# Rhodamine-based Chemosensor for Hg<sup>2+</sup> in Aqueous Solution with a Broad pH Range and Its Application in Live Cell Imaging

Yun Zhao, Yue Sun, Xin Lv, Yunlong Liu, Maliang Chen, and Wei Guo\*

School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China. E-mail: guow@sxu.edu.cn

### **Electronic Supplementary Information (ESI<sup>†</sup>)**

### Contents

- **1.** IR spectra of **1** and **1**–Hg<sup>2+</sup> complex in KBr disks (**Fig. S1**).
- 2. <sup>1</sup>H NMR-titration experiments (**Fig. S2**).
- **3.** Effects of water content on the fluorescence of  $1-Hg^{2+}$  system (Fig. S3).
- **4.** Time-dependent change in fluorescence intensity of **1** after  $Hg^{2+}$  addition (**Fig. S4**).
- 5. Determination of binding constant of the complex (Fig. S5 and Fig. S6).
- 6. Selectivity investigation by absorption spectra (Fig. S7).
- 7. Reversibility investigation by introduction of iodide anion (Fig. S8).
- **8.** <sup>1</sup>H NMR chart of **1** (**Fig. S9**).
- **9.** <sup>13</sup>C NMR chart of **1** (**Fig. S10**).
- 10. EI-MS chart of 1 (Fig. S11).

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010



## 1. IR spectra of 1 and 1–Hg<sup>2+</sup> complex in KBr disks

Fig. S1 IR spectra of 1 (a) and  $1-Hg^{2+}$  (b) were taken in KBr disks, respectively.

2. <sup>1</sup>H NMR-titration experiments (Fig. S2).



Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

**3.** Effects of water content on the fluorescence of  $1-Hg^{2+}$  system.



**Fig. S3** Effects of water content on the fluorescence of  $1-\text{Hg}^{2+}$  system in aqueous acetonitrile solution. [1] = 20  $\mu$ M, [Hg<sup>2+</sup>] = 100 $\mu$ M.

### 4. Time-dependent change in fluorescence intensity of 1 after Hg<sup>2+</sup> addition



**Fig. S4** Time course of the response of **1** (20  $\mu$ M) in MeCN-water solution (95/5, v/v, pH=7.2) upon addition of 5 equiv. of Hg(NO<sub>3</sub>)<sub>2</sub>.

#### 5. Determinatio of binding constant of the complex

The data obtained from fluorescence titration profile were fitted to be a 1:1 binding model according to following equation.

$$\Delta F = \frac{1}{2} \left\{ \alpha \left( [H]_0 + [G] + \frac{1}{K} \right) - \sqrt{\partial^2 \left( [H]_0 + [G] + \frac{1}{K} \right)^2 - 4[H]_0[G] \alpha^2} \right\}$$

The binding constant (K) is an important parameter, indicating the inclusion

capacity of the host-guest complex. The binding constants (K) can thus be obtained by a nonlinear least's quares analysis of  $\Delta F$  versus [Hg<sup>2+</sup>], fitting to the experimental data obtained from the absorption and fluorescence titrations .Where [H]<sub>0</sub> and [G]<sub>0</sub> are the initial concentrations of host sensor **1** and guest Hg<sup>2+</sup>, respectively.  $\Delta F$  denotes the change of the absorption and fluorescence intensity of sensor 1 with the addition of Hg<sup>2+</sup>.  $\alpha$  is a sensitive factor of the structure change of the complex 1-Hg<sup>2+</sup> at the interactive course ( $\alpha = (F_{max}-F_0)/[G]_0$ ).



Fig. S5 UV/VIS titration profile of 1 (20 $\mu$ M) in MeCN-water solution (95:5, v/v, Ph=7.2), from which the association constant was determined,  $K_a = 2.18 \times 10^6 \text{ M}^{-1}$  (R<sup>2</sup> = 0.9916).



Fig. S6 Fluorescence titration profile ( $\lambda_{em} = 530 \text{ nm}$ ) of 1 (20µM) in MeCN-water solution (95:5, v/v, Ph=7.2), from which the association constant was determined, K<sub>a</sub> = 1.27 × 10<sup>6</sup> M<sup>-1</sup> (R<sup>2</sup> = 0.9898).

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010





**Fig. S7** (a) The absorption spectra of **1** (20  $\mu$ M) upon addition of 100  $\mu$ M of Hg<sup>2+</sup> and various other metal ions in a MeCN-water solution (95/5, v/v, pH 7.2). (b) Absorption change of **1** (20  $\mu$ M) to 100  $\mu$ M of Hg<sup>2+</sup> in a MeCN-water solution (95/5, v/v, pH 7.2) containing 100  $\mu$ M of various metal ions.

7. Reversibility investigation by introduction of iodide anion.



**Fig. S8** Reversibility of  $\text{Hg}^{2+}$  coordination to probe **1** by  $\overline{I}$ . Slash denotes the sequence of addition. [**1**] = 2.0 x 10<sup>-5</sup> M, in aqueous acetonitrile solution (95/5, v/v, pH=7.2). [Hg<sup>2+</sup>](1<sup>st</sup>) = 1.0 × 10<sup>-4</sup> M, [I<sup>-</sup>] = 4.0 × 10<sup>-4</sup> M, [Hg<sup>2+</sup>] (2<sup>nd</sup>) = 6.0 x 10<sup>-4</sup> M, [I<sup>-</sup>] = 2.4 × 10<sup>-3</sup> M, [Hg<sup>2+</sup>](3<sup>rd</sup>) = 1.8 × 10<sup>-3</sup> M, [I<sup>-</sup>] = 7.2 × 10<sup>-2</sup> M.



**Fig. S9**<sup>1</sup>H NMR chart of **1** (CDCl<sub>3</sub>, 300MHz)



Fig. S10<sup>13</sup>C NMR chart of 1 (CDCl<sub>3</sub>, 75MHz)



