DOSY NMR for Monitoring Self Aggregation of Bifunctional Organocatalysts: Increasing Enantioselectivity with Decreasing Catalyst Concentration

Hyeong Bin Jang,^a Ho Sik Rho,^{a,b} Joong Suk Oh,^a Eun Hye Nam,^a Sang Eun Park,^a Han Yong Bae,^a and Choong Eui Song^{*a}

^aDepartment of Chemistry and Department of Energy Science, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon, Gyeonggi, 440-746, Korea. E-mail: s1673@skku.edu; Fax: (+82) 31-290-7075 ^bR&D Center, AmorePacific Corporation, Yongin, 446-729, Korea

Electronic Supplementary Information (ESI)

- 1. General
- 2. Procedure for the methanolysis of *meso*-1,2-cyclohexanedicarboxylic anhydride (5)
- 3. Procedure for the DKR reaction of racemic valine-derived azalactone (7)
- 4. Procedure for the conjugate addition of aryl thiol to 2-cyclohexene-1-one (9)
- 5. HPLC spectra for Figure 2
- 6. HPLC spectra for Figure 3
- 7. HPLC spectra for Figure 4
- 8. DOSY data for Table 1
- 9. HPLC spectra for Table 1
- 10. HPLC spectra for Figure 6
- 11. References

1. General

meso-1,2-Cyclohexanedicarbolyic anhydride (5), 2-cylclohexene-1-one (9) were purchased from Aldrich and used without further purification. The racemic valine-derived azlactone (7) was prepared from racemic valine according to the literature procedure.^[1] Alcohols (methanol and allyl alcohol) and thiols (thiophenol and 2-methoxy thiophenol) were purchased from Aldrich and used without further purification. Thiourea catalysts ($1^{[3]}$, $2^{[3]}$, $3a^{[2]}$, $3b^{[2]}$) and squaramide catalysts ($4a^{[4]}$, $4b^{[4]}$) were prepared according to the literature procedure.

2. Procedure for the methanolysis of *meso-1,2-cyclohexanedicarboxylic anhydride* (5)

Methanol (202 μ L, 5 mmol) was added dropwise to a stirred solution of anhydrides (5, 0.5 mmol) and catalysts (1, 2, 3a and 4a) (10 mol%) in appropriate solvents (2.5 mL - 40 mL) at the temperature indicated in Figure 2 (Table S1, S2, S3 and S4). The reaction mixture was stirred at that temperature until the starting material was consumed, as indicated by TLC analysis. The reaction was quenched by adding HCl (1N, 3 mL) in one portion. The aqueous phase was extracted with EtOAc (2 × 100 mL). The organic phase was dried (MgSO₄), filtered, and concentrated *in vacuo* to yield the crude product. Purification by column chromatography (EtOAc:Hexane = 1:4) gave hemiester product (6)

The enantiomeric excess (*ee*) of the product was determined by HPLC analysis of a diastereomeric mixture of the corresponding amide-ester prepared from hemiester **6** according to the literature procedure^[5] (Scheme S1).

Scheme S1

3. Procedure for the DKR reaction of racemic valine-derived azalactone (7)

Allyl alcohol (68 μ L, 1 mmol) was added to a stirred solution of the azlactones (7, 0.5 mmol) and catalyst (**3b** and **4b**) (10 mol%) in CH₂Cl₂ (5 mL - 50 mL) at the temperature indicated in Figure 3 (Table S5 & S6). The reaction mixture was stirred at that temperature until the starting material was consumed, as indicated by TLC analysis. The reaction was quenched by adding HCl (1N, 3 mL) in one portion. The aqueous phase was extracted with EtOAc (2 × 100 mL). The organic phase was dried (MgSO₄), filtered, and concentrated *in vacuo* to yield the crude product. Purification by column chromatography (EtOAc:Hexane = 1:4) gave *N*-benzoylated α-amino allyl ester (**8**).

4. Procedure for the conjugate addition of aryl thiol to 2-cyclohexene-1-one (9)

Thiophenol (61 μ L, 0.6 mmol) or 2-methoxybenzenethiol (73 μ L, 0.6 mmol) was added in one portion to a stirred solution of 2-cylclohexene-1-one (**9**, 0.5 mmol) and thiourea catalyst **3a**(0.25 mol% - 100 mol%) and squaramide catalyst **4a**(0.25 mol% - 10 mol%) in CH₂Cl₂ (0.6 mL - 20 mL) at the temperature indicated in Figure 3 (Table S7 & S8) and Table 1(Table S11 & S12). The reaction mixture was stirred at that temperature until the starting material was consumed, as indicated by TLC analysis. The reaction was quenched by adding HCl (1N, 3 mL) in one portion. The aqueous phase was extracted with EtOAc (2 X 100 mL). The organic phase was dried (MgSO₄), filtered, and concentrated *in vacuo* to yield the crude product. Purification by column chromatography (EtOAc:Hexane = 1:4) gave thiol added products (**10** and **12**)

5. HPLC spectra for Figure 2

Table S1. Concentration and temperature effects on enantioselectivity in the desymmetrization of *meso*-anhydride **5** using the catalyst **1** (Figure 2)

			Г		
Entry	Concentration	T (°C)	Time (h)	Yield $(\%)^{[b]}$	$\% ee^{[c]}$
1	THF (40 mL, 0.0125 M)	RT	12	82	92
2	THF (10 mL, 0.05 M)	RT	4	81	85
3	THF (2.5 mL, 0.2 M)	RT	1.6	84	63
4	THF (2.5 mL, 0.2 M)	0 °C	5	83	55
5	THF (2.5 mL, 0.2 M)	-20 °C	24	80	51
6	Toluene (40 mL, 0.0125 M)	RT	11	81	61
7	Toluene (10 mL, 0.05 M)	RT	3.5	80	48
8	Toluene (2.5 mL, 0.2 M)	RT	1.2	85	36
9	Toluene (2.5 mL, 0.2 M)	0 °C	4	83	23
10	Toluene (2.5 mL, 0.2 M)	-20 °C	22	81	11

^[a] Reactions were carried out with **5** (0.5 mmol), MeOH (5 mmol) and **1** (10 mol%, 0.05 mmol). ^[b] Isolated yields after chromatographic purification. ^[c] ee value of *ent-6* was determined by HPLC.

HPLC spectra for Table S1.

The ee value was determined by the HPLC analysis (Hypersil, Hexanes : IPA (40 : 1), 1 mL/min, t(minor) = 8.30 min, t(major) = 11.33 min) of the diastereomeric mixture of the corresponding amideester, which was prepared as depicted in Scheme S1.

Table S2. Concentration and temperature effect on enantioselectivity in the desymmetrization of *meso*-anhydride **5** using the catalyst **2** (Figure 2)

$F_{3}C + H + H + H + H + H + H + H + H + H + $							
	5		6				
Entry	Concentration	T (°C)	Time (h)	Yield (%) ^[b]	% ee ^[c]		
1	THF (40 mL, 0.0125 M)	RT	17	89	94		
2	THF (10 mL, 0.05 M)	RT	9.5	87	93		
3	THF (2.5 mL, 0.2 M)	RT	2	91	89		
4	THF (2.5 mL, 0.2 M)	0 °C	4	90	89		
5	THF (2.5 mL, 0.2 M)	-20 °C	9	89	83		

^[a] Reactions were carried out with **5** (0.5 mmol), MeOH (5 mmol) and **2** (10 mol%, 0.05 mmol). ^[b] Isolated yields after chromatographic purification. ^[c] ee value of **6** was determined by HPLC.

HPLC spectra for Table S2.

Table S2. Entry 3

Table S2. Entry 5

Table S3. Concentration and temperature effects on enantioselectivity in the methanolytic desymmetrization of *meso*-anhydride **5** using the catalyst **3a** (Figure 2)

Entry	Concentration	T (°C)	Time (h)	Yield (%) ^[b]	% $ee^{[c]}$
1	THF (40 mL, 0.0125 M)	RT	10	84	95
2	THF (10 mL, 0.05 M)	RT	7	83	93
3	THF (2.5 mL, 0.2 M)	RT	0.6	82	82
4	THF (2.5 mL, 0.2 M)	0 °C	5.5	81	81
5	THF (2.5 mL, 0.2 M)	-20 °C	11	80	77

^[a] Reactions were carried out with **5** (0.5 mmol), MeOH (5 mmol) and **3a** (10 mol%, 0.05 mmol). ^[b] Isolated yields after chromatographic purification. ^[c] Ee value of **6** was determined by HPLC.

Table S3. Entry 5

Γ

Table S4. Concentration and temperature effects on enantioselectivity in the methanolytic desymmetrization of *meso*-anhydride **5** using the catalyst **4a** (Figure 2)

Entry	Concentration	T (°C)	Time (h)	Yield (%) ^[b]	% ee ^[c]
1	THF (10 mL)	RT	5	88	96
2	THF (5 mL)	RT	2.5	86	94
3	THF (2.5 mL)	RT	1	85	91

^[a] Reactions were carried out with **5** (0.5 mmol), MeOH (5 mmol) and **4a** (5 mol%, 0.025 mmol). ^[b] Isolated yields after chromatographic purification. ^[c] Ee value of **6** was determined by HPLC.

HPLC spectra for Table S4. Table S4. Entry 1

	Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
	1	1.7635	7.348	2484306	10.4
_	2	98.2365	9.883	138387040	17.3
		100.0000		140871344	

Table S4. Entry 2

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	3.1719	7.320	4790105	10.2
2	96.8281	9.774	146226704	16.4
	100.0000		151016816	

Table S4. Entry 3

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	4.5564	7.298	7328855	9.8
2	95.4436	9.778	153517808	16.0
	100.0000		160846656	

6. HPLC spectra for Figure 3

Table S5. Concentration effect on enantioselectivity in the DKR reaction of *rac*-azlactone **7** using the catalyst **3b** (Figure 3)

$MeO \qquad H \qquad $								
	Ph O = 0 allyl alcohol (2 equiv) $H O = 0Ph O CH_2Cl_2, RT = 0$							
	rac- 7	— (0 —)		8				
Entry	Concentration	T (°C)	Time (h)	Y1eld (%)	$\% ee^{i\sigma_1}$			
1	CH ₂ Cl ₂ (5 mL, 0.1 M)	RT	12	91	77.6			
2	CH ₂ Cl ₂ (2.5 mL, 0.2 M)	RT	12	93	76.2			
3	CH ₂ Cl ₂ (1.25 mL, 0.4 M)	RT	12	93	75.4			
4	CH ₂ Cl ₂ (0.83 mL, 0.6 M)	RT	12	93	74.5			
5	CH ₂ Cl ₂ (0.625 mL, 0.8 M)	RT	12	97	74			
6	CH ₂ Cl ₂ (0.5 mL, 1.0 M)	RT	12	98	72.7			

^[a] Reactions were carried out with *rac*-**7** (0.5 mmol), 2 equiv of allyl alcohol (2 equiv, 1 mmol) and **3b** (10 mol%, 0.05 mmol) in CH₂Cl₂ at room temperature. ^[b] Ee value of **8** was determined by HPLC.

HPLC spectra for Table S5.

The ee value was determined by the HPLC analysis (Chiralpak OD-H, Hexanes : IPA (9 : 1), 1 mL/min, UV detection at 220 nm, t(minor) = 5.70 min, t(major) = 9.12 min).

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	50.2644	5.723	125366640	9.7
2	49.7356	9.116	124047880	18.8
	100.0000		249414528	

Table S5. Entry 1

	Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
	1	11.1874	5.854	36536100	11.0
-	2	88.8126	9.978	290046400	24.3
-		100.0000		326582496	

Table S5. Entry 2

	Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
	1	11.8875	5.902	42144480	11.0
-	2	88.1125	18.101	312382304	21.1
-		100.0000		354526784	

Table S5. Entry 3

"	Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
6	1	12.2770	5.931	19776174	10.8
-	2	87.7230	10.175	141306960	20.7
+		100.0000		161083136	

Table S5. Entry 4

~	Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
	1	12.7687	5.889	37520152	10.8
-	2	87.2313	18.046	256324864	20.9
-		100.0000		293845024	

Table S5. Entry 5

	Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
	1	13.0189	5.911	29038306	10.8
7	2	86.9811	18.119	194008416	20.8
		100.0000		223046720	

Width

1/2

(sec)

10.8

20.9

Table S5. Entry 6

Table S6. Concentration effect on enantioselectivity in the DKR reaction of *rac*-azlactone **7** using the catalyst **4b** (Figure 3) $^{[6]}$

Entry	Concentration	T (°C)	Time (h)	Yield (%)	% ee ^[b]
1	CH ₂ Cl ₂ (0.1 M)	rt	12	84	88
2	CH ₂ Cl ₂ (0.2 M)	rt	12	86	87
3	CH ₂ Cl ₂ (0.4 M)	rt	12	89	87
4	CH ₂ Cl ₂ (0.6 M)	rt	12	91	86
5	CH ₂ Cl ₂ (0.8 M)	rt	12	94	85
6	CH ₂ Cl ₂ (1.0 M)	rt	12	98	84

^[a] Reactions were carried out with *rac*-7 (0.5 mmol), 2 equiv of allyl alcohol (2 equiv, 1 mmol) and **4b** (10 mol%, 0.05 mmol) in CH₂Cl₂ at room temperature. ^[b] ee value of **8** was determined by HPLC.

HPLC spectra for Table S6.

The ee value was determined by the HPLC analysis (Chiralpak OD-H, Hexanes : IPA (9 : 1), 1 mL/min, UV detection at 220 nm, t(minor) = 5.70 min, t(major) = 9.12 min).

	Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
	1	50.2644	5.723	125366640	9.7
-	2	49.7356	9.116	124047880	18.8
-		100.0000		249414528	

Table S6. Entry 1

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	5.7818	5.801	5721267	10.5
2	94.2182	10.074	93231992	20.0
	100.0000		98953256	

Table S6. Entry 2

1 1 1	Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
<u> </u>	1	6.7419	5.829	13868503	10.6
_	2	93.2581	10.155	191839008	20.9
		100.0000		205707504	

Table S6. Entry 3

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	7.1164	5.813	13481109	10.7
2	92.8836	10.085	175957072	20.4
	100.0000		189438176	

Table S6. Entry 5

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	7.5636	5.806	28478024	10.5
2	92.4364	10.030	348035456	21.3
	100.0000		376513472	

Table S6. Entry 6

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	8.0098	5.798	20840232	10.6
2	91.9902	10.071	239342352	20.7
	100.0000		260182592	

7. HPLC spectra for Figure 4

Table S7. Concentration and temperature effect on enantioselectivity in the conjugate addition of benzene thiol to **9** using the catalyst **3a** (Figure 4) 1

Ż

		Meo H		F ₃	
		H <u>3a</u> (10 CH ₂	F_3C mol%)		
Entry	Concentration	T (°C)	Time (h)	Yield (%) ^[b]	$\% ee^{[c]}$
1	CH ₂ Cl ₂ (1 mL, 0.5 M)	rt	2	83	65
2	CH ₂ Cl ₂ (2.5 mL, 0.2 M)	rt	4	79	75
3	CH ₂ Cl ₂ (5 mL, 0.1 M)	rt	6	81	79
4	CH ₂ Cl ₂ (10 mL, 0.05 M)	rt	10	78	87
5	CH ₂ Cl ₂ (20 mL, 0.025 M)	rt	18	78	87
6	CH ₂ Cl ₂ (1 mL, 0.5 M)	0	3	88	56
7	CH ₂ Cl ₂ (1 mL, 0.5 M)	-20	9	85	51

^[a] Reactions were carried out with **9** (0.5 mmol), benzene thiol (0.6 mmol) and catalysts **3a** (10 mol%, 0.05 mmol) in CH₂Cl₂. ^[b] Isolated yields after chromatographic purification. [c] Ee value of **10** was determined by HPLC.

HPLC spectra for Table S7.

The ee value was determined by the HPLC analysis (Chiralpak AS, Hexanes : IPA (1 : 1), 1 mL/min, UV detection at 220 nm, t(major) = 6.09 min, t(minor) = 15.36 min).

Table S7. Entry 1

	Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
	1	82.8964	6.059	97601960	30.8
1	2	17.1036	15.850	20137786	66.1
$\left \right $		100.0000		117739744	

Table S7. Entry 2

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	87.5151	5.997	281221600	31.0
2	12.4845	15.365	40117712	68.1
3	0.0004	18.560	1406	3.6
	100.0000		321340736	

Table S7. Entry 3

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	89.2935	6.038	161039568	31.4
2	10.7065	15.648	19309038	69.3
	100.0000		180348608	

Table S7. Entry 4

Pe N	ak io	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	l	93.6221	6.010	129926328	30.8
	2	6.3779	15.532	8851057	64.7
		100.0000		138777392	

Table S7. Entry 5

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	93.5760	6.006	38017184	30.0
2	6.4240	15.475	2609886	63.2
	100.0000		40627072	

Table S7. Entry 6

Table S7. Entry 7

3

CH₂Cl₂ (20 mL, 0.025 M)

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	75.8770	6.103	115716344	36.0
2	24.1230	15.343	36788896	92.6
	100.0000		152505248	

Table S8. Concentration and temperature effect on enantioselectivity in the conjugate addition of benzene thiol to 9 using the catalyst 4a (Figure 4)

	0 + SH	OMe H N O 4a (10 CH ₂ C	F_3C H CF_3 O Mol(%) Cl_2		
Entry	Concentration	T (°C)	Time (h)	Yield (%) ^[b]	% ee ^[c]
1	CH ₂ Cl ₂ (5 mL, 0.1 M)	rt	5	82	60
2	CH ₂ Cl ₂ (10 mL, 0.05 M)	rt	8	81	68

^[a] Reactions were carried out with **9** (0.5 mmol), benzene thiol (0.6 mmol) and catalysts **4a** (10 mol%, 0.05 mmol) in CH₂Cl₂. ^[b] Isolated yields after chromatographic purification. [c] Ee value of **10** was determined by HPLC.

rt

16

80

69

HPLC spectra for Table S8.

The ee value was determined by the HPLC analysis (Chiralpak AS, Hexanes : IPA (1 : 1), 1 mL/min, UV detection at 220 nm, t(major) = 6.09 min, t(minor) = 15.36 min).

Table S8. Entry 1

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	80.4444	6.136	125487144	33.8
2	19.5556	13.981	30505194	73.1
	100.0000		155992336	

Table S8. Entry 2

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	84.0635	6.833	211715664	33.6
2	15.9365	14.607	40136268	75.1
	100.0000		251851936	

Table S8. Entry 3

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	84.3208	6.084	53895040	30.5
2	15.6792	13.868	10021584	75.3
	100.0000		63916624	

8. DOSY data for Table 1

The ¹⁹F DOSY experiment was conducted by using a stimulated echo sequence with self-compensating gradient schemes (convection corrected), a spectral width of 62980 Hz. d1 value was 5s and diffusion gradient length was 3ms and diffusion delay was 50.0 ms. (1000 - 25000, 16 gradient). The baselines of all of the spectra were corrected prior to data processing. The data were processed after the Fourier transformation of each FID with VNMRJ to obtain the chemical shift as the x-axis along with the calculated diffusion coefficient as the y-axis. All of the diffusion coefficient values, D, were corrected based on the D value of CFCl₃ (0.1%, v/v) as an internal standard.

М	Relative mol% of catalyst		$D(10^{-10}\mathrm{ms}^{-1})$	
(CDCl ₃)	(mol%)	CFCl ₃	I	I corrected
0.2	100	13.3009	2.7990	3.97
0.1	50	15.8880	3.8116	4.52
0.02	10	16.7638	4.8645	5.47
0.01	5	17.1697	5.1184	5.62
0.002	1	17.997	5.582	5.85
0.001	0.5	18.8613	5.8654	

Table S9. Diffusion coefficient of **3a** at different concentration (Table 1)

DOSY spectrum for catalyst 3a in 0.2 M concentration

DOSY spectrum for catalyst 3a in 0.1 M concentration

DOSY spectrum for catalyst 3a in 0.01 M concentration

DOSY spectrum for catalyst 3a in 0.001 M concentration

M (CDC12)	Relative mol% of catalyst	$D(10^{-10}\mathrm{ms}^{-1})$			
(CDCI3)	(mol%)	CFCl ₃	I	I corrected	
0.020	10	16.36	2.901	3.04	
0.010	5	16.19	3.490	3.69	
0.002	1	16.991	4.718	4.82	
0.001	0.5	17.139	4.856	4.85	

Table S10. Diffusion coefficient of **4a** at different concentration (Table 1)

DOSY spectrum for catalyst 4a in 0.02 M concentration

DOSY spectrum for catalyst 4a in 0.01 M concentration

DOSY spectrum for catalyst 4a in 0.002 M concentration

9. HPLC spectra for Table 1.

Table S11. Asymmetric conjugate addition of thiol 11 to cyclohexenone 9 (Figure 4)

	SH OMe	cataly - 1 mol%	vst 3a 100 mol%)		$\widehat{}$
	r (CH_2Cl_2 (0.2 M), RT	s	
9	11			12 (ЭМе
Entry	Catalyst (mol%)	Time (h)	Yield(%) ^[b]	$ee(\%)^{[c]}$	
1	100 mol%	1.5	87	61	
2	50 mol%	3	84	71	
3	30 mol%	5	88	76	
4	20 mol%	8	84	81	
5	10 mol%	16	89	86	
6	5 mol%	25	85	90	
7	2.5 mol%	34	89	92	
8	1 mol%	46	87	94	

^a Reactions were carried out on a 0.5 mmol scale in CH₂Cl₂ (2.5 mL) at room temperature.

HPLC spectra for Table S11.

The ee value was determined by the HPLC analysis (Chiralpak AS, Hexanes : IPA (1 : 1), 1 mL/min, UV detection at 220 nm, t(major) = 6.75 min, t(minor) = 12.73 min).

Table S11. Entry 1

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	80.4285	6.775	197066592	34.7
2	19.5715	12.732	47954380	63.8
	100.0000		245020976	

Table S11. Entry 2

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	85.6164	6.775	275001760	34.5
2	14.3836	12.750	46200544	0.0
	100.0000		321202304	

Table S11. Entry 3

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	88.4073	6.775	352283872	34.3
2	11.5927	12.734	46194176	63.8
	100.0000		398478048	

Table S11. Entry 4

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	90.5120	6.748	475025024	34.8
2	9.4880	12.695	49795004	65.0
	100.0000		524820032	

Table S11. Entry 5

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	93.0930	6.741	504594240	34.9
2	6.9070	12.661	37438180	63.7
	100.0000		542032448	

Table S11. Entry 6

	Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
	1	95.0741	6.752	561905344	35.6
	2	4.9259	12.714	29112804	0.0
		100.0000		591018176	

Table S11. Entry 7

6	Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
_	1	95.9343	6.755	459922080	34.8
°-	2	4.0657	12.759	19491438	62.5
-		100.0000		479413504	

Table S11. Entry 8

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	96.9019	6.772	577135168	34.4
2	3.0981	12.790	18452132	0.0
	100.0000		595587328	

Table S12. Concentration effect on enantioselectivity in the conjugate addition of benzene thiol **11** to **9** using the catalyst **4a** (Table 1)^a

Entry	Catalyst	Time (h)	Yield (%)	% ee
1	(10 mol%)	2	89	67.2
2	(5 mol%)	4	87	79.2
3	(2 mol%)	11	82	84.4
3	(1 mol%)	17	85	90.1
4	(0.5 mol%)	31	87	91.3
5	(0.25 mol%)	46	80	92.7

^a Reactions were carried out at 0.5 mmol scale in 2.5 mL CH₂Cl₂ in room temperature at various catalyst concentrations

HPLC spectra for Table S12.

The ee value was determined by the HPLC analysis (Chiralpak AS, Hexanes : IPA (8 : 2), 1 mL/min, UV detection at 220 nm, t(major) = 10.3 min, t(minor) = 20.5 min).

Table S12. Entry 4

Table S12. Entry 5

Table S12. Entry 6

10. HPLC spectra for Figure 6 <u>HPLC spectrum for catalyst in 0.01 M concentration</u>

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	95.2949	7.302	72714280	9.7
2	4.7051	11.262	3590216	13.8
	100.0000		76304496	

HPLC spectrum for catalyst in 0.02 M concentration

ſ	Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
	1	95.1139	7.338	77977920	9.6
	2	4.8861	11.335	4005835	14.2
		100.0000		81983752	

HPLC spectrum for catalyst in 0.05 M concentration

Peak No	Result ()	Ret. Time (min)	Area (counts)	Width 1/2 (sec)
1	95.0046	7.367	29307148	9.8
2	4.9954	11.394	1540986	14.2
	100.0000		30848134	

11. References

[1] J. Liang, J. C. Ruble, G. C. Fu, J. Org. Chem. 1998, 63, 3154-3155.

[2] (a) B.-J. Li, L. Jiang, M. Liu, Y.-C. Chen, L.-S. Ding, Y. Wu, *Synlett* **2005**, 603-606; (b) B. Vakulya, S. Varga, A. Csámpai, T. Soós, *Org. Lett.* **2005**, *7*, 1967-1969.

[3] (a) M. Kaik, J. Gawroński, *Tetrahedron: Asymmetry* **2003**, *14*, 1559-1563; (b) T. Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto, *J. Am. Chem. Soc.* **2005**, *127*, 119-125.

[4] J. P. Malerich, K. Hagihara and V. H. Rawal, J. Am. Chem. Soc. 2008, 130, 14416-14417.

[5] Y. Chen, S-. K. Tian, L. Deng J. Am. Chem. Soc. 2000, 122, 9542-9543.

[6] C. E. Song, Ji Woong Lee, Tae Hi Ryu, Joong Suk Oh, Han Yong Bae, Hyeong Bin Jang, *Chem. Commun.* **2009**, 7224-7226.