SUPPLEMENTARY INFORMATION

Toward a Designed Genetic System with Biochemical Function: Polymerase Synthesis of Single and Multiple Size-expanded DNA Base Pairs

Haige Lu, Andrew T. Krueger, Jianmin Gao, Haibo Liu, Eric T. Kool*

Department of Chemistry, Stanford University, Stanford, CA 94305 *to whom correspondence should be addressed: kool@stanford.edu

CONTENTS:

Table S1. Kinetic data for insertion of dNTPs opposite xDNA bases by Dpo4	p. 2
Table S2. Kinetic data for extension beyond an xDNA pair by Kf exo	p. 3
Table S3. Kinetic data for extension beyond an xDNA pair by Dpo4	p. 4

Template Base	dNTP	k _{cat} (min ⁻¹)	$K_{m}\left(\mu M ight)$	$10^6 \times k_{cat} K_m (min^-)^{1} \cdot \mu M^{-1})$	$f_{ m ins\ (rel)}$
xA	А	0.023 ± 0.004	417±5	5.5×10^{1}	6.0×10 ⁻²
xA	С	ND^{b}	ND	$< 10^{1}$	<1×10 ⁻²
xA	G	0.012 ± 0.001	519±29	2.3×10^{1}	2.5×10 ⁻²
xA	Т	0.49 ± 0.15	514±17	9.2×10^{2}	1
xC	А	0.037 ± 0.003	250±21	1.5×10^{2}	2.0×10 ⁻¹
xC	С	0.056 ± 0.007	148 ± 31	4.1×10^{2}	5.4×10 ⁻¹
xC	G	0.44 ± 0.09	574±38	7.6×10^2	1
xC	Т	0.23 ± 0.02	432±81	5.6×10^2	7.4×10 ⁻¹
xG	А	0.027 ± 0.008	487±139	5.6×10 ¹	2.1×10 ⁻²
xG	С	0.25 ± 0.04	92±16	2.7×10^{3}	1
xG	G	0.026 ± 0.007	307±75	8.3×10^{1}	3.1×10 ⁻²
xG	Т	0.081 ± 0.022	642 ± 208	1.3×10^{2}	4.8×10 ⁻²
хT	А	0.53±0.13	307±96	1.8×10^{3}	1
хT	С	0.59 ± 0.07	319±45	1.9×10^{3}	1.1×10^{0}
хT	G	0.041 ± 0.002	791±158	5.8×10^{1}	3.2×10 ⁻²
хT	Т	1.2±0.2	552±155	2.4×10^{3}	1.3×10^{0}
А	Т	4.4±0.3	18±3	2.6×10 ⁵	-
С	G	5.5±0.5	21±1	2.6×10^{5}	-
G	С	11±3	8±1	1.3×10^{6}	-
Т	А	7.9 ± 0.7	15±2	5.4×10 ⁵	-
А	А	0.15 ± 0.02	348±81	4.5×10^{2}	-
G	Т	0.28±0.12	328±162	9.8×10^{2}	-
Т	G	0.77 ± 0.03	385±30	2.0×10^{3}	-

Table S1. Steady-state kinetics for insertion of single nucleotides opposite size-expanded bases by Dpo4 polymerase.^a

^aConditions: 5 μ M template-primer duplex, 40 mM Tris-HCl (pH=8.0), 5 mM MgCl₂, 10 mM dithiothreitol, 250 μ g/mL bovine serum albumin, and various concentrations of dNTPs, incubated at 37 °C in a reaction volume of 10 μ L. Data are averaged from triplicates; standard deviations are shown. V_{max} was normalized to 1 μ M enzyme concentration. ^bNot determined due to very low insertion efficiency.

	5 5	1	1		
Template Base	Primer Base	$V_{max} \left(\mu M \bullet min^{-1} \right)$	$K_{m}\left(\mu M\right)$	$10^6 \times V_{max}/K_m$	$f_{\rm ext(rel)}$
xA	Α	0.0011±0.0001	141±6	7.7×10^{0}	1.4×10 ⁻¹
xA	С	ND^{b}	ND	<1	< 2×10 ⁻²
xA	G	0.00092 ± 0.00003	131±13	7.2×10^{0}	1.3×10 ⁻¹
xA	Т	0.011 ± 0.002	248±87	5.5×10^{1}	1
xC	А	0.00082 ± 0.00003	156±19	5.4×10^{0}	1.1×10^{0}
xC	С	0.011 ± 0.001	94±16	1.2×10^{2}	2.6×10^{1}
xC	G	0.00053 ± 0.00010	119±36	4.6×10^{0}	1
xC	Т	0.059 ± 0.030	54±22	9.4×10^{2}	2.0×10^{2}
xG	А	0.0087 ± 0.0010	163±13	5.3×10 ¹	7.0×10^{0}
xG	С	0.0015 ± 0.0002	201±43	7.6×10^{0}	1
xG	G	ND^{b}	ND	<1	$< 2 \times 10^{-2}$
xG	Т	0.063 ± 0.002	198±12	3.2×10^{2}	4.2×10^{1}
хT	А	0.0027 ± 0.0002	172±11	1.6×10^{1}	1
хT	С	$0.24{\pm}0.05$	182±71	1.4×10^{3}	8.8×10^{1}
хT	G	ND^{b}	ND	<1	$< 2 \times 10^{-2}$
хT	Т	0.038 ± 0.004	85±5	4.4×10^{2}	2.8×10^{1}
Α	Т	0.44±0.05	0.42±0.09	1.2×10^{6}	-
А	А	0.0025 ± 0.0003	122±13	2.1×10^{1}	-
G	Т	0.084 ± 0.030	296±114	2.8×10^{2}	-

Table S2. Steady-state kinetics data for Kf (exo-)-catalyzed extension of a C-G pair immediately beyond the size-expanded base pairs and mismatches shown.^a

^aConditions: 0.5 μ M template-primer duplex, 100 mM Tris \bullet HCl (pH=7.5), 10 mM MgCl₂, 1 mM dithiothreitol and 100 μ g/mL serum albumin, varied concentrations of dCTP, incubated at 37 °C in a reaction volume of 10 μ L. Data are averaged from triplicates; standard deviations are shown. V_{max} was normalized to 0.005 unit/ μ L enzyme concentration. ^bNot determined due to low extension efficiency.

	5 5	1	1		
Template Base	Primer Base	$k_{cat} (min^{-1})$	$K_{m}\left(\mu M ight)$	$10^6 \times k_{cat}/K_m (min^-)^{1} \cdot \mu M^{-1})$	$f_{\rm ext \ (rel)}$
xA	А	ND^{b}	ND	<10 ³	ND
xA	С	ND^{b}	ND	<10 ³	ND
xA	G	ND^{b}	ND	<10 ³	ND
xA	Т	3.5 ± 0.6	15±4	2.3×10 ⁵	1
xC	А	ND^{b}	ND	<10 ³	ND
xC	С	ND^{b}	ND	<10 ³	ND
xC	G	6.6 ± 0.9	163±31	4.1×10^{4}	1
xC	Т	6.3±0.1	80±6	7.9×10^4	1.9×10^{0}
xG	А	ND^{b}	ND	<10 ³	ND
xG	С	$2.4{\pm}0.1$	68±5	3.5×10^{4}	1.2×10^{0}
xG	G	ND^{b}	ND	<10 ³	ND
xG	Т	ND^{b}	ND	<10 ³	ND
хT	А	2.5 ± 0.7	89±16	2.7×10^{4}	1
хT	С	3.1±0.4	106±21	3.0×10^{4}	1.1×10^{0}
хT	G	ND^{b}	ND	<10 ³	ND
хT	Т	10.7 ± 1.7	84±35	1.5×10^{5}	5.6×10 ⁰
А	Т	18 ± 4	4.5±0.7	4.0×10^{6}	-
С	G	31±4	7.2±0.1	4.2×10^{6}	-
G	С	23±4	14±4	1.6×10^{6}	-
Т	А	34±3	6.2±0.6	5.5×10^{6}	-
G	Т	$2.9{\pm}0.2$	140±23	2.2×10^{4}	-
Т	G	6.0±0.5	156±14	3.9×10^{4}	-

Table S3. Steady-state kinetics data for Dpo4-catalyzed extension of a C-G pair immediately beyond size-expanded base pairs.^a

^aConditions: 5 μ M template-primer duplex, 40 mM Tris-HCl (pH=8.0), 5 mM MgCl₂, 10 mM dithiothreitol, 250 μ g/mL bovine serum albumin (BSA), and various concentrations of dCTPs, incubated at 37 °C in a reaction volume of 10 μ L. Data are averaged from triplicates; standard deviations are shown. V_{max} was normalized to 1 μ M enzyme concentration. ^bNot determined due to very low extension efficiency.