Design and synthesis of new amino-modified iminocyclitols: Selective inhibitors of α -galactosidase

Muthupandian Ganesan, Rekhawar V. Madhukarrao and Namakkal G. Ramesh*

Department of Chemistry, Indian Institute of Technology- Delhi, Hauz Khas, New Delhi-110016, India. ramesh@chemistry.iitd.ac.in

CONTENTS

EXPERIMENTAL PROCEDURES AND SPECTRAL DATA OF ALL COMPOUNDS	S3-S11
PROCEDURE FOR ENZYME ASSAY AND CALCULATION OF IC_{50} VALUES	S11-S13
COPIES OF NMR SPECTRA	
¹ H-NMR spectrum of compound 9 ¹³ C-NMR spectrum of compound 10 ¹³ C-NMR spectrum of compound 10 ¹⁴ H-1H COSY spectrum of compound 10 ¹ H-NMR spectrum of compound 12 ¹³ C-NMR spectrum of compound 13 ¹³ C-NMR spectrum of compound 13 ¹³ C-NMR spectrum of compound 14 ¹³ C-NMR spectrum of compound 14 ¹³ C-NMR spectrum of compound 15 ¹³ C-NMR spectrum of compound 15 ¹³ C-NMR spectrum of compound 16 ¹³ C-NMR spectrum of compound 17 ¹³ C-NMR spectrum of compound 18 ¹³ C-NMR spectrum of compound 19 ¹³ C-NMR spectrum of compound 19 ¹³ C-NMR spectrum of compound 20 ¹³ C-NMR spectrum of compound 21 ¹³ C-NMR spectrum of compound 21	 \$14 \$15 \$16 \$17 \$18 \$19 \$20 \$21 \$22 \$23 \$24 \$25 \$26 \$27 \$28 \$29 \$30 \$31 \$32 \$33 \$34 \$35 \$36 \$37 \$38
¹ H-NMR spectrum of compound 22 ¹³ C-NMR spectrum of compound 22	S39 S39 S40

General considerations:

All solvents were purified by standard procedures. Anhydrous solvents were dried over sodium wire (benzene, hexane, THF) or molecular sieves (MeOH, DMF, CH₃CN). Thin-layer chromatography (TLC) was performed on Merck silica gel pre-coated on aluminium plates. Flash column chromatography was performed on 230–400 mesh silica gel. Optical rotations were recorded on an Autopol V (Rudolph Research Flanders, New Jersey) instrument. All the rotations were measured at 589 nm (sodium 'D line). Melting points of the compounds are uncorrected. IR spectra were taken over the 4000–400 cm⁻¹ range as KBr pellets on a Nicolet (Madison, USA) FTIR spectrophotometer (Model protégé 460). All the ¹H and ¹³C NMR spectra were recorded on a 300 MHz Bruker Spectrospin DPX FT-NMR spectrometer. Chemical shifts are reported as δ values (ppm) relative to Me₄Si as internal standard. Mass spectra were recorded on a Freezone 2.5 (Labconco, USA) lyophilizer.

3,4,6-Tri-O-benzyl-1,2-dideoxy-1,2-(di-p-toluenesulfonamido)-D-glucitol 9:

Compound $\mathbf{8}^1$ (5.0 g, 6.6 mmol) was taken in a flame dried 100 mL three-necked round bottom flask and 50 mL of THF was added to it. LiAlH₄ (0.377 g, 9.9 mmol) was then added and the reaction mixture was refluxed at 66 °C under argon atmosphere. The progress of the reaction was monitored by TLC. After 20 min., when TLC indicated the disappearance of the starting material, the reaction was then guenched with 10% agueous HCl (100 mL) and the reaction mixture was extracted with CHCl₃ (3 x 100 mL). The combined organic layer was dried over sodium sulphate, filtered and then concentrated to give 9 in 95% (4.763 g) as colourless low melting solid. $[\alpha]^{28}_{D}$ +0.54 (c 1.5, CHCl₃). v_{max} (KBr)/cm⁻¹; 3496, 3280, 3032, 2920, 2866, 1451, 1330, 1159, 1088, 814, 742, 699, 666, 552; δ_H (300 MHz; CDCl₃): 7.66 (2H, d, J 7.8 Hz), 7.54 (2H, d, J 8.1 Hz), 7.35–7.13 (19H, m), 5.30 (1H, br s, exchangeable with D₂O), 4.71 (1H, br s, exchangeable with D₂O), 4.68 (2H, d, J 11.1 Hz), 4.57-4.44 (4H, m), 4.36 (1H, d, J 11.1 Hz), 3.82 (1H, m), 3.68 (1H, m), 3.55–3.52 (2H, m), 3.47-3.37 (2H, m), 2.88 (1H, m), 2.79 (1H, m), 2.38 (3H, s), 2.34 (3H, s); δ_C (300 MHz; CDCl₃) : 143.5 (C), 143.3 (C), 137.7 (C), 137.4 (C), 137.1 (C), 136.4 (C), 129.6 (CH), 128.5 (CH), 128.06 (CH), 127.9 (CH), 127.1 (CH), 126.9 (CH), 77.8 (2xCH), 74.7 (CH₂), 73.9 (CH₂), 73.3 (CH₂), 71.1 (CH), 70.7 (CH₂), 53.8 (CH), 44.4 (CH₂), 21.4 (2xCH₃); HRMS (ESI): $[M+H]^+$, Found: 759.2734, C₄₁H₄₇N₂O₈S₂ requires 759.2774.

(2*S*,3*R*,4*R*,5*S*)-2-(*N*-*p*-Toluenesulfonyl)aminomethyl-3,4-dibenzyloxy-5-benzyloxymethyl-1*N*-(*p*-toluenesulfonyl)pyrrolidine 10:

Compound 9 (5.0 g, 6.59 mmol) was taken in a 100 mL flame dried three necked round bottom flask and 30 mL of dry THF was added to it followed by PPh₃ (2.246 g, 8.56 mmol). The reaction mixture was cooled to 0 °C. Diethyl azodicarboxylate, DEAD (1.517 mL, 9.23 mmol) was injected into the reaction mixture drop-wise under argon atmosphere. After the addition was over, the reaction mixture was brought to room temperature. The reaction was found to be completed in 30 min. (vide TLC). The reaction was then stopped and the solvent was evaporated. Flash chromatography (hexane-ethyl acetate 6:1) of resulting residue provided 10 in 90% (4.393 g) yield as a colorless viscous liquid; $[\alpha]_{D}^{28}$ -1.1 (c 0.53, CHCl₃); v_{max} (KBr)/cm⁻¹; 3378, 3031, 2923, 2867, 2359, 1497, 1456, 1405, 1334, 1160, 1094, 741, 700, 663, 554; δ_H (300MHz; CDCl₃) : 7.71 (2H,d, J 8.1 Hz), 7.67 (2H, d, J 8.1 Hz), 7.31–7.16 (17H, m), 6.91-6.89 (2H, m), 5.43 (1H, t, J = 7.2 Hz, exchangeable with D₂O), 4.63–4.44 (5H, m), 4.13–3.99 (4H, m), 3.88– 3.82 (1H, m), 3.76 (1H, dd, J 9.9 Hz, 3.3 Hz), 3.48 (1H, d, J 9.9 Hz), 3.44–3.27 (2H, m), 2.39 $(3H, s), 2.29 (3H, s); \delta_C (300 \text{ MHz}; \text{CDCl}_3) : 143.5 (C), 143.1 (C), 137.9 (C), 137.6 (C), 137.4$ (C), 137.1 (C), 136.6 (C), 129.6 (CH), 129.5 (CH), 128.6 (CH), 128.5 (CH), 128.1 (CH), 128.1 (CH), 128.01 (CH), 127.9 (CH), 127.5 (CH), 127.4 (CH), 127.3 (CH), 127.2 (CH), 126.8 (CH), 80.1 (CH), 80.7 (CH), 73.5 (CH₂), 73.3 (CH₂), 72.6 (CH₂), 65.6 (CH₂), 58.4 (CH), 58.3 (CH), 43.8 (CH₂), 21.5 (CH₃), 21.5 (CH₃); HRMS (ESI): [M+H]⁺, Found: 741.2635, C₄₁H₄₅N₂O₇S₂ requires 741.2668.

(2S,3R,4R,5S)-2-Aminomethyl-3,4-dihydroxy-5-hydroxymethyl-pyrrolidine 12:

Liquid ammonia (40 mL) was collected in a flame dried 100 mL three-necked round bottom flask at -78 °C. Sodium metal (0.140 g, 6.073 mmol) was added to it. Deep blue colour appeared. Pyrrolidine **10** (1.0 g, 1.35 mmol) dissolved in THF (2 mL) was added to the reaction mixture and stirred at -78 °C for 3 h. The reaction was quenched by the addition of benzene until the blue colour disappeared followed by addition of water (10 mL). The reaction mixture was allowed to slowly warm to room temperature. The crude reaction mixture was dried in a lyophilizer. Column chromatography (CH₃CN-NH₄OH 4:1) of the residue over deactivated silica yielded

ADMDP **12** in 86% (0.188 g) as a pale yellow low melting solid. $[\alpha]^{28}_{D}$ +2.3 (c 0.30, D₂O); v_{max} (KBr)/cm⁻¹: 3451, 2924, 2361, 1717, 1640, 1452, 1330, 1269, 1158, 1095, 812, 754, 706, 667, 553; δ_H (300MHz; D₂O): 4.29 (2H, d, *J* 10.5 Hz) 4.05 (1H, s), 3.90-3.79 (3H, m), 3.43-3.39 (2H, m); δ_C (300 MHz; D₂O): 74.8 (CH), 74.4 (CH), 63.5 (CH), 58.2 (CH), 57.4 (CH₂), 36.2 (CH₂); HRMS (ESI): [M+H]+, Found: 163.1080, C₆H₁₅N₂O₃ requires 163.1083.

(2*S*,3*R*,4*R*,5*S*)-2-(*N*-Acetyl-*N*-*p*-toluenesulfonyl)aminomethyl-3,4-dibenzyloxy-5-benzyloxymethyl-1*N*-(*p*-toluenesulfonyl)pyrrolidine 13:

In a 50 mL single necked round bottom flask was taken compound 10 (3.0 g, 3.83 mmol) and dissolved in pyridine (30 mL). DMAP (0.467 g, 3.83 mmol) was then added and reaction mixture was cooled to 0°C. Ac₂O (0.724 mL, 7.66 mmol) was then added and the reaction mixture was allowed to come at room temperature and stirred for 24 h. The reaction was quenched with 10% aqueous HCl (100 mL) and the reaction mixture was extracted with EtOAc (3 x 150 mL). The organic layer then washed with brine solution and dried over sodium sulphate, filtered and then concentrated. Flash chromatography of crude reaction mixture was performed with hexane-ethyl acetate (6:1) to obtain 13 in 95% yield (3.012 g) as a colourless viscous liquid; $[\alpha]^{25}_{D}$ -1.9 (c 0.58, CHCl₃); v_{max} (KBr)/cm⁻¹: 3026, 2924, 2861, 2360, 1700, 1645, 1455, 1354, 1162, 1096, 762, 663, 581, 547; δ_H (300MHz; CDCl₃); 7.79 (2H, d, J 7.8 Hz), 7.77 (2H, d, J 7.5 Hz), 7.29–7.10 (17H, m), 6.93-6.90 (2H, m), 4.66–4.48 (5H, m), 4.43–4.21 (4H, m), 4.14-4.07 (2H, m), 3.96 (1H, dd, J 12 Hz), 3.80 (1H, dd, J 9.9, 4.2 Hz), 3.57 (1H, d, J 9.9 Hz), 2.39 (3H, s), 2.26 (3H, s), 2.18 (3H, s); δ_C (300 MHz; CDCl₃): 170.9 (C), 144.7 (C), 142.9 (C), 138.04 (C), 137.9 (C), 137.9 (C), 137.7 (C), 136.5 (C), 129.8 (CH), 129.6 (CH), 129.2 (CH), 129.02 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 127.8 (CH), 127.6 (CH), 127.4 (CH), 127.2 (CH), 127.1 (CH), 126.9 (CH), 81.3 (CH), 79.6 (CH), 73.3 (CH₂), 73.2 (CH₂), 72.5 (CH₂), 65.2 (CH₂), 58.8 (CH), 56.4 (CH), 46.2 (CH₂), 25.1 (CH₃), 21.6 (CH₃), 21.4 (CH₃); HRMS (ESI): [M+Na]⁺, Found: 805.2584, C₄₃H₄₆N₂O₈S₂Na requires 805.2593.

General procedure for Na-Hg mediated detosylation reactions.

In a flame dried 50 mL three necked round bottom flask were taken 3% Na/Hg and Na₂HPO₄ at room temperature under Ar atmosphere. Compound to be detosylated, dissolved in a solvent mixture (DMF-MeOH 8:1), was then added and the reaction mixture was heated at 60 °C for 3 h

after which the reaction was stopped. The reaction mixture was then filtered through a celite pad. The filtrate was diluted with EtOAc and washed with brine solution, a few times, to remove DMF completely from the reaction mixture. The organic layer was dried over anhydrous sodium sulphate, filtered and then concentrated. Flash chromatography of crude reaction mixture afforded the corresponding detosylated compounds.

(2*S*,3*R*,4*R*,5*S*)-2-(*N*-*p*-Toluenesulfonyl)aminomethyl-3,4-dibenzyloxy-5-benzyloxymethyl-pyrrolidine 14:

Compound **14** (0.76 g, 96% yield) was obtained as a yellow gummy liquid from the reaction of compound **10** (1.0 g, 1.35 mmol) with 3% Na-Hg (52.0 g, 67.57 mmol) and Na₂HPO₄ (1.2 g, 6.76 mmol) following the general procedure described above. Product **14** was purified by column chromatography over silica using hexane-ethyl acetate (2:1). $[\alpha]^{28}_{D}$ -6.08 (*c* 0.44, CHCl₃); v_{max} (KBr)/cm⁻¹: 3309, 3031, 2922, 2858, 1956, 1878, 1811, 1722, 1598, 1454, 1329, 1214, 1158, 1088, 910, 813, 741, 698, 664, 604, 552; δ_H (300MHz; CDCl₃) : 7.65 (2H, d, *J* 8.1 Hz.), 7.36-7.22 (17H, m), 4.57-4.53 (5H, m), 4.35 (1H, d, *J* 11.7 Hz), 4.0 – 3.97 (2H, m), 3.64 – 3.52 (4H, m), 3.12(1H, dd, *J* 12.6, 6.3 Hz), 2.97(1H, dd, *J* 18.6, 6.3 Hz), 2.44 (3H, s); δ_C (300 MHz; CDCl₃): 142.9 (C), 138.04 (C), 137.8 (C), 137.5 (C), 136.8 (C), 129.5 (CH) 128.5 (CH), 128.3 (CH), 127.9 (CH), 127.7 (CH), 127.6 (CH), 127.3 (CH), 126.9 (CH), 126.8 (CH), 82.8 (CH), 82.2 (CH), 73.2 (CH₂), 72.01 (CH₂), 71.9 (CH₂), 68.9 (CH₂), 64.8 (CH), 58.4 (CH), 57.6 (CH₂), 43.4 (CH₂), 21.3 (CH₃); HRMS (ESI): $[M+H]^+$, Found: 587.2586, C₃₄H₃₉N₂O₅S requires 587.2580.

(2*S*,3*R*,4*R*,5*S*)-2-(*p*-Toluenesulfonyl)aminomethyl-3,4-dihydroxy-5-hydroxymethyl-pyrrolidine 15:

10% palladium on charcoal (1.5 g, 300% w/w) was taken in a 50 mL three-necked round bottom flask. Compound **14** (0.5 g, 0.85 mmol) dissolved in methanol (10 mL) was added to the reaction flask. H₂ gas was then bubbled slowly into reaction mixture for 5 h at 30 °C. The reaction mixture was then filtered through a celite pad. The filtrate was collected and the solvent

was evaporated to yield compound **15** as a white solid in 90% (0.243 g). mp 182 °C (recrystallized from MeOH/THF); $[\alpha]^{28}_{D}$ +7.4 (*c* 0.35, H₂O); v_{max} (KBr)/cm⁻¹: 3150, 1745, 1632, 1406, 1325, 1158, 1089, 815, 666, 554; δ_H (300MHz; D₂O): 7.73 (2H, br s), 7.42 (2H, br s), 4.309 (1H, br s), 4.21 (1H, s), 3.94 (4H, m), 3.26 (2H, m), 2.37 (3H, s); δ_C (300 MHz; D₂O): 145.4 (C), 134.2 (C), 130.2 (CH), 126.8 (CH), 74.5 (CH), 74.4 (CH), 63.3 (CH), 61.05 (CH), 57.4 (CH₂), 39.5 (CH₂), 20.7 (CH₃); HRMS (ESI): [M+H]⁺, Found: 317.1156, C₁₃H₂₁N₂O₅S requires 317.1171.

General procedure for alkylation of compound 10:

Compound **10** was taken in a flame dried three-necked round bottom flask and dissolved in dry DMF. Sodium hydride was added to it at 0 0 C followed by alkyl halide and the reaction mixture was stirred at room temperature for the specified time after which the reaction was stopped. The reaction was then quenched with iced water. The reaction mixture was diluted with EtOAc and washed with brine solution, a few times, to remove DMF completely from the reaction mixture. The organic layer was dried over anhydrous sodium sulphate, filtered and then concentrated. Flash chromatography of crude reaction mixture afforded the corresponding alkylated compounds.

(2*S*,3*R*,4*R*,5*S*)-2-(*N*-Methyl-*N*-*p*-toluenesulfonyl)aminomethyl-3,4-dibenzyloxy-5-benzyloxymethyl-1*N*-(*p*-toluenesulfonyl)pyrrolidine 16:

Compound 16 (1.814 g, 89% yield) was obtained in 3 h as a white crystalline solid from the reaction of compound 10 (2.0 g, 2.69 mmol) with NaH (0.432 g of 60% suspension in mineral oil) and methyl iodide (0.252 mL, 4.05 mmol) following the general procedure described above. Product 16 was purified by column chromatography over silica using hexane-ethyl acetate (8:1). mp 110 °C (recrystallized from benzene/hexane); $\left[\alpha\right]^{27}$ +28.4 (c 0.69, CHCl₃); v_{max} (KBr)/cm⁻ ¹:3029, 2918, 2865, 1717, 1594, 1491, 1453, 1338, 1157, 1088, 1018, 810, 747, 699, 659, 601, 546; δ_H (300MHz; CDCl₃) : 7.89 (2H, d, J 7.8 Hz.) , 7.84 (2H, d, J 8.1 Hz), 7.33 - 7.19 (17H, m), 6.89 (2H, m), 4.78 (1H, d, J 11.7 Hz), 4.64 (1H, d, J 11.7 Hz), 4.56 – 4.49 (4H, m), 4.11 – 3.88 (5H, m), 3.79-3.76 (1H, m), 3.60 (1H, d, J 9.0 Hz), 2.88-2.80 (1H, m), 2.66 (3H, s), 2.43 $(3H, s), 2.29 (3H, s); \delta_C (300 \text{ MHz}; \text{CDCl}_3): 143.5 (C), 142.9 (C), 137.9 (C), 137.8 (C), 137.5$ (C), 132.2 (C), 129.6 (CH) 129.3 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 127.8 (CH), 127.6 (CH), 127.5 (CH), 127.3 (CH), 127.1 (CH), 126.8 (CH), 81.03 (CH), 79.1 (CH), 73.5 (CH₂), 73.01 (CH₂), 72.5 (CH₂), 65.2 (CH₂), 59.2 (CH), 58.8 (CH), 51.9 (CH₂), 38.9 (CH₃), 21.5 (CH₃), 21.4 (CH₃); HRMS (ESI): $[M+H]^+$, Found: 755.2818, C₄₂H₄₇N₂O₇S₂ requires 755.2825.

(2*S*,3*R*,4*R*,5*S*)-2-(*N*-Ethyl-*N*-*p*-toluenesulfonyl)aminomethyl-3,4-dibenzyloxy-5-benzyloxymethyl-1*N*-(*p*-toluenesulfonyl)pyrrolidine 17:

Compound 17 (2.413 g, 93% yield) was obtained in 5 h as colourless liquid from the reaction of compound 10 (2.5 g, 3.37 mmol) with NaH (0.404 g of 60% suspension in mineral oil) and ethyl iodide (0.329 mL, 4.05 mmol) following the general procedure described above. Product 17 was purified by column chromatography over silica using hexane-ethyl acetate (6:1). $\left[\alpha\right]_{D}^{28}$ +35.8 (c 0.48, CHCl₃); v_{max} (KBr)/cm⁻¹: 3409, 3062, 3031, 2929, 2871, 1710, 1598, 1494, 1453, 1453, 1340, 1155, 1092, 908, 814, 731, 699, 662, 598, 548; δ_H (300MHz; CDCl₃) : 7.86 (2H, d, J 8.4 Hz), 7.83 (2H,d, J 8.4 Hz), 7.30-7.13 (17H, m), 6.96-6.94 (2H, m), 4.71 (1H, d, J 11.7 Hz), 4.64-4.60 (2H, m), 4.53-4.47 (1H, dd, J 11.7, 4.5 Hz), 4.40 (1H, t, J 6.3Hz), 4.15 (1H, d, J 11.7Hz), 4.07-4.03 (2H, m), 3.95 (1H, d, J 14.4 Hz), 3.77-3.68 (4H, m), 3.45-3.37 (1H, m), 3.25-3.14 (2H, m), 2.41 (3H, s), 2.29 (3H, s), 0.75 (3H, t, J 7.2 Hz); δ_C (300 MHz; CDCl₃): 143.3 (C), 143.1 (C), 138.0 (C), 137.9 (C), 137.9 (C), 137.8 (C), 136.4 (C), 129.7 (CH), 129.4 (CH), 128.4 (CH), 128.3 (CH), 128.1 (CH), 127.9 (CH) 127.8 (CH), 127.7 (CH), 127.6 (CH), 127.5 (CH), 127.4 (CH), 127.3 (CH), 127.04 (CH), 80.7 (CH), 78.9 (CH), 73.2 (CH₂), 73.04 (CH₂), 72.7 (CH₂), 65.5 (CH₂), 59.9 (CH), 59.7 (CH), 48.01 (CH₂), 45.3 (CH₂), 21.59 (CH₃), 21.53 (CH₃), 12.2 (CH₃); HRMS (ESI): [M+Na]⁺, Found:791.2810, C₄₃H₄₈N₂O₇S₂Na requires 791.2801.

(2*S*,3*R*,4*R*,5*S*)-2-(*N*-Methyl)aminomethyl-3,4-dibenzyloxy-5-benzyloxymethyl-pyrrolidine 18:

Compound **18** (0.408 g, 69% yield) was obtained as a yellow gummy liquid from the reaction of compound **16** (1.0 g, 1.32 mmol) with 3% Na-Hg (126.939 gm, 165.57 mmol) and Na₂HPO₄ (2.948 gm, 16.56 mmol) following the general procedure described above. Product **18** was purified by column chromatography over silica using CHCl₃:MeOH:NH₄OH (100:2.5:2.5) as a solvent mixture. $[\alpha]^{27}_{D}$ 14.7 (*c* 0.43, CHCl₃); v_{max} (KBr)/cm⁻¹: 3835, 3020, 2924, 2861, 2963, 1709, 1552, 1459, 1407, 1218, 1099, 764, 694; δ_H (300MHz; CDCl₃): 7.37-7.26

(15H, m), 4.58- 4.48 (5H, m), 4.40 (1H, d, *J* 12Hz), 4.03- 3.93 (2H, m), 3.68- 3.49 (4H, m), 2.73– 2.67 (2H, m), 2.41 (3H, s), 1.96 (2H, br s, N*H*, exchangeable with D₂O), δ_C (300 MHz; CDCl₃): 138.3 (C), 138.2 (C), 137.1 (C), 128.4 (CH), 127.3 (CH), 128.3 (CH), 127.8 (CH), 127.7 (CH), 127.6 (CH), 127.5 (CH), 83.04 (CH), 82.4 (CH), 73.3 (CH₂), 72.2 (CH₂), 71.9 (CH₂), 69.6 (CH₂), 58.5 (2xCH), 51.7 (CH₂), 36.7 (CH₃); HRMS (ESI): [M+H]⁺, Found: 447.2647, C₂₈H₃₅N₂O₃ requires 447.2648.

(2*S*,3*R*,4*R*,5*S*)-2-(N-Ethyl)aminomethyl-3,4-dibenzyloxy-5-benzyloxymethyl-pyrrolidine 19:

Compound **19** (0.449 g, 75% yield) was obtained as a yellow gummy liquid from the reaction of compound **17** (1.0 g, 1.3 mmol) with 3% Na-Hg (124.62 g, 162.55 mmol) and Na₂HPO₄ (2.893 g, 16.26 mmol) following the general procedure described above. Product **19** was purified by column chromatography over silica using CHCl₃:MeOH:NH₄OH (10:0.1:0.1) as a solvent mixture. $[\alpha]^{28}_{D}$ +8.9 (*c* 0.76, CHCl₃); v_{max} (KBr)/cm⁻¹: 3323, 3061, 3031, 2863, 1955, 1877, 1813, 1649, 1608, 1491, 1455, 1362, 1309, 1208, 1095, 1208, 1095, 911, 808, 697, 608, 465 and; δ_H (300MHz; CDCl₃); 7.34-7.28 (15H, m), 4.60-4.50 (5H, m), 4.42 (d, 1H, *J* 12 Hz), 4.06-3.97 (2H, m), 3.72-3.52 (4H, m), 2.84-2.73 (2H, m), 2.65 (2H, q, *J* 7.2 Hz), 2.07 (2H, br s, N*H* exchangeable with D₂O), 1.08 (3H, t, *J* 7.2 Hz); δ_C (300 MHz; CDCl₃): 138.1 (C), 137.9 (C), 137.7 (C), 128.5 (CH), 128.4 (CH), 127.9 (CH), 127.8 (CH), 128.1 (CH), 127.8 (CH), 127.7 (CH), 127.3 (CH), 126.9 (CH), 82.7 (CH), 82.2 (CH), 73.4 (CH₂), 72.4 (2xCH₂), 69.1 (CH₂), 58.7 (CH), 57.1 (CH), 48.7 (CH₂), 43.9 (CH₂), 13.5 (CH₃); HRMS (ESI): [M+H]⁺, Found: 461.2806, C₂₉H₃₇N₂O₃ requires 461.2804.

(2S,3R,4R,5S)-2-(N-Methyl)aminomethyl-3,4-dihydroxy-5-hydroxymethyl-pyrrolidine 20:

10% palladium on charcoal (0.4 g, 100% w/w) was taken in a 50 mL three-necked round bottom flask. Compound **18** (0.4 g, 0.89 mmol) dissolved in methanol (14 mL) was added to the reaction flask followed by the addition of 10% HCl in methanol (1.75 mL). H₂ gas was then bubbled slowly into reaction mixture for 12 h at 30 °C. The reaction mixture was then filtered through a celite pad and the filtrate was evaporated to get compound **20** as its hydrochloride salt which was then basified with triethylamine untill pH 12.0. Further purification of the product by

column chromatography with CH₃CN-NH₄OH (1:1) afforded the free base **20** in 94% (0.148 g) yield as a low melting white solid; $[\alpha]^{28}_{D}$ +3.8 (*c* 1.6, H₂O); v_{max} (KBr)/cm⁻¹: 3379, 1631, 1406, 1082, 571; δ_H (300MHz; D₂O): 4.31 (2H, m), 4.11-4.08 (1H, m), 3.90-3.79 (3H, m), 3.51 (1H, dd, *J* 13.5, 6.0Hz), 3.41 (1H, dd, *J* 13.5, 6.6 Hz), 2.75 (3H, s); δ_C (300 MHz; D₂O): 75.2 (CH), 74.7 (CH), 63.5 (CH), 57.8 (CH₂), 57.3 (CH), 45.9 (CH₂), 33.8 (CH₃); HRMS (ESI): [M+Na]⁺, Found: 199.1062, C₇H₁₆N₂O₃Na requires 199.1059.

(2S,3R,4R,5S)-2-(N-ethyl)aminomethyl-3,4-dihydroxy-5-hydroxymethyl-pyrrolidine 21:

10% palladium on charcoal (0.4 g, 100% w/w) was taken in a 50 ml three necked round bottom flask. Compound **19** (0.4 g, 0.87 mmol) dissolved in methanol (14 mL) was added to the reaction flask followed by the addition of 10% HCl in methanol (1.75 mL). H₂ gas was then bubbled slowly into reaction mixture for 12 h at 30 °C. The reaction mixture was then filtered through a celite pad and the filtrate was evaporated to get compound **21** as its hydrochloride salt which was then basified with triethylamine untill pH 12.0. Further purification of the product by column chromatography with CH₃CN-NH₄OH (1:1) afforded **21** in 90% (0.149 g) as a low melting white solid; $[\alpha]^{28}_{D}$ +5.6 (*c* 0.90, H₂O); v_{max} (KBr)/cm⁻¹: 3423, 2924, 2854, 2362, 1742, 1626, 1403, 1248, 1176, 1083, 555, 435, 403; δ_H (300MHz; D₂O): 4.22-4.18 (2H, m), 3.92-3.9 (1H, m), 3.79-3.67 (3H, m), 3.38 (1H, dd, *J* 13.5, 6.0 Hz), 3.27 (1H, dd, *J* 13.5, 6.6Hz), 3.03 (2H, q, *J* 7.5Hz), 1.15 (3H, t, *J* 7.5Hz); δ_C (300 MHz; D₂O): 75.3 (CH), 74.9 (CH), 62.9 (CH), 57.9 (CH₂), 57.1 (CH), 44.2 (CH₂), 44.02 (CH₂), 10.6 (CH₃); HRMS (ESI): [M+H]⁺, Found: 191.1396, C₈H₁₉N₂O₃ requires 191.1396.

(2S,3R,4R,5S)-2-(N-Acetyl)aminomethyl-3,4-dihydroxy-5-hydroxymethyl-pyrrolidine 22:

In flame dried 50 mL three-necked round bottom flask was taken compound **10** (1.0 g, 6.17 mmol). Acetic anhydride (0.582mL, 6.17 mmol) was added to it at 0 $^{\circ}$ C under argon atmosphere. The reaction mixture was sonicated under solvent free condition for 15 minutes at room temperature, after which the reaction was quenched with liquor ammonia until the solution reaches a pH of 9. Column purification using CH₃CN-NH₄OH (1:1) afforded compound **22** in

85% (1.07 g) yield as low melting white solid. $[α]^{28}{}_{D}$ -4.3 (*c* 0.73, H₂O); v_{max} (KBr)/cm⁻¹: 3183, 2304, 1649, 1406, 1099, 618; δ_H (300MHz; D₂O): 4.27 (1H, br s), 4.21 (1H, br s), 3.94-3.79 (4H, m), 3.54-3.52 (2H, m), 1.94 (3H, s); δ_C (300 MHz; D₂O): 175.2 (C), 74.7 (CH), 74.3 (CH), 63.2 (CH), 60.9 (CH), 57.5 (CH₂), 36.3 (CH₂), 21.9 (CH₃); HRMS (ESI): [M+1]⁺, Found: 205.1190, C₈H₁₇N₂O₄ requires 205.1188.

General procedure for enzyme assay and calculation of IC₅₀ values:

Our experimental design was to measure enzyme velocity at constant substrate concentration with varying concentrations of an inhibitor,² spectrophotometrically,³ by carrying out the inhibition assay of the glycosidases in the presence of the iminosugars as inhibitors utilizing the corresponding *p*-nitrophenyl glycosides as the substrates.

 α -Glucosidase type I from Baker's yeast, α -galactosidase from green coffee beans, β -galactosidase from *Escherichia coli* and *p*-nitrophenyl- α -D-galactopyranoside were purchased from Sigma Chemicals Co. USA.

 β -glucosidase from almond, *p*NP- α -D-glucopyranoside, *p*NP- β -D-glucopyranoside and *p*NP- β -D-galactopyranoside were purchased from SRL Chemicals Ltd., India.

Glycosidase was pre-incubated with various concentrations (0.5-12 mM) of inhibitor for 30 minutes at its optimum pH and temperature. 20μ L of 25mM *p*-nitrophenyl glycopyranoside (*p*-NPG) in 0.1M phosphate buffer was added to the reaction mixture to initiate the reaction. In the case of β -glucosidase acetate buffer was used. The final volume of the reaction mixture was adjusted to 1.1 mL with buffer. Control was also run in parallel without inhibitor. The reaction was then incubated at the same pH and temperature for 10 minutes and quenched by adding 1mL of 1M Na₂CO₃ solution. The glycosidase activity was determined by measuring the *p*-nitrophenol released from *p*-nitrophenyl glycopyranosides at 405 nm using Shimadzu UV-Visible Spectrophotometer (Model UV-1800). IC₅₀ values were determined by plotting experimental data as V_i/V₀ (fractional activity) versus the inhibitor concentration [I] at a constant concentration of substrate, where V_i and V₀ represent the enzyme velocity (activity) in the presence and absence of inhibitor, respectively. IC₅₀ values were calculated from the inhibitor concentration [I] corresponding to fractional activity of 0.5. IC₅₀ value was defined as the concentration of the inhibitor to inhibit 50% of enzyme activity under the assay conditions.

Each experiment was repeated **thrice** to get a range of IC_{50} values and the mean IC_{50} values were reported in the manuscript.

Preparations:

Buffer solutions:	0.1M phosphate buffer for all enzymes.
	For β -glucosidase 0.1M acetate buffer was used.
Quencher :	1M sodium carbonate for all experiments

Enzyme solution:	0.3 mg/mL for α - and β -glucosidase
	0.045 mg/mL for α -galactosidase
	0.1 mg/mL for β -galactosidase
Substrate concentration:	25 mM made from buffer in all cases
Inhibitor concentration:	Made from buffer in varying concentrations ranging from 0.5 mM
	to 15 mM

Standardisation: OD values were standardized in terms of amount of *p*-nitrophenol under given buffer condition,

1 OD = X micromoles of p -nitrophenol (p NP)

From experimental values, OD in terms of amount of *p*-nitrophenol were obtained as follows:

1 OD = 0.093183 micromoles of *p*-nitrophenol for α -glucosidase

1 OD = 0.105579 micromoles of *p*-nitrophenol for β -glucosidase

1 OD = 0.092232 micromoles of *p*-nitrophenol for α -galactosidase

1 OD = 0.079403 micromoles of *p*-nitrophenol for β -galactosidase

Activity: Enzyme activities were calculated as follows:

 $20~\mu L$ of Z mg/mL of Enzyme gives OD value of Y in 10 minutes of incubation period with $20\mu L$ of 25 mM Substrate

i.e.,

 $20 \ \mu L \ x \ Z \ mg/mL \ x \ 10 \ min = Y \ OD$ $= Y \ x \ X \ \{as \ 1 \ OD = X \ \mu moles \ of \ p-nitrophenol \ (pNP)\}$ $Activity = (Y \ x \ X) \ /(20 \ x \ Z \ x \ 10 \ x \ 10^{-3})$ $= (Y \ x \ X \ x \ 1000) \ / \ (20 \ x \ Z \ x \ 10)$ $= V \ moles/mg/min.$

Y is the absorbance (@ 405 nm) of the *p*-nitrophenol released at the end of the reaction.

Z is the concentration of the enzyme solution (0.3 mg/mL for α - and β -glucosidase; 0.045 mg/mL for α -galactosidase, 0.1 mg/mL for β -galactosidase).

20 µL of enzyme solution and 20 µL of substrate solution were used in each experiment.

Plot: (Concentration-response plot)

Fractional activity (V_i/V_0) (on the Y-axis) was plotted against inhibitor concentration [I] (on the X-axis)

 IC_{50} values were calculated from the inhibitor concentration [I] corresponding to fractional activity of 0.5.

Result:

Compounds 12 and 22 did not inhibit any of the enzymes up to 12 mM concentration. The inhibition studies of compounds 15, 20 and 21 are given in Table 1 below.

Inhibitor	Enxyme	Source	Condition	IC	C ₅₀ (mM	[)	Range	Mean
				Exp.	Exp.	Exp.	(mM)	IC ₅₀
				1	2	3		(mM)
15	α -glucosidase	Baker's	37 °C,	3.6	3.7	3.3	3.3-3.6	3.5
	type 1	yeast	10 min,					
	• •		pH = 6.8					
15	β-glucosidase	Almond	37 °C,	5.6	6.5	6.9	5.6-6.9	6.3
			10 min,					
			pH = 5					
15	β-galactosidase	Escherichia	37 °C,	6.1	5.4	4.8	4.8-6.1	5.4
	1 0	coli	10 min,					
			pH = 7.3					
20	α -galactosidase	Green	25 °C,	6.3	6.7	7.8	6.3-7.8	6.9
	C	coffee beans	10 min,					
			pH = 6.5					
21	α -galactosidase	Green	25 ⁰ C,	8.8	8.2	7.3	7.3-8.8	8.1
	-	coffee beans	10 min,					
			pH = 6.5					

Table 1: Inhibition activities of compounds 15, 20 and 21

References:

(1) (a) Kumar, V.; Ramesh, N. G. Org. Biomol. Chem. 2007, 5, 3847. (b) Kumar, V.; Ramesh, N. G. Chem. Commun. 2006, 4952

(2) Hamilton-Miller, J. M. T. Biochem. J. 1966, 101, 40c.

(3) Li, Y.-T.; S.; Li, S.-C. in *Methods in Enzymology;* Ginsberg, V., Ed.; Academic Press, 1972, vol. 28, part B, p. 702.

udd

Current Data Farameters NAME Nov-12-2007-iitd EXPNO 8 PROCNO 1	F2 - Acquisition Parameters Date 20071112 Time 13.05 INSTRUM av300 INSTRUM 5 mm PABBO BB- PULPROG 5536 SOLVENT 1476 DS 05536 SOLVENT 1476 SOLVENT 17985.611 Hz SOLVENT 17985.611 Hz SOLVENT 17985.611 Hz BS 17985.611 Hz SOL 327439 Hz AQ 18219508 sec BS 327600 usec DM 6.00 usec DM 0.03000000 sec DELTA 1.89999998 sec DELTA 1.89999998 sec	CHANNEL fl NUC1 13C P1 8.00 usec PL1 75.4752953 MHz	===== CHANNEL f2 ===== CPDPRG2 walt216 1H NUC2 1H 1H PCPD2 80.00 usec PL2 -1.00 dB PL2 16.23 dB PL13 20.1312005 MHz	F2 - Processing parameters SI 32768 AF 75.4677490 MHz WDW EM SSB 0 LB 1.00 Hz GB 1.00 Hz GB	PC 1.40
					bbu
				in the line way have	- 0
					- 2
12.95 ——					- 4
17 ² 28 28 28 29 23					- 09
95°\$L 82°\$L					- 8
					- 0
	н				~
					120
	HC HC HC HC				140
					160
					180
					200

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Data Parameters 05282008 11 1	uisition Parameters 20080528 20080528 20080528 av300 av300 5 mm PABBO BB- 5536 65536 65536 65536 17985.611 Hz 17985.611 Hz 17985.611 Hz 0.274439 Hz 17985.611 Hz 0.274439 Hz 16384 6.00 usec 6.00 usec 6.00 0000 sec 1.89999998 sec 1.89999998 sec 1.89999998 sec 1.89999998 sec 1.89999998 sec 1.89999998 sec 1.89999998 sec	CHANNEL f1 ======= 13C 8.00 usec -3.00 dB 75.4752953 MHz CHANNEL f2 ====== waltz16 11 80.00 usec	-1.00 dB 16.23 dB 20.23 dB 20.1312005 MHz essing parameters 75.4677490 MHz EM 0 1.00 Hz	1.40
Current NAME EXPNO PROCNO	F2 - Acq Date_ Inime PROBHD PULPROG PULPROG SOLVENT NS SOLVENT SOLVENT SOLVENT SOLVENT FIDRES AQ BAQ DA DA DA DI DI dII dII DELLTA	NUCI PLI PLI SFOI SFOI CPDPRG2 NUC2 PCPD2	PLL2 PLL2 PLL3 SF02 SF02 SF NDW SSB SSB LB	
			1	Id
				- 0
¢7.02				20
15.95				40
\$0'19 93'59				- 09
84.47 ****7			much design	80
				100
+8'921				120
04.241	н ,—Н			140
	IS HZ			160
	Tshn Ho			180
	**			200
			*	r

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2010

		12821 +E12821 +12823 +1283 +12823 +12823 +12823 +12823 +1283 +1	05°221 65°221 59°221 02°221	83'04	15'85 19'69 88'12 17'72 16'72 16'72	L9'9E		Current Data Parameters NAME Oct-26-2009 EXPNO 27 PROCNO 1
								F2 - Acquisition Parameters Date20091026 Time13.09 INSTRUMav300 PROBHD5 mm_DUL_13C-1 PULPROG200430
BnO	OBn							TD 5536 5536 SOLVENT CDC13 NS 803 DS 17985.611 Hz
	XH							FIDRES 0.274439 Hz AQ 1.8219508 sec RG 27768 sec DM 277800 usec DM 277800 usec
MeHN	0Bn 18							TE 300.0 K D1 2.0000000 sec d11 0.03000000 sec DELTA 1.8999998 sec TD0
								CHANNEL fl NUCl 13C 13C Pl 8.30 usec Pl 75.4752953 MHz SPO1 75.4752953 MHz
				_		· _		CPDPRG2 CHANNEL f2 mmmune CPDPRG2 waltz16 NUC2 80.00 usec PL12 -2.00 dB PL12 16.00 dB PL13 20.00 dB
								sruc Juu.1312005 MHZ F2 - Processing parameters SI 32768
- " - "								SF 75.4677528 MHz WDW 75.4677528 MHz SSB 0 LB 1.00 Hz CR
200 18	0 160	140	120 10	0	- 09	- 64	20	ppm 1.40

t Data Parameters June-05-2008 1 1	cquisition Parameters 20090605 9.40 9.40 9.40 9.40 9.40 9.40 9.40 65536 65536 65536 65536 65536 65536 65536 17985.611 Hz 1.7985.611 Hz 1.7985.611 Hz 1.7985.611 Hz 1.7985.610 Hz 2.7480 usec 6.00 usec 6.00 usec 0.0300000 sec 1.8999998 sec	= CHANNEL f1 ======= 13C 8.30 usec -2.00 dB 75.4752953 MHz	= CHANNEL f2 ======== waltz16 uff 0 00 usec -2.00 dB 16.00 dB 20.00 dB 300.1312005 MHz	ocessing parameters 32768 75.4677490 MHz EM 0 2.00 Hz	1.40
Current NAME EXPNO PROCNO	F2 - Ac Date FINE FINE FINE FULPRO FULPRO FULPRO FULPRO FINE FINE FINE FINE FINE FINE FINE FINE	NUC1 NUC1 PL1 SF01	CPDPRG2 CPDPRG2 NUC2 PCPD2 PCP2 PL12 PL13 SF02 SF02	FZ - PZ ST SF SS SSB CD	bpm PC
19.01 ——		<u> </u>			50
12.44.21 44.21					- 4
86°25 86°25 86°29					- 09
28.47 28.47					- 80
					100
	HO				120
	ZH I			فورد ها الاراد بالمرادلة	140
					160
					180
					200
				₹	

