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 80:20 *V*/*V*, 1.0 mL/min, 254nm); major enantiomer $t_r = 16.6$ min, minor enantiomer $t_r = 18.4$ min; 75% ee; $[\alpha]_D^{25} = +7.4$ (c = 2.48, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 7.39-7.28$ (m, 5H), 6.76 (d, J = 16.2 Hz, 1H), 6.12 (dd, J = 15.8 Hz, J = 6.2 Hz, 1H), 5.08–4.96 (m, 1H), 4.84 (d, J = 6.4 Hz, 2H), 2.81 (d, J = 4.4 Hz, 1H). lit.⁸ $[\alpha]_D^{22} = +11.8$ (c = 0.64, CH₂Cl₂).

(S)-1-Nitro-4-phenylbutan-2-ol 7l

Compound **71** was prepared according to the general procedure to give a yellow oil (67 mg, 69% yield); Enantiomeric excess was determined by HPLC with a Chiralcel IA column (n-hexane-isopropanol 90:10 *V/V*, 1.0 mL/min, 210nm); minor enantiomer $t_r = 10.2$ min, major enantiomer $t_r = 12.4$ min; 86% ee; $[\alpha]_D^{25} = -16.7$ (c = 1.74, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 7.35-7.12$ (m, 5H), 4.39–4.24 (m, 3H), 2.89–2.68 (m, 3H), 1.87–1.74 (m, 2H). lit.⁸ $[\alpha]_D^{25} = -14.8$ (c = 0.97, CH₂Cl₂).

(S)-1-Cyclohexyl-2-nitroethanol 7m

Compound **7m** was prepared according to the general procedure to give a colourless oil (80 mg, 92% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OF column (*n*-hexane-isopropanol 90:10 *V/V*, 0.4 mL/min, 210nm); minor enantiomer $t_r = 36.5$ min, major enantiomer $t_r = 39.6$ min; 82% ee; $[\alpha]_D^{25} = +17.5$ (c = 1.28, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 4.60-4.37$ (m, 2H), 4.15–4.03 (m, 1H), 3.05 (d, J = 5.6 Hz, 1H), 1.86–1.64 (m, 5H), 1.58–1.35 (m, 1H), 1.30–1.01 (m, 5H). lit.⁸ $[\alpha]_D^{25} = +16.9$ (c = 0.89, CH₂Cl₂).

(S)-3-Methyl-1-nitro-2-butanol 7n

Compound **7n** was prepared according to the general procedure to give a yellow oil (54 mg, 82% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OF column (*n*-hexane-isopropanol 95:5 *V/V*, 0.8 mL/min, 210nm); minor enantiomer $t_r = 26.7$ min, major enantiomer $t_r = 29.0$ min; 87% ee; $[\alpha]_D^{25} = +17.5$ (c = 1.28, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 4.58-4.36$ (m, 2H), 4.16–4.05 (m, 1H), 2.81 (d, J = 5.2 Hz, 1H), 1.88–1.72 (m, 1H), 1.01 (d, J = 3.0 Hz, 1H), 0.97 (d, J = 3.0 Hz, 1H). lit.³ $[\alpha]_D^{25} = +13.9$ (c = 0.14, CHCl₃).

(S)-3,3-Dimethyl-1-nitro-2-butanol 70

Compound **70** was prepared according to the general procedure to give a colourless oil (60 mg, 81% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 95:5 *V/V*, 0.8 mL/min, 220nm); minor enantiomer $t_r = 10.6$ min, major enantiomer $t_r = 12.0$ min; 92% ee; $[\alpha]_D^{25} = +16.8$ (c = 1.25, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 4.50$ (dd, J = 13.2 Hz, J = 2.4 Hz, 1H), 4.34 (dd, J = 12.8 Hz, J = 10.0 Hz, 1H), 4.04–3.96 (m, 1H), 2.47 (d, J = 4.8 Hz, 1H), 0.95 (s, 9H). lit.⁹ $[\alpha]_D = +36.1$ (c = 0.6, CHCl₃).

Reference:

- 1 H. A. McManus, P. J. Guiry, J. Org. Chem. 2002, 67, 8566–8573.
- 2. S. K. Ginotra, V. K. Singh, Org. Biomol. Chem. 2007, 5, 3932–3937.
- 3. Y. Xiong, F. Wang, X. Huang, Y. Wen, X. Feng, Chem. Eur. J. 2007, 13, 829-833;
- 4. R. Kowalczyk, P. Kwiatkowski, J. Skarzewski, J. Jurczak, J. Org. Chem. 2009, 74(2), 753-756.
- 5. G. Blay, E. Climent, I. Fernández, J. R. Pedro, *Tetrahedron: Asymmetry* 2007, 18, 1603–1612.
- 6. J.-J. Jiang, M. Shi, Tetrahedron: Asymmetry 2007, 18, 1376–1382;
- 7. G. Lai, S. Wang, Z. Wang, *Tetrahedron: Asymmetry* **2008**, *19*, 1813–1819;
- 8. G. Blay, L. R. Domingo, V. Hernandez-Olmos, J. R. Pedro, *Chem. Eur. J.* 2008, 14, 4725–4730.
- 9. M. Bandini, F. Piccinelli, S. Tommasi, A. Umani-Ronchi, C. Ventrici, *Chem. Commun.* 2007, 616–618.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	. 11.074	VV	0.3962	6041.87549	231.73190	49.3063
2	13.287	VB	0.4836	6211.89648	197.17511	50.6937

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
	-					
1	14.629	BV	0.5591	1.52261e4	419.84897	47.9883
2	2 16.469	VBA	0.6572	1.65027e4	381.08875	52.0117

信号 1: DAD1 A, Sig=254,4 Ref=360,100

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	90
1	14.535	BV	0.5551	2953.59473	81.44023	12.1638
2	16.223	VB	0.6345	2.13283e4	515.68896	87.8362

信号 1: DAD1 A, Sig=254,4 Ref=360,100

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
	-					
1	9.505	BV	0.3252	2216.81348	105.47421	48.2051
2	2 10.412	VB	0.3724	2381.89502	97.72131	51.7949

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	9.503	BV	0.3305	414.48679	19.61857	7.9371
2	2 10.341	VB	0.3698	4807.66992	199.04547	92.0629

信号 1: DAD1 C, Sig=210,8 Ref=360,100

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
	-					
1	7.349	VV	0.2101	7871.92285	566.46179	49.9720
2	8.691	vv	0.2548	7880.75439	471.94147	50.0280

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	7.144	VV	0.2330	629.68567	40.59426	6.5226
2	8.494	vv	0.2591	9024.23730	539.50366	93.4774

峰	保留时间	奀型	峰苋	峰田枳	峰局	峰田枳
#	[min]		[min]	[mAU*s]	[mAU]	olo
	-					
1	8.252	VV	0.2586	1.72623e4	1034.71265	50.1315
2	2 10.129	VV	0.3136	1.71718e4	843.01593	49.8685

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	oo
1	8.243	VV	0.2495	873.66132	53.78755	10.7057
2	10.139	VV	0.3092	7287.06934	364.55786	89.2943

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	7.622	VV	0.2316	547.75702	35.58683	8.7597
2	8.898	VV	0.2562	5705.37793	339.17325	91.2403

信号 1: DAD1 C, Sig=210,8 Ref=360,100

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	oto
1	9.419	VV	0.3642	3961.35840	160.35280	49.2486
2	11.334	vv	0.4098	4082.24292	149.86810	50.7514

信号 1: DAD1 C, Sig=210,8 Ref=360,100

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	oto
1	9.497	VV	0.2878	9895.47754	525.31006	50.9358
2	11.577	vv	0.3486	9531.87598	426.72028	49.0642

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	20
1	9.445	VV	0.2965	991.15161	50.61300	9.9293
2	11.522	VV	0.3463	8990.92969	406.05750	90.0707

信号 1: DAD1 A, Sig=254,4 Ref=360,100

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
Ŧ	[min]		[min]	[mAU*s]	[mAU]	8
1	9.487	VB	0.3045	2189.45508	111.79115	50.2623
2	13.161	VB	0.4183	2166.60229	80.41850	49.7377

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	00
1	9.451	BB	0.2931	598.37616	31.56934	9.9137
2	12.992	BV	0.4143	5437.46143	204.41353	90.0863

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
ŧ	[min]		[min]	[mAU*s]	[mAU]	육
1	10.202	vv	0.2148	3936.18115	275.28439	51.1073
2	12.465	VV	0.2417	3765.61206	236.54498	48.8927

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	10.191	VV	0.2163	724.70532	50.22583	7.1516
2	12.447	vv	0.2427	9408.79199	600.83606	92.8484

信号 1: DAD1 A, Sig=254,4 Ref=360,100

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.603	BV	0.5247	1.37747e4	409.22116	87.3994
2	18.410	VB	0.5898	1985.93591	52.44614	12.6006

信号	1:	DAD1	C,	Sig=210,8	Ref=360,100
----	----	------	----	-----------	-------------

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	. 18.298	MM	0.3806	949.81750	41.59605	6.0395
2	20.353	MM	0.4301	1.47769e4	572.60583	93.9605

信号 1: DAD1 C, Sig=210,8 Ref=360,100

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	. 36.617	vv	1.0341	1.24673e4	186.92174	49.8436
2	39.867	VV	1.1268	1.25456e4	171.22792	50.1564

峰 保留时间	类型 峰宽	峰面积	峰高	峰面积
# [min]	[min]	[mAU*s]	[mAU]	8
1 36.520	VV 1.0667	3034.31104	44.10318	8.8968
2 39.558	VB 1.1140	3.10714e4	430.51724	91.1032

信号 1: DAD1 C, Sig=210,8 Ref=360,100

峰 1 #	呆留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	26.495	vv	0.8612	7676.32813	137.95648	49.5171
2	28.838	VB	0.9594	7826.04395	126.20803	50.4829

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	육
1	26.710	VV	0.9009	636.23981	10.59101	6.4658
2	29.022	VB	0.9704	9203.86230	146.21352	93.5342

信号 1: DAD1 C, Sig=220,8 Ref=360,100

峰 #	保留时间 ^[min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	10.539	BV	0.2915	7379.69043	392.16843	49.8224
2	11.936	vv	0.3291	7432.29834	348.12430	50.1776

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
1	10.604	VV	0.2857	492.93130	26.41952	4.1615
2	11.962	VB	0.3369	1.13522e4	523.71454	95.8385

Mass spectra of catalyst 4db

