Synthesis of Pyrazolines by a Site Isolated Resin-Bound Reagents Methodology

Vincent Gembus, ^a Jean-Jacques Bonnet, ^b François Janin, ^b Pierre Bohn, ^b Vincent Levacher, ^a and Jean-François Brière ^a

^aINSA et Université de Rouen, UMR CNRS COBRA, IRCOF (Research Institute in Fine Organic Chemistry), rue Tesnière, BP 08, 76131 Mont Saint Aignan, France.

^b Faculté de pharmacie de Rouen, Laboratoire de neuropsychopharmacologie experimentale FRE 2735.

ľ	Various procedures and optimizations	3
	I.1 Optimization of pyrazolines syntheses	3
	I.2 Synthesis of enones and aza-Michael product 3b	
II	NMR spectra	6
	II.1 (E)-N'-benzylidene-N-(3-oxo-2,3-diphenylpropyl)acetohydrazide (¹ H) 3b	6
	II.1 (E)-N'-benzylidene-N-(3-oxo-2,3-diphenylpropyl)acetohydrazide (JMOD) 3b	6
	II.2 (3,4-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)methanone (1H) 4a	
	II.2 (3,4-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)methanone (JMOD) 4a	7
	II.3 1-(3,4-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (1H) 4b	8
	II.3 1-(3,4-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (JMOD) 4b	8
	II.4 (3,4-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)(furan-2-yl)methanone (1H) 4c	9
	II.4 (3,4-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)(furan-2-yl)methanone (JMOD) 4c	9
	II.5 benzyl 3,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (1H) 4d	. 10
	II.5 benzyl 3,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (13C) 4d	. 10
	II.5 benzyl 3,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (JMOD) 4d	. 11
	II.6 N,3,4-triphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (1H) 4e	
	II.6 N,3,4-triphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (JMOD) 4e	. 12
	II.7 3,4-diphenyl-1-tosyl-4,5-dihydro-1H-pyrazole (1H) 4f	. 13
	II.7 3,4-diphenyl-1-tosyl-4,5-dihydro-1H-pyrazole (JMOD) 4f	. 13
	II.8 1-(3-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (1H) 4h	
	II.8 1-(3-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (JMOD) 4h.	. 14
	II.9 3-(4-chlorophenyl)-N,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (1H) 4i	
	II.9 3-(4-chlorophenyl)-N,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (JMOD)	4i
	II.10 benzyl 3-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (1H) 4	4j
		-
	II.10 benzyl 3-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (JMO	
		. 16
	II.11 1-(3-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (1H) 4k	
	II.11 VI.11 1-(3-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (JMC	
	4k	. 17
	II.12 benzyl 3-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (1H) 4	
		1 0

II.12 benzyl 3-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (13C)	41
	18
II.12 benzyl 3-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (JMO	D)
41	<u>1</u> 9
II.13 1-(3,4-bis(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (1H) 4m	20
II.13 1-(3,4-bis(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (JMOD) 4m	20
II.14 1-(4-phenyl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (1H) 4n	21
II.14 1-(4-phenyl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (JMOD) 4n	21
II.15 N,4-diphenyl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carboxamide (1H) 4o	22
II.15 N,4-diphenyl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carboxamide (JMOD)	4o
	22
II.16 1-(4-methyl-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (1H) 4p	23
II.16 1-(4-methyl-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (JMOD) 4p	23
II.17 (3-isopropyl-4-phenyl-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)methanone (1H) 4q	24
II.17 (3-isopropyl-4-phenyl-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)methanone (JMOD) 4	-q
	24
II.18 3-isopropyl-N,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (1H) 4r	25
II.18 3-isopropyl-N,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (JMOD) 4r	25
II.19 1-(methylsulfonyl)-3,4-diphenyl-4,5-dihydro-1H-pyrazole (1H) 4s	26
II.19 1-(methylsulfonyl)-3,4-diphenyl-4,5-dihydro-1H-pyrazole (JMOD) 4s	26
II.20 N-cyclohexyl-3,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (1H) 4t	27
II.20 N-cyclohexyl-3,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (13C) 4t	27

I Various procedures and optimizations

I.1 Optimization of pyrazolines syntheses

Entry	Hydrazone 1 R ¹ , R ² (equiv)	Solvent	Temp (°C)	PS-TBD (%)	PS-TsOH (%)	Pyrazoline 4b ^a (%)	Enone 2a ^a (%)
1	Me, H (1.2)	THF	50	20	100	9	39
2	Me, H (1.2)	MeCN	50	20	100	40	16
3	Me, H (1.2)	DMF	50	20	100	50	4
4	Me, H (1.2)	MeCN	25	20	100	20	29
5	Me, H (1.5)	MeCN	50	20	100	55	10
6	Me, H (1.5)	DMF	50	20	100	59	2
7	Me, H (1.5)	MeCN	50	20	40	33^b	6
8	Me, H (1.5)	MeCN	50	20	10	<u>_</u> c	6
9	Et, H (1.5)	MeCN	50	20	100	62	8
10	Me, Me (1.5)	MeCN	50	20	100	52	18
11	Ph, H (1.5)	MeCN	50	20	100	73	2
12	4-MeOC ₆ H ₄ , H (1.5)	MeCN	50	20	100	78	1
13	4-MeOC ₆ H ₄ , H (1.5)	$MeCN^d$	50	20	100	51	26
14	4-MeOC ₆ H ₄ , H (1.5)	MeCN	50	40	100	69	1
15	4-MeOC ₆ H ₄ , H (1.5)	MeCN	50	10	100	77	1

^a Yield determined by ¹H NMR of the crude product by an internal standard. ^b 27% of aza-Michael product **3** was obtained. ^c 59% of aza-Michael product **3** was obtained. ^d 1 equivalent of H₂O.

Remark: in optimized conditions the hydrazones could be recovered.

I.2 Synthesis of enones and aza-Michael product 3b

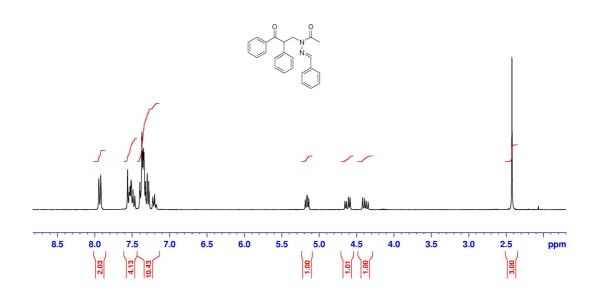
Representative standard procedures for the synthesis of enones (adapted from the litterature). Method A – for 1,2-diarylprop-2-en-1-ones synthesis. To a stirred solution of deoxybenzoin (1.96 g, 10 mmol) in MeOH (25 mL) was successively added formaline (3.57 mL: 37% agueous solution), piperidine (0.128 mL, 1.3 mmol) and AcOH (0.128 mL, 2.2 mmol). The resulting mixture was refluxed for 3 h and concentrated in vacuo. Water was added and the obtained mixture was extracted with CH₂Cl₂. The combined organic layers were washed with water, dried over MgSO₄, filtered and concentrated in vacuo to give 1,2-diphenylprop-2-en-1-one as colorless oil (2.08 g, quantitative crude yield). The rather unstable crude product was used rapidly without further purification. The analytical data are in accordance with literatures. Method B for 1- or 2-monoarylprop-2-en-1-ones synthesis. To a stirred solution of propiophenone (1.34 g, 10 mmol) in DMF (25 mL) was successively added paraformaldehyde (1.5 g), piperidine (0.128 mL, 1.3 mmol) and AcOH (0.128 mL, 2.2 mmol). The resulting mixture was heating at 90 °C for 1 h. After cooling, water was added to the residue and the mixture was extracted with Et₂O. The combined organic layers were washed with water, dried over MgSO₄, filtered, and concentrated to give in vacuo 2-methyl-1-phenylprop-2en-1-one as colorless oil (1.46 g, quantitative yield). The rather unstable crude product was used rapidly without further purification. The analytical data are in accordance with literatures.

Analysis data of unknown enone 2

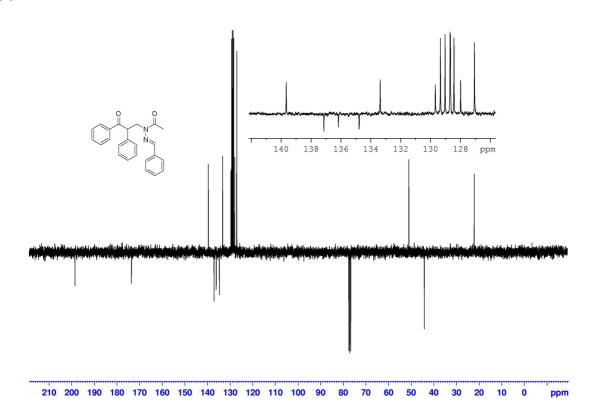
1,2-bis(4-methoxyphenyl)prop-2-en-1-one (Table 3, entry 13). Pale yellow oil; $\delta_{\rm H}(300~{\rm MHz};~{\rm CDCl_3})$ 7.94-7.89 (2 H, m), 7.36-7.32 (2 H, m), 6.91-6.84 (4 H, m), 5.89 (1 H, s), 5.44 (1 H, s), 3.84 (3 H, s), 3.79 (3 H, s); $\delta_{\rm C}(75.4~{\rm MHz};~{\rm CDCl_3})$ 196.7 (C), 163.7 (C), 159.8 (C), 147.9 (C), 132.5 (CH), 129.9 (C), 129.7 (C), 128.1 (CH), 117.1 (CH₂), 114.1 (CH), 113.7 (CH), 55.5 (CH₃), 55.3 (CH₃); MS (EI) m/z : 268, 240, 225, 209, 165, 135, 118, 107, 92, 77.

4-methyl-2-phenylpent-1-en-3-one (Table 3, entries 17-18). Colorless oil; $\delta_{\rm H}(300~{\rm MHz};$ CDCl₃) 7.27-7.18 (5 H, m), 5.89 (1 H, s), 5.75 (1 H, s), 3.20-3.06 (1 H, m), 1.05 (3 H, d, J 6.9); $\delta_{\rm C}(75.4~{\rm MHz};$ CDCl₃) 207.0 (C), 149.1 (C), 137.5 (C), 128.3 (CH), 128.2 (CH), 128.1 (CH), 122.7 (CH₂), 36.8 (CH), 18.8 (CH₃); MS (EI) m/z : 174, 159, 131, 115, 103, 91, 77.

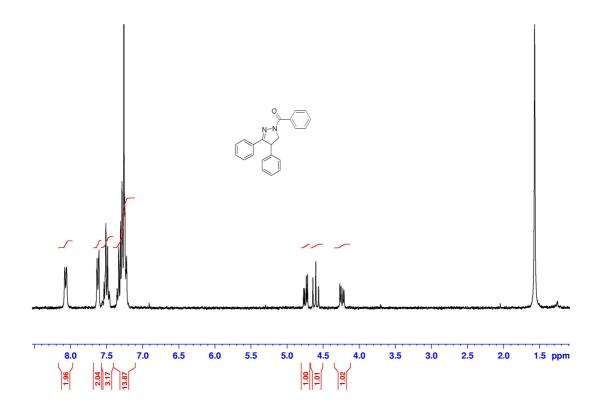
Analysis data for aza-Michael product (Table 1, entry 8).

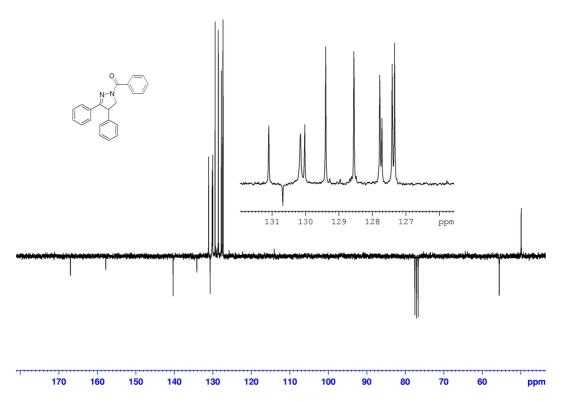

(E)-N'-benzylidene-N-(3-oxo-2,3-diphenylpropyl)acetohydrazide (3b). White solid (150.0 mg, 81 %); $R_f = 0.46$ (Petroleum ether/EtOAc: 2/1); mp 126-128 °C; IR (KBr) $v_{\text{max}}/\text{cm}^{-1}$ 1672, 1612, 1596, 1578, 1493, 1440, 1408, 1359, 1215, 1146, 1036, 975, 749,

¹ (a) A. C. Arnold, C. Grosscurt, R. van Hes and K. Wellinga, *J. Agric. Food Chem.*, 1979, **27**, 406; (b) J. H. M. Lange, H. K. A. C. Coolen, H. H. van Stuivenberg, J. A. R. Dijksman, A. H. J. Herremans, E. Ronken, H. G. Keizer, K. Tipker, A. C. McCreary, W. Veerman, H. C. Wals, B. Stork, P. C. Verveer, A. P. den Hartog, N. M. J. de Jong, T. J. P. Adolfs, J. Hoogendoorn and C. G. Kruse, *J. Med. Chem.*, 2004, **47**, 627; (c) J. A. R. Rodrigues, E. P. Siqueira-Filho, M. de Mancilha and P. J. S. Moran, *Synth. Commun.*, 2003, **33**, 331.

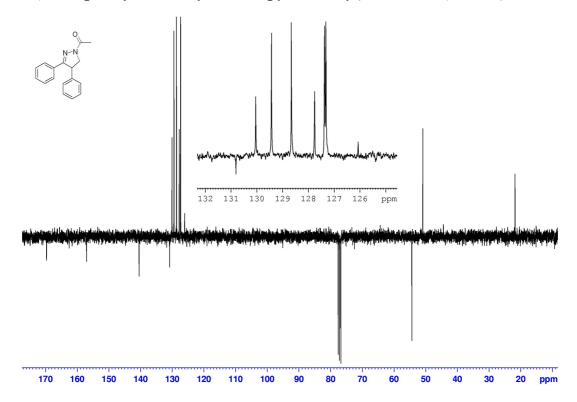

702; $\delta_{\rm H}(300~{\rm MHz};~{\rm CDCl_3})$ 7.94-7.91 (2 H, m), 7.56-7.17 (14 H, m), 5.16 (1 H, t, *J* 7.7), 4.61 (1 H, dd, *J* 14.5 and *J* 6.2), 4.38 (1 H, dd, *J* 14.5 and *J* 7.9), 2.42 (3 H, s); $\delta_{\rm C}(75.4~{\rm MHz};~{\rm CDCl_3})$ 198.6 (C), 173.7 (C), 139.6 (CH), 137.1 (C), 136.1 (C), 134.7 (C), 133.3 (CH), 129.7 (CH), 129.3 (CH), 129.0 (CH), 128.7 (CH), 128.6 (CH), 128.4 (CH), 128.0 (CH), 127.0 (CH), 51.0 (CH), 44.2 (CH₂), 22.1 (CH₃); HRMS (ESI+): Calcd for $C_{24}H_{23}N_2O_2$ [M+H]+: 371.1760; Found: 371.1767.

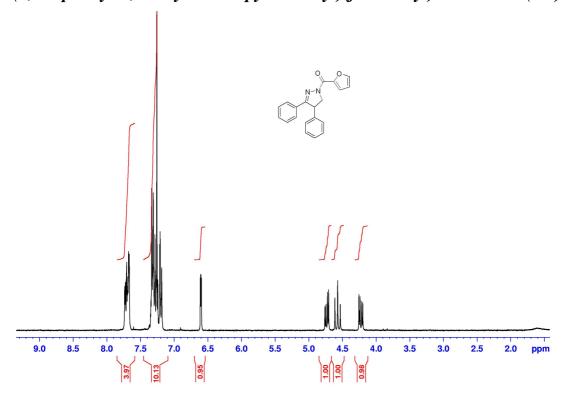
II NMR spectra

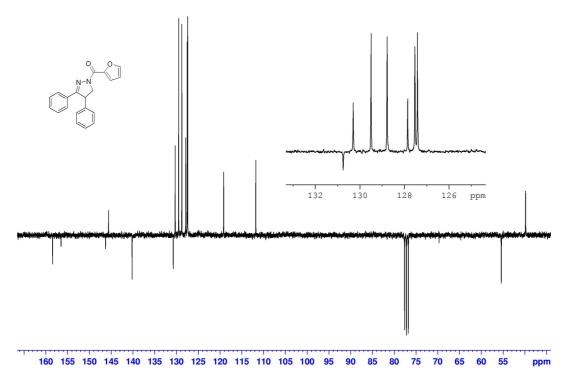

II.1 (E)-N'-benzylidene-N-(3-oxo-2,3-diphenylpropyl)acetohydrazide (¹H) 3b

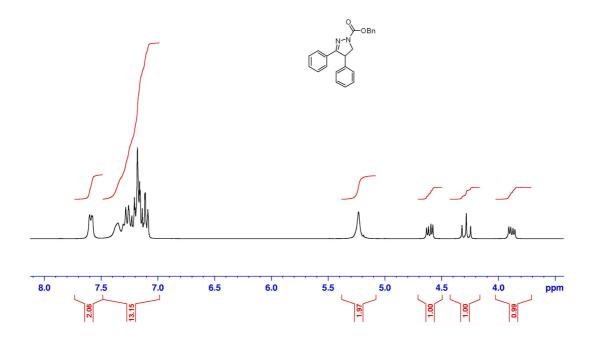

II.1 (E)-N'-benzylidene-N-(3-oxo-2,3-diphenylpropyl)acetohydrazide (JMOD) 3b

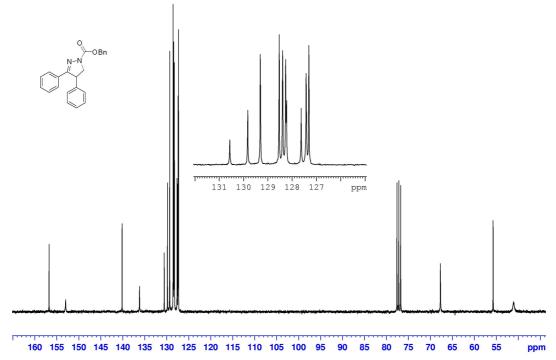

II.2 (3,4-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)methanone (1H) 4a


II.2 (3,4-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)methanone (JMOD) 4a

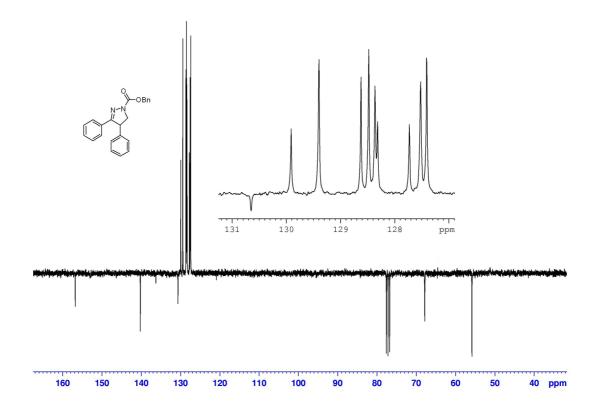

II.3 1-(3,4-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (1H) 4b


II.3 1-(3,4-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (JMOD) 4b

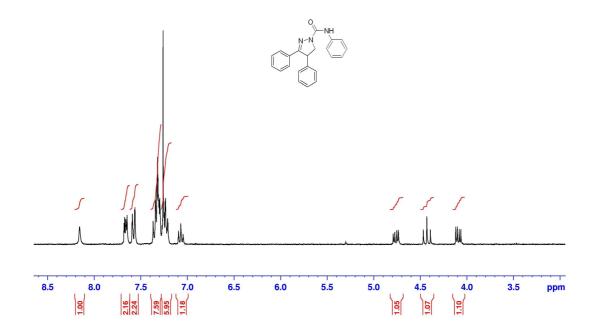

II.4 (3,4-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)(furan-2-yl)methanone (1H) 4c


II.4 (3,4-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)(furan-2-yl)methanone (JMOD) 4c

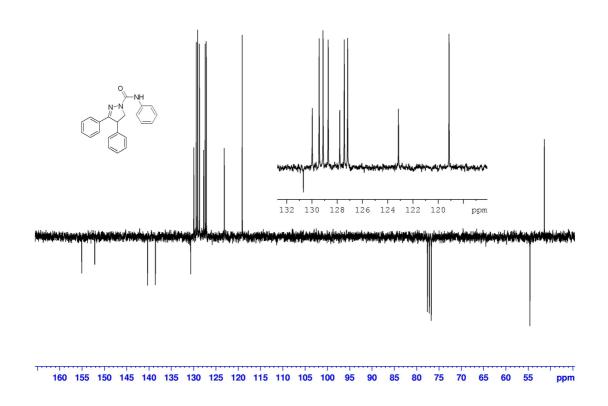
II.5 benzyl 3,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (1H) 4d

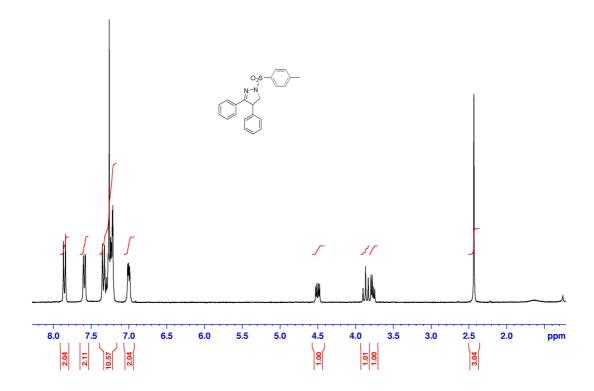


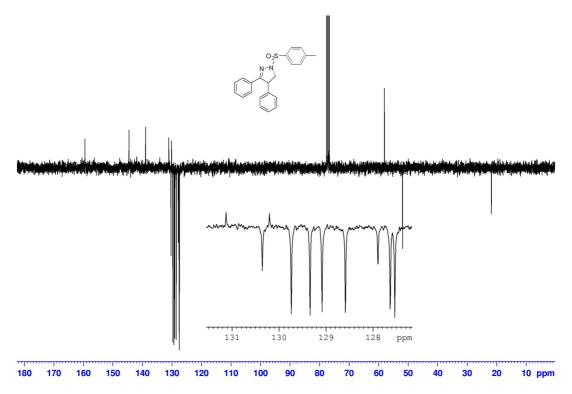
II.5 benzyl 3,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (13C) 4d

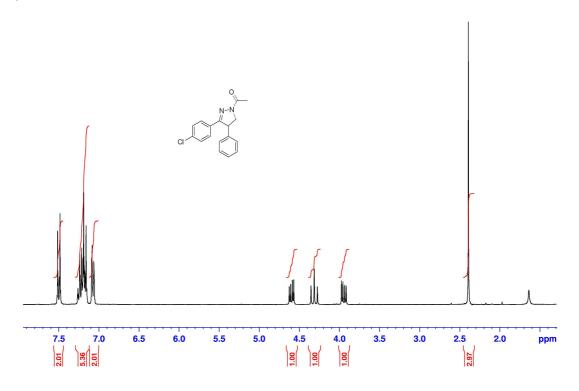


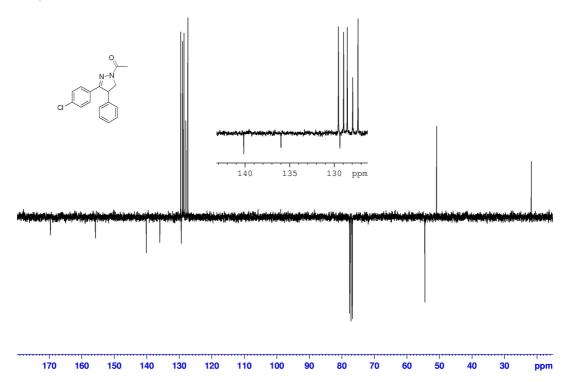
Remark: the peak corresponding to carbon 3 (CH) appeared as a small broad signal due to relaxation issue in pyrazoline-NCbz series.

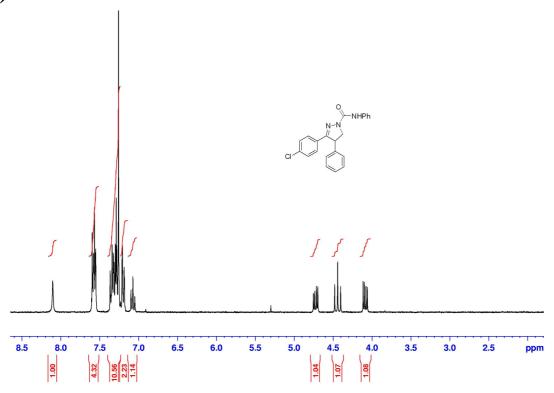

II.5 benzyl 3,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (JMOD) 4d

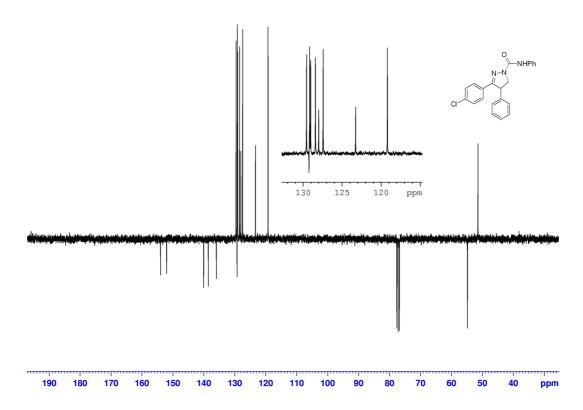

II.6 N,3,4-triphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (1H) 4e

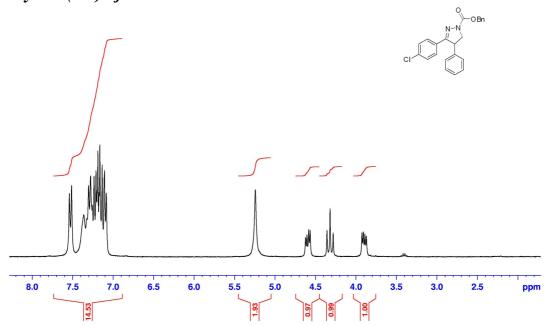

II.6 N,3,4-triphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (JMOD) 4e

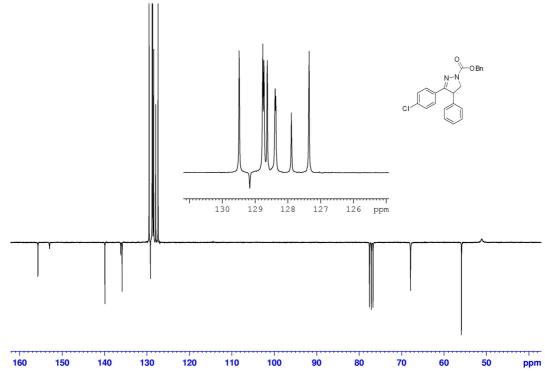

II.7 3,4-diphenyl-1-tosyl-4,5-dihydro-1H-pyrazole (1H) 4f


II.7 3,4-diphenyl-1-tosyl-4,5-dihydro-1H-pyrazole (JMOD) 4f

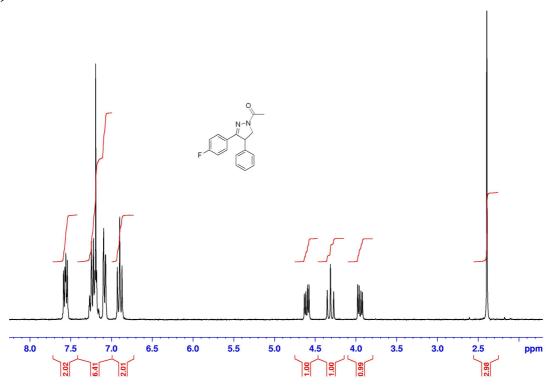

II.8 1-(3-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (1H) 4h


II.8 1-(3-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (JMOD) 4h

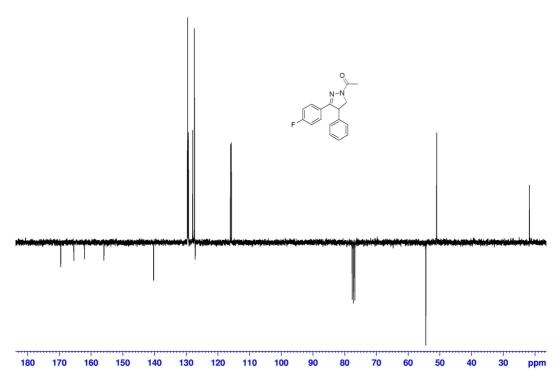

II.9 3-(4-chlorophenyl)-N,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (1H) 4i


II.9 3-(4-chlorophenyl)-N,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (JMOD) 4i

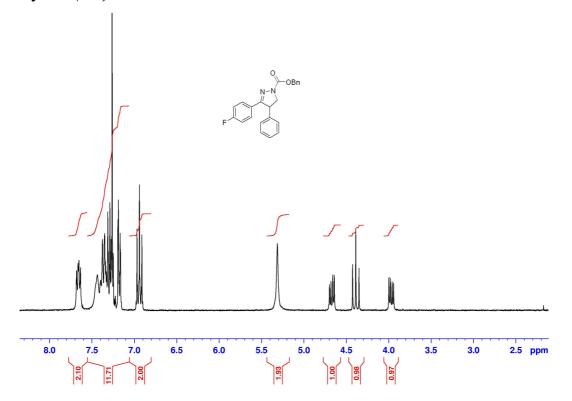
II.10 benzyl 3-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (1H) 4j

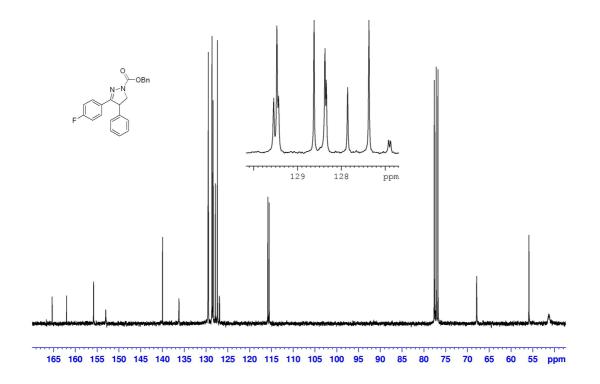


II.10 benzyl 3-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (JMOD) 4j

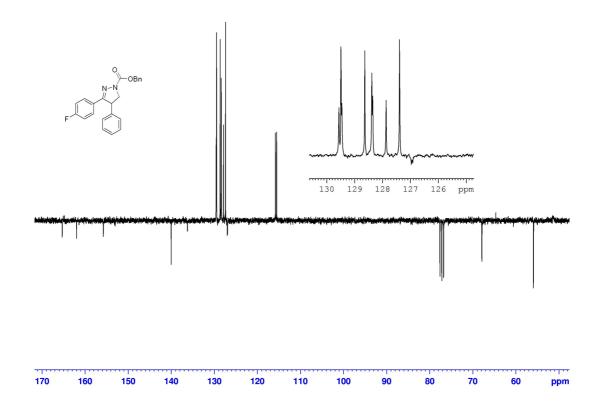


Remark: the peak corresponding to carbon 3 (CH) appeared as a small broad signal due to relaxation issue in pyrazoline-NCbz series.

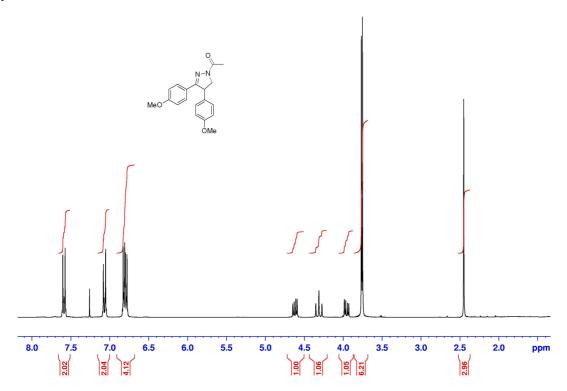

II.11 1-(3-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (1H) 4k


II.11 VI.11 1-(3-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (JMOD) 4k

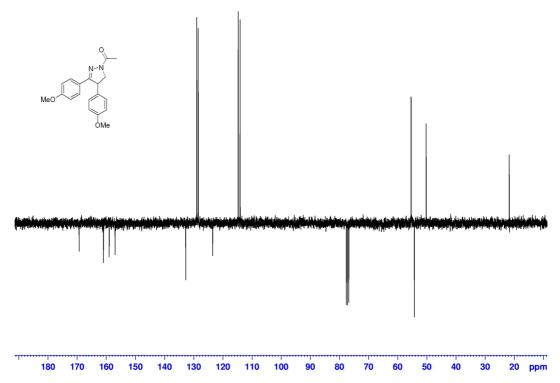
II.12 benzyl 3-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (1H) 4l

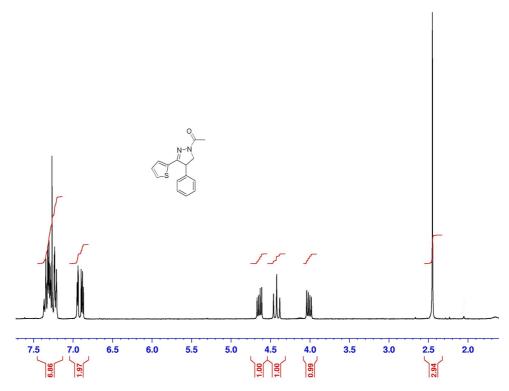


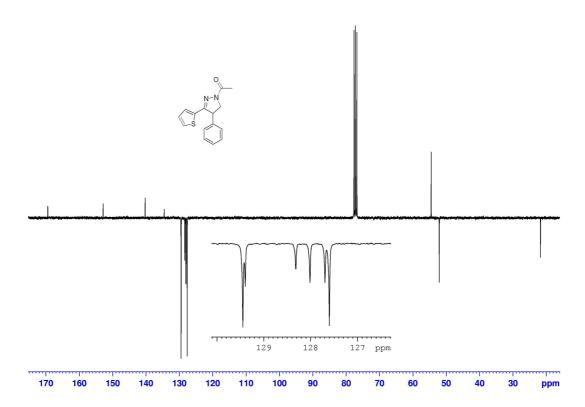
II.12 benzyl 3-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (13C) 4l

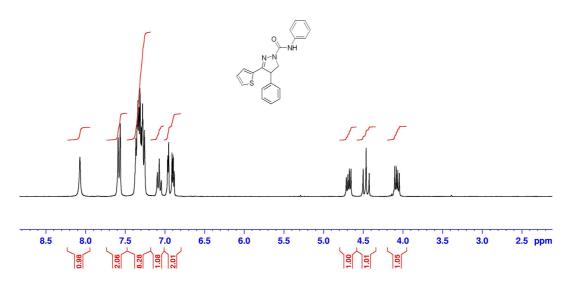


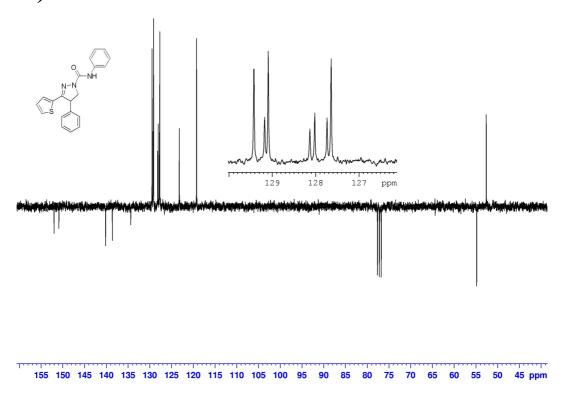
Remark: the peak corresponding to carbon 3 (CH) appeared as a small broad signal due to relaxation issue in pyrazoline-NCbz series.

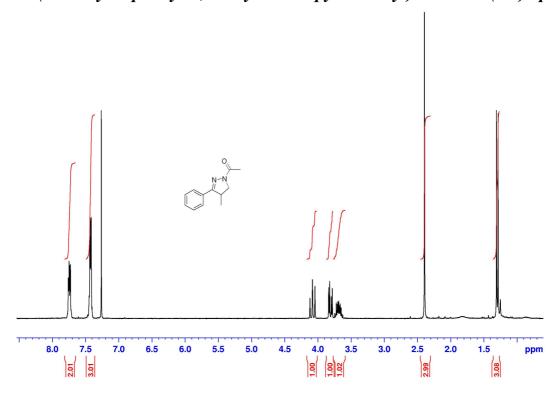

II.12 benzyl 3-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxylate (JMOD) 4l

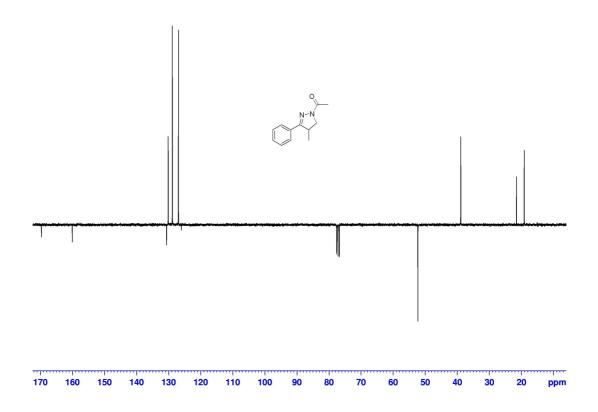

II.13 1-(3,4-bis(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (1H) 4m

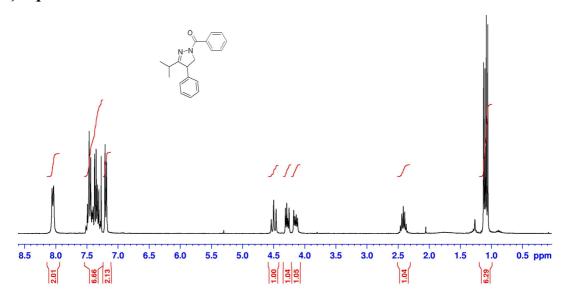

II.13 1-(3,4-bis(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (JMOD) 4m

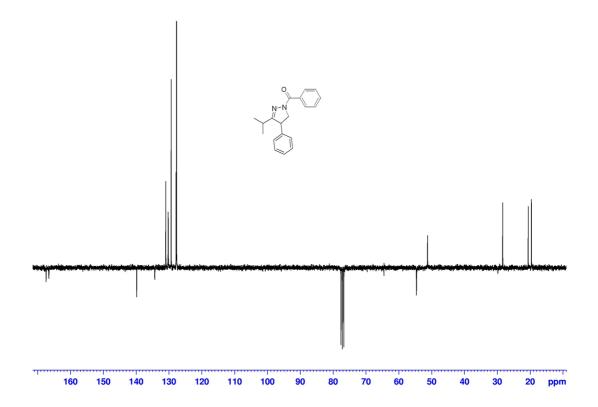

II.14 1-(4-phenyl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (1H) 4n

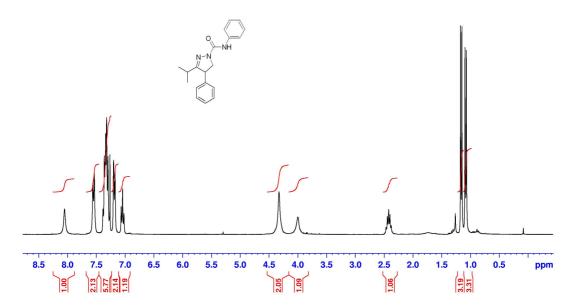

II.14 1-(4-phenyl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (JMOD) 4n

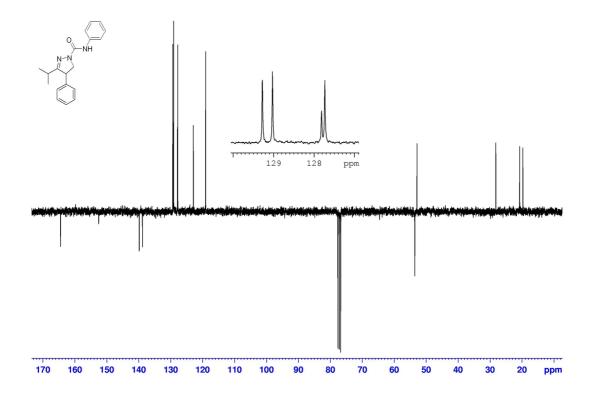

II.15 N,4-diphenyl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carboxamide (1H) 40

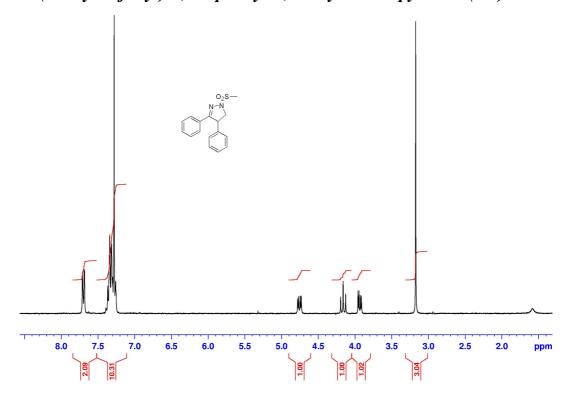

II.15 N,4-diphenyl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carboxamide (JMOD) 40

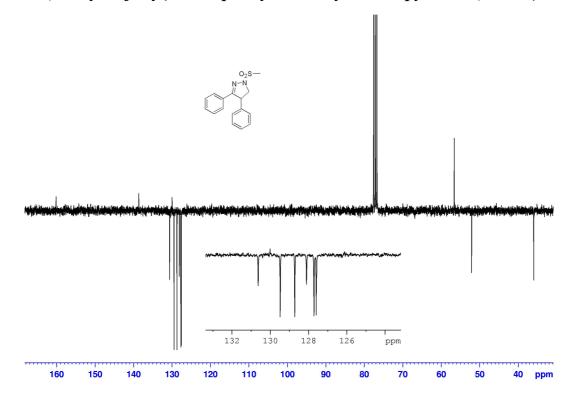

II.16 1-(4-methyl-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (1H) 4p

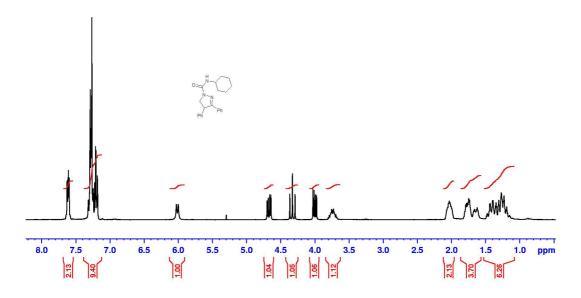

II.16 1-(4-methyl-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (JMOD) 4p

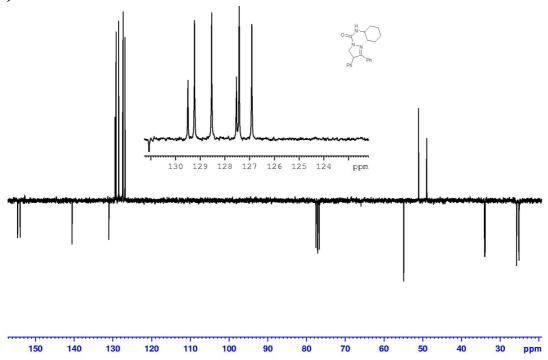

II.17 (3-isopropyl-4-phenyl-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)methanone (1H) 4q


II.17 (3-isopropyl-4-phenyl-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)methanone (JMOD) 4q


II.18 3-isopropyl-N,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (1H) 4r


II.18 3-isopropyl-N,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (JMOD) 4r


II.19 1-(methylsulfonyl)-3,4-diphenyl-4,5-dihydro-1H-pyrazole (1H) 4s


II.19 1-(methylsulfonyl)-3,4-diphenyl-4,5-dihydro-1H-pyrazole (JMOD) 4s

II.20 N-cyclohexyl-3,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (1H) 4t

II.20 N-cyclohexyl-3,4-diphenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (13C) 4t

