Supporting Information

Synthesis and Structure of Azole-Fused Indeno[2,1-c]Quinolines and their Antimycobacterial properties

Ram Shankar Upadhayaya^a, Popat D. Shinde^a, Aftab Y. Sayyed^a, Sandip A. Kadam^a, Amit N. Bawane^a, Avijit Poddar^b, Oleksandr Plashkevych^c, Andras Földesi^c and Jyoti Chattopadhyaya^{*,c}

^aInstitute of Molecular Medicine, Pune 411 057, India. ^bInstitute of Molecular Medicine, Calcutta 700 091, India.

^c Bioorganic Chemistry Program, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, SE-75123 Uppsala, Sweden.

> * Corresponding Author Phone: +46-18-4714577, Fax: +46-18-554495 Email: <u>jyoti@boc.uu.se</u>

Table of Contents

Sr. No.	Contents	Page No.
1	¹ H-NMR spectrum of compound 7	S9
2	COSY-spectrum of compound 7	S10
3	MASS spectrum of compound 7	S11
4	LCMS spectrum of compound 7	S12
5	HPLC chromatogram of compound 7	S13
6	IR spectrum of compound 7	S14
7	¹ H-NMR spectrum of compound 8	S15
8	¹ H-NMR spectrum of compound 8 (expansion)	S16
9	COSY spectrum of compound 8	S17
10	HSQC spectrum of compound 8	S18
11	HMBC spectrum of compound 8	S19
12	MASS spectrum of compound 8	S20
13	LCMS spectrum of compound 8	S21
14	HPLC chromatogram of compound 8	S22
15	IR spectrum of compound 8	S23
16	¹ H-NMR spectrum of compound 9	S24
17	¹ H-NMR spectrum of compound 9(expansion)	S25
18	COSY spectrum of compound 9	S26
19	HSQC spectrum of compound 9	S27
20	HMBC spectrum of compound 9	S28
21	HMBC spectrum of compound 9(expansion)	S29
22	MASS spectrum of compound 9	S30
23	LCMS spectrum of compound 9	S31
24	HPLC chromatogram of compound 9	S32
25	IR spectrum of compound 9	S33
26	¹ H-NMR spectrum of compound 10	S34
27	D ₂ O exchange spectrum of compound 10	S35
28	¹³ C-NMR spectrum of compound 10	S36
29	MASS spectrum of compound 10	S37
30	LCMS spectrum of compound 10	S38

31	HPLC chromatogram of compound 10	S39
32	IR spectrum of compound 10	S40
33	¹ H-NMR spectrum of compound 11	S41
34	¹³ C-NMR spectrum of compound 11	S42
35	MASS spectrum of compound 11	S43
36	LCMS spectrum of compound 11	S44
37	HPLC chromatogram of compound 11	S45
38	IR spectrum of compound 11	S46
39	¹ H-NMR spectrum of compound 12	S47
40	¹³ C-NMR spectrum of compound 12	S48
41	MASS spectrum of compound 12	S49
42	LCMS spectrum of compound 12	S50
43	HPLC chromatogram of compound 12	S51
44	IR spectrum of compound 12	S52
45	¹ H-NMR spectrum of compound 13	S53
46	¹ H-NMR spectrum of compound 13	S54
47	¹³ C-NMR spectrum of compound 13	S55
48	COSY spectrum of compound 13	S56
49	COSY spectrum of compound 13 (expansion)	S57
50	HSQC spectrum of compound 13	S58
51	HSQC spectrum of compound 13 (expansion)	S59
52	HMBC spectrum of compound 13	S60
53	HMBC spectrum of compound 13 (expansion)	S61
54	HMBC spectrum of compound 13 (expansion)	S62
55	HMBC spectrum of compound 13 (expansion)	S63
56	HMBC spectrum of compound 13 (expansion)	S64
57	MASS spectrum of compound 13	S65
58	LCMS spectrum of compound 13	S66
59	HPLC chromatogram of compound 13	S67
60	IR spectrum of compound 13	S68
61	¹ H-NMR spectrum of compound 14	S69

62	D ₂ O exchanged spectrum of compound 14	S70
63	LCMS spectrum of compound 14	S71
64	IR spectrum of compound 14	S72
65	¹ H-NMR spectrum of compound 15	S73
66	¹³ C-NMR spectrum of compound 15	S74
67	COSY spectrum of compound 15	S75
68	COSY spectrum of compound 15 (expansion)	S76
69	HSQC spectrum of compound 15	S77
70	HMBC spectrum of compound 15	S78
71	HMBC spectrum of compound 15 (expansion)	S79
72	HMBC spectrum of compound 15 (expansion)	S80
73	MASS spectrum of compound 15	S81
74	LCMS spectrum of compound 15	S82
75	HPLC chromatogram of compound 15	S83
76	IR spectrum of compound 15	S84
77	¹ H-NMR spectrum of compound 16	S85
78	D ₂ O exchanged spectrum of compound 16	S86
79	¹³ C-NMR spectrum of compound 16	S87
80	MASS spectrum of compound 16	S88
81	LCMS spectrum of compound 16	S89
82	HPLC chromatogram of compound 16	S90
83	IR spectrum of compound 16	S91
84	¹ H-NMR spectrum of compound 17	S92
85	¹ H-NMR spectrum of compound 17(expansion)	S93
86	¹ H-NMR spectrum of compound 17(expansion)	S94
87	COSY spectrum of compound 17	S95
88	¹³ C-NMR spectrum of compound 17	S96
89	¹³ C-NMR spectrum of compound 17(expansion)	S97
90	HSQC spectrum of compound 17	S98
91	HSQC spectrum of compound 17(expansion)	S99
92	HMBC spectrum of compound 17	S100

93	HMBC spectrum of compound 17(expansion)	S101
94	HMBC spectrum of compound 17(expansion)	S102
95	HMBC spectrum of compound 17(expansion)	S103
96	MASS spectrum of compound 17	S104
97	LCMS spectrum of compound 17	S105
98	HPLC chromatogram of compound 17	S106
99	IR spectrum of compound 17	S107
100	¹ H-NMR spectrum of compound 18	S108
101	¹³ C-NMR spectrum of compound 18	S109
102	DEPT spectrum of compound 18	S110
103	MASS spectrum of compound 18	S111
104	LCMS spectrum of compound 18	S112
105	HPLC chromatogram of compound 18	S113
106	IR spectrum of compound 18	S114
107	¹ H-NMR spectrum of compound 19	S115
108	¹³ C-NMR spectrum of compound 19	S116
109	DEPT spectrum of compound 19	S117
110	MASS spectrum of compound 19	S118
111	LCMS spectrum of compound 19	S119
112	HPLC chromatogram of compound 19	S120
113	IR spectrum of compound 19	S121
114	¹ H-NMR spectrum of compound 20	S122
115	¹³ C-NMR spectrum of compound 20	S123
116	DEPT spectrum of compound 20	S124
117	MASS spectrum of compound 20	S125
118	LCMS spectrum of compound 20	S126
119	HPLC chromatogram of compound 20	S127
120	IR spectrum of compound 20	S128
121	¹ H-NMR spectrum of compound 21	S129
122	¹³ C-NMR spectrum of compound 21	S130
123	DEPT spectrum of compound 21	S131

124	MASS spectrum of compound 21	S132
125	LCMS spectrum of compound 21	S133
126	HPLC chromatogram of compound 21	S134
127	IR spectrum of compound 21	S135
128	¹ H-NMR spectrum of compound 22	S136
129	¹³ C-NMR spectrum of compound 22	S137
130	MASS spectrum of compound 22	S138
131	LCMS spectrum of compound 22	S139
132	HPLC chromatogram of compound 22	S140
133	IR spectrum of compound 22	S141
134	¹ H-NMR spectrum of compound 23	S142
135	D ₂ O exchange spectrum of compound 23	S143
136	COSY spectrum of compound 23	S144
137	¹³ C-NMR spectrum of compound 23	S145
138	¹³ C-NMR spectrum of compound 23 (expansion)	S146
139	HSQC spectrum of compound 23	S147
140	HMBC spectrum of compound 23	S148
141	HMBC spectrum of compound 23 (expansion)	S149
142	HMBC spectrum of compound 23 (expansion)	S150
143	HMBC spectrum of compound 23 (expansion)	S151
144	MASS spectrum of compound 23	S152
145	LCMS spectrum of compound 23	S153
146	IR spectrum of compound 23	S154
147	¹ H-NMR spectrum of compound 24	S155
148	D_2O exchange spectrum of compound 24	S156
149	¹³ C-NMR spectrum of compound 24	S157
150	DEPT spectrum of compound 24	S158
151	MASS spectrum of compound 24	S159
152	LCMS spectrum of compound 24	S160
153	HPLC chromatogram of compound 24	S161
154	IR spectrum of compound 24	S162

155	¹ H-NMR spectrum of compound 25	S163
156	¹ H-NMR spectrum of compound 25 (expansion)	S164
157	¹³ C-NMR spectrum of compound 25	S165
158	DEPT spectrum of compound 25	S166
159	COSY spectrum of compound 25	S167
160	COSY spectrum of compound 25 (expansion)	S168
161	HSQC spectrum of compound 25	S169
162	HSQC spectrum of compound 25 (expansion)	S170
163	HMBC spectrum of compound 25	S171
164	HMBC spectrum of compound 25 (expansion)	S172
165	HMBC spectrum of compound 25 (expansion)	S173
166	COSY spectrum of compound 25 + H	S174
167	COSY spectrum of compound 25 +H (expansion)	S175
168	MASS spectrum of compound 25	S176
169	LCMS spectrum of compound 25	S177
170	HPLC chromatogram of compound 25	S178
171	IR spectrum of compound 25	S179
172	¹ H-NMR spectrum of compound 26	S180
173	D_2O exchanged spectrum of compound 26	S181
174	¹³ C-NMR spectrum of compound 26	S182
175	DEPT spectrum of compound 26	S183
176	MASS spectrum of compound 26	S184
177	LCMS spectrum of compound 26	S185
178	HPLC chromatogram of compound 26	S186
179	IR spectrum of compound 26	S187
180	¹ H-NMR spectrum of compound 27	S188
181	¹³ C-NMR spectrum of compound 27	S189
182	DEPT spectrum of compound 27	S190
183	MASS spectrum of compound 27	S191
184	LCMS spectrum of compound 27	S192
185	HPLC chromatogram of compound 27	S193

186	IR spectrum of compound 27	S194
187	¹ H-NMR spectrum of compound 28	S195
188	¹³ C-NMR spectrum of compound 28	S196
189	DEPT spectrum of compound 28	S197
190	MASS spectrum of compound 28	S198
191	LCMS spectrum of compound 28	S199
192	HPLC chromatogram of compound 28	S200
193	IR spectrum of compound 28	S201
194	¹ H-NMR spectrum of compound 29	S202
195	D ₂ O exchanged spectrum of compound 29	S203
196	¹³ C-NMR spectrum of compound 29	S204
197	DEPT spectrum of compound 29	S205
198	LCMS spectrum of compound 29	S206
199	HPLC chromatogram of compound 29	S207
200	IR spectrum of compound 29	S208
201	Comparison of Chemical shift values (δ) of quinoline ring protons after formation of fused ring system (Table S1)	S209
202	Plot of aromatic ¹ H Chemical shifts for various fused azoles (Figure S1)	S215
203	Computational details Thiol-thione tautomerism of compound 23 <i>Ab intio</i> simulation of proton chemical shifts	S216 S217
204	Comparison between theoretical and experimental proton chemical shifts of all protons (Figure S2)	S218
205	Hartree-Fock energy of thiol and thione tautomeric forms of compound 23 (Table S2)	S219
206	Comparison between theoretical and experimental chemical shifts (Table-S3)	S220
207	Coordinates, charge, multiplicity, Hartree-Fock energy and dipole moment of <i>ab initio</i> optimized geometries (HF/6-31G**, Gaussian 03). (Table S4)	8223
208	References	S237

S14

Sample:CR080-78-199-195 B ->									
Column: XTERRA RP(250X4.6)mm 5µ									
Injection date	:	Mon, 15. Feb. 2010	Loca	tion	:	Vial	22		
Sample Name	:	CR080-78-199-195 B	Inj.	No.	:		1		
Acq Operator	:	BHUSHAN	Inj.	Vol.	:	3	μl		
Analysis Method	:	C:\CHEM32\2\METHODS\UPLC_GENA	RAL_G	RAD _1	. M				
Last Changed	:	Mon, 15. Feb. 2010,							
Acq. Method	:	C:\Chem32\2\DATA\FEB-10\15021	0A 20	10-02-	15	08-51-54	\		
		UPLC GENARAL GRAD 1.M							
Method ref	:	DI/A0257/92							

DAD1, Sig=248.00, 2.00 Ref=off, EXT

Peal	k	RT (Min)	ļ	Width (Min)	Area	7	rea % ۱
1 7		(1111)		(1111)		1	
	- 1		1.			1.5	
1 3	1	8.229		0.070	5.980		0.080
	2	8.333		0.083	31.004		0.416
1	3	8.591		0.078	6.119		0.082
1 1	4	9.713		0.096	45.518		0.611
1 3	5	10.075		0.086	48.980		0.657
1	6	10.291		0.127	208.882		2.802
1	7	10.731		0.121	7.020e3		94.185
1	8	11.367		0.074	8.972		0.120
1 - 3	9	12.207		0.106	78.009	1	1.047

*** End of Report***

Channel 1 at wavelength 220nm, Channel 2 at wavelength 260 nm

Sample:CR080-97-09-09LOWER SPOT ->									
Column: XTERRA H	RP (250X4.6)mm 5µ								
Injection date	: Mon, 15. Feb. 2010	Location	:	Vial 2	23				
Sample Name	: CR080-97-09-09LOWER SPOT	Inj. No.	:		1				
Acq Operator	: BHUSHAN	Inj. Vol.	:	30 p	11				
Analysis Method	: C:\CHEM32\2\METHODS\UPLC_GEN	ARAL_GRAD _5	9.M						
Last Changed	: Mon, 15. Feb. 2010,								
Acq. Method	: C:\Chem32\2\DATA\FEB-10\1502 UPLC_GENARAL_GRAD _59.M	10B 2010-02-	15 14	-00-21\					
Method ref	:DI/A0257/93								

DAD1 D, Sig=248,4 Ref=off

Peak	RT	Width	Area	Area %
#	(Min)	(Min)	1	1 1
1	12.585	5 0.116	7.906	0.138
2	12.967	/ 0.179	8.916	0.156
3	13.560) 0.130	13.794	0.241
4	13.886	5 0.176	6.247	0.109
5	16.001	0.249	36.225	0.633
6	17.050	0.152	10.309	0.180
7	17.635	5 0.149	4.794e3	83.818
8	18.120	0.098	8.469	0.148
9	18.981	0.137	628.046	10.980
10	19.191	0.123	102.312	1.789
11	20.160	0.185	14.205	0.248
12	20.920	0.159	9.286	0.162
13	22.186	5 0.146	7.670	0.134
14	22.556	5 0.160	50.485	0.883
15	23.045	0.164	12.655	0.221
16	23.576	5 0.229	9.063	0.158

*** End of Report***

					=
Sample:CR080-78-	-103-103 A2				->
Column: XTERRA H	RP(250X4.6)mm 5µ				
Injection date	: Thu, 11. Feb. 2010	Location	:	Vial 24	
Sample Name	: CR080-78-103-103 A2	Inj. No.	:	1	
Acq Operator	: BHUSHAN	Inj. Vol.	:	3 µl	
Analysis Method	: C:\CHEM32\2\METHODS\UPLC_GENA	RAL_GRAD _1	. M		
Last Changed	Last Changed : Thu, 11. Feb. 2010,				
Acq. Method	: C:\Chem32\2\DATA\FEB-10\11021	0E 2010-02-	11 1	6-18-57\	
	UPLC GENARAL GRAD 1.M				
Method ref	: DI/A0257/88				

mAU 1400 1400 1000 800 400 400 200 101 200 101 102 200 101 102 102 1	*DAD1	Sig=238.00, 2.00 Ref=off, EXT of 110210	0000021.	D		
1400 1200 1000 800 400 400 200 101 200 101 102 200 101 102 102 1	mAU		67	i.		
1200 1200 1000	1400		8.6			
1000 1000 800 400 400 200 100 800 100 100 100 100 100 1	1200					
800 600 400 200 7 0 0 1 200 1 1 2 0 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 0 1 1 1 1	1000					
600 400 200 200 400 82 10 82 10 82 10 10 10 10 10 10 10 10 10 10 10 10 10	800 -					
	600			L		
	400 -	20	78	354		
	200	80 10	6 1 6	루 두		
* * • • • • • • • • • • • • • • • • • •	°]	<u> </u>	-	<u> </u>	 	

DAD1, Sig=238.00, 2.00 Ref=off, EXT

*** End of Report***

Data File Name : 11-02-10_CR080-97-51-51A_04.lcd Method File Name : GENERAL_B2.lcm Batch File Name : 130210.lcb Data Acquired : 2/13/2010 3:36:00 PM Data Processed : 2/13/2010 4:01:03 PM Ref.No.: DI/A0257/90

¹ PDA Multi 1/242nm 4nm

	PDA Ch1 2	42nm 4nm	Pe	akTable	
Ì	Peak#	Ret. Time	Area	Area %	Height
	1	6.78	3076	0.08	490
	2	8.47	38385	0.98	3979
	3	9.10	8800	0.22	508
	4	11.41	3811649	97.09	437964
	5	12.06	785	0.02	121
	6	19.78	63090	1.61	4027
	Total		3925785	100.00	447089

Acq. Time: 10:36

Acq. Date: Monday, January 25, 2010

CH₃

 \cap

Ô.

N

N=N

12

Sample Nam	e : CR080-97-81-81A	
Sample ID	: CR080-97-81-81A	
Column	: Gemini C-18 (150 x 4.6 mm)	Data File Name : 11-02-10_CR080-97-81-81A_04.lcd
Vial #	: 60	Method File Name : GENERAL B2.lcm
Ini. Volume	: 4 uL	Batch File Name : 130210.lcb
Tray #	:1	Data Acquired : 2/13/2010 6:11:59 PM
Acquired by	: AVINASH	Data Processed : 2/13/2010 6:37:01 PM
		Ref.No.: DI/A0257/91

PDA Ch1 242nm 4nm

Peak#	Ret. Time	Area	Area %	Height
1	8.47	239135	2.24	30905
2	9.10	15125	0.14	1668
3	9.67	19700	0.18	2150
4	10.51	96383	0.90	8833
5	11.37	9795432	91.84	1112000
6	12.12	7310	0.07	977
7	12.34	23531	0.22	3559
8	12.92	90624	0.85	13432
9	13.23	137545	1.29	19655
10	14.74	145995	1.37	21516
11	15.06	43265	0.41	2331
12	16.27	11761	0.11	1019
13	17.34	11675	0.11	579
14	18.19	9189	0.09	591
15	18.87	19111	0.18	1485
Total		10665781	100.00	1220699

PeakTable

	1 Cak Lable				
	PDA Ch2 2	20nm 4nm			
	Peak#	Ret. Time	Area	Area %	Height
	1	8.47	129262	2.46	16333
	2	9.10	13426	0.26	939
ĺ	3	9.67	44532	0.85	5108
ĺ	4	10.51	54266	1.03	4564
ĺ	5	11.37	4705517	89.72	530597
	6	12.34	16268	0.31	2497
ĺ	7	12.92	42297	0.81	6163
	8	13.23	91486	1.74	12665
	9	13.88	11086	0.21	1022
ĺ	10	14.74	88703	1.69	12578
	11	15.07	22844	0.44	1507
	12	15.71	6730	0.13	677
ĺ	13	16.26	8042	0.15	760
ĺ	14	18.89	10272	0.20	902
	Total		5244731	100.00	596314

PeakTable

			• •		
	PDA Ch3 2	60nm 4nm			
	Peak#	Ret. Time	Area	Area %	Height
	1	8.47	127488	2.15	16586
	2	9.10	9426	0.16	934
	3	9.67	33843	0.57	3851
	4	10.51	51663	0.87	4856
	5	11.37	5392938	91.03	608664
	6	12.10	6931	0.12	853
	7	12.34	17416	0.29	2283
	8	12.92	58850	0.99	8083
	9	13.23	80398	1.36	10680
	10	14.74	123673	2.09	13895
	11	16.27	7930	0.13	576
	12	18.19	5575	0.09	323
	13	18.87	8118	0.14	695
	Total		5924251	100.00	672278

INDIA

Sample Name	: CR080-97-53-53A
Sample ID	: CR080-97-53-53A
Column	: Gemini C-18 (150 x 4.6 mm)
Vial #	: 58
Inj. Volume	:1uL
Tray #	:1
Acquired by	: AVINASH

Data File Name : 15-02-10_CR080-97-53-53A_06.lcd Method File Name : GENERAL_B1.lcm Batch File Name : 150210.lcb Data Acquired : 2/15/2010 1:23:16 PM Data Processed : 2/15/2010 1:45:20 PM Ref.No.: DI/A0257/94

1 PDA Multi 1/242nm 4nm

PeakTable

	reakTable					
PDA Ch1 2	242nm 4nm					
Peak#	Ret. Time	Area	Area %	Height		
1	6.44	202832	4.23	7133		
2	6.96	3518	0.07	752		
3	7.62	103626	2.16	13846		
4	8.35	4318	0.09	646		
5	8.75	27218	0.57	3593		
6	9.72	4375879	91.31	392648		
7	11.19	7426	0.15	886		
8	12.30	7291	0.15	580		
9	14.48	60431	1.26	1872		
Total		4792539	100.00	421956		

CHEMBIOTEK A TCG Lifesciences Enterprises, PUNE

Spectrum Name: CR080-97-53-53A.spAnalyst: GANESHAccumulations: 16Time: 10:30:35 AMDescription: CR080-97-53-53A IN KBrResolution: 4.00 cm-1Date: 2/3/2010

Analysed by: Yogita

 \cap

NHNH₂

'N

14

Br

S75

S78

S80

*

PeakTable

		Peaklad	le	
IPDA Ch1 2	63nm 4nm			
Peak#	Ret. Time	Area	Area %	Height
1	4.14	33361	1.15	5426
2	4.48	4262	0.15	614
3	5.06	7544	0.26	724
4	5.44	14605	0.50	2121
5	5.86	12304	0.42	1806
6	6.08	5419	0.19	522
7	6.58	2540919	87.23	389831
8	6.86	129594	4.45	20022
9	7.26	3256	0.11	467
10	7.51	4566	0.16	736
11	7.88	5400	0.19	488
12	8.62	40701	1.40	4832
13	8.89	62481	2.14	4655
14	9.20	47218	1.62	5628
15	9.46	1260	0.04	303
Total		2912891	100.00	438174

PeakTable

		2 Colas 2 Co		
PDA Ch2 2	44nm 4nm			
Peak#	Ret. Time	Area	Area %	Height
1	2.98	3854	0.13	400
2	3.29	3725	0.12	559
3	3.69	4615	0.15	540
4	4.14	34984	1.14	5862
5	4.48	13886	0.45	2049
6	4.83	1148	0.04	209
7	5.06	3400	0.11	562
8	5.44	14494	0.47	1971
9	5.86	9514	0.31	1569
10	6.07	3930	0.13	509
11	6.58	2538376	82.62	382074
12	6.86	170149	5.54	22795
13	7.26	2798	0.09	439
14	7.51	4984	0.16	779
15	7.88	6869	0.22	700
16	8.17	675	0.02	128
17	8.62	60921	1.98	7162
18	8.89	84746	2.76	6218
19	9.20	109320	3.56	10869
Total		3072388	100.00	445395

Sample Name Sample ID Column Vial # Inj. Volume Tray # Acquired by	e: CR080-84-87-87A : CR080-84-87-87A : Gemini C-18 (50 x 4.6 mm) 5u : 47 : 6 uL : 2 : AVINASH	Data File Method File Batch File N Data Acquir Data Process Ref.No.:NP/	Name : 05031021.lcd Name : GENERAL-A. lame : 050310.lcb red : 3/5/2010 4:25:22 ed : 3/5/2010 4:37:29 /A0011/53	lcm PM PM
mAU 400-			226	PDA Multi
			0	
300-				
-				
200-				
400				
100-		0	52	01 F -
		44.145 44.485 44.485 5.443 5.443 6.084	7.514 2.877 2.877	4 58 9 4 59
0.0	2.5	5.0	7.5	10.0 m
mAU 400				
400-			6.576	PDA Multi
300-				
200-				
-				
100-				
-	2.290 3.230 5.601	4.142 4.482 5.062 5.062 5.441 5.662 5.068	5 6.861 7.258 7.510 3.172 3.172	9.203
4	·····	~~~~**** *	╶╫╩┍╪╩┍╶╫╩┍╨	**
0.0	2.0	5.0	7.5	no.o

1 PDA Multi 1/263nm 4nm 2 PDA Multi 2/244nm 4nm

Channel 1 at wavelength 220nm, Channel 2 at wavelength 260 nm

Analysed By

									=
SAMPLE: CR080-96	5-3	3-19 B							->
Column: GEMINI-C	:18	(250X4.6)mm 5µ							
Injection date	:	Mon, 8. Mar. 2010	Loca	tic	n :		Vial	11	
Sample Name	:	CR080-96-33-19 B	Inj.	No	. :			1	
Acq Operator	:	GANESH Z	Inj.	Vo	1. :		20	μl	
Analysis Method	:	C:\CHEM32\2\METHODS\UPLC_GENA	RAL_G	RAE	_2_3	. M			
Last Changed	:	Mon, 8. Mar. 2010,							
Acq. Method	:	C:\Chem32\2\DATA\MAR-10\08031	0E 20	10-	03-08	17-2	3-59	\	
		UPLC_GENARAL_GRAD _2_3.M							
Method ref	:	NP/A0011/58							
*DAD1 A, Sig=	=20	0,4 Ref=off (C:\CHEM32\2\DATA\MAR-10\080310	E 2010-	03-0	3 17-23-	59\08031	000000	5.D - (C:\CH
mAU _		38							
		9.4							
1400									
1200 -									
1000									
800									
600		6							
E 001		88.							
400		5 2 2	176	07	9000				
200 -		5.52 2.4	19.	0.5	10014				
0		_		2	anki			_	
	-	5 10 15		20		25	; ;		min

DAD1 A, Sig=200,4 Ref=off

Peak		RT		Width	Area		Area %
#		(Min)		(Min)	1		1
	1		÷			÷	
1		11.515		0.067	26.724		0.110
2		11.866		0.085	1.355e3		5.564
3		12.424		0.116	30.074		0.123
4		13.525		0.191	40.173		0.165
5		15.593		0.254	33.581		0.138
6		16.436		0.226	2.193e4		90.047
7		19.176		0.200	679.650	L	2.790
8		20.507		0.088	110.934		0.455
9		21.576		0.120	61.662	L	0.253
10		21.980		0.092	48.290	L	0.198
11	I	22.408	I	0.091	38.001	I	0.156

=N

17

DAD1 E, Sig=260,4 Ref=off

Peak	RT	Width	Area	Area %	
#	(Min)	(Min)			
1	7.397	0.243	519.218	7.160	
2	9.754	0.172	46.034	0.635	
3	11.074	0.207	116.083	1.601	L. L.
4	11.708	0.208	5.404e3	74.526	
5	12.430	0.190	23.078	0.318	
6	13.063	0.193	20.430	0.282	Br
7	14.259	0.258	107.350	1.480	ĨĨ
8	21.152	0.875	1.015e3	13.998	
					i ii
					17 /

*** End of Report***

.

*

LCMS-1 REACN MONT (TFA Buffer)

Channel 1 at wavelength 220nm, Channel 2 at wavelength 260 nm

SAMPLE: CR080-96-39-39 A	->
Column: GEMINI-C18(250X4.6)mm 5µ	
Injection date : Fri, 5. Mar. 2010 Location : Vial	14
Sample Name : CR080-96-39-39 A Inj. No. :	1
Acq Operator : BHUSHAN Inj. Vol. : 10) µl
Analysis Method : C:\CHEM32\2\METHODS\UPLC_GENARAL_GRAD _1.M	
Last Changed : Mon, 8. Mar. 2010,	
Acq. Method : C:\Chem32\2\DATA\MAR-10\050310E 2010-03-05 16-35-20) \
UPLC_GENARAL_GRAD _1.M	
Method ref : NP/A0011/56	
*DAD1, Sig=264.00, 2.00 Ref=off, EXT of 050310000006.D	
mAU _	
1000 -	
800-	
600 -	
400	
400 -	
200 - 0 88 8 8 5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	min

DAD1, Sig=264.00, 2.00 Ref=off, EXT

Peak	RT		Width	Area	Area %
Ť	(Min)		(Min)	1	1 1
		÷			
1	8.690		0.064	137.043	1.939
2	10.493		0.062	23.326	0.330
3	10.633		0.073	145.084	2.052
4	11.190		0.077	88.321	1.249
5	11.673		0.087	12.239	0.173
6	11.914		0.080	5.907e3	83.565
7	12.535		0.094	20.460	0.289
8	14.467		0.128	44.996	0.637
9	14.792		0.126	57.948	0.820
10	15.182		0.144	6.538	0.092
11	15.569		0.114	10.059	0.142
12	16.316		0.135	20.007	0.283
13	16.508		0.145	20.341	0.288
14	17.553		0.175	575.369	8.140

*** End of Report***

-O

×N

=N

19

Br

SAMPLE: CR080-96-35-35 A
Triction data - Fri E May 2010 Torotion - Vial 12
Injection date : Fri, S. Mar. 2010 Location : Vial 13
Sample Name : CR080-96-35-35 A Inj. No. : 1
Acq Operator : BHUSHAN Inj. Vol. : 10 µl
Analysis Method : C:\CHEM32\2\METHODS\UPLC GENARAL GRAD 1.M
Last Changed : Sun, 7. Mar. 2010,
Acg. Method : C:\Chem32\2\DATA\MAR-10\050310E 2010-03-05 16-35-20\
UPLC GENARAL GRAD 1.M
Method ref : NP/A0011/54
*DAD1 E, Sig=260,4 Ref=off (C:\CHEM32\2\DATA\MAR-10\050310E 2010-03-05 16-35-20\050310000004.D - C:\
mAU] 😤
1000-
600 -
400-1
98 86 11 31
0 5 10 <u>15</u> m

Pe #	ak	 	RT (Min)	 	Width (Min)	Area 	Area %
		1.		÷			
	1		8.697		0.067	43.694	0.800
1	2		9.941		0.074	50.746	0.930
1	3		11.908		0.080	22.490	0.412
	4		12.616		0.080	5.289e3	96.888
	5		13.094		0.101	9.533	0.175
1	6	I	15.420	I	0.147	43.441	0.796

*** End of Report***

Channel 1 at wavelength 220nm, Channel 2 at wavelength 260 nm

Sample Nam	e : CR080-96-101-101A1
Sample ID	: CR080-96-101-101A1
Column	: Gemini C-18 (50 x 4.6 mm) 5u
Vial #	: 47
Inj. Volume	: 8 uL
Tray #	: 2
Acquired by	: AVINASH

PeakTable

PDA Ch1 2	63nm 4nm			
Peak#	Ret. Time	Area	Area %	Height
1	4.21	45077	1.17	7223
2	4.57	5288	0.14	779
3	4.90	1369	0.04	246
4	5.14	5182	0.13	833
5	5.49	20524	0.53	2897
6	5.90	21766	0.57	2319
7	6.61	3377885	87.96	519168
8	6.88	165707	4.31	26200
9	7.27	4079	0.11	623
10	7.52	5512	0.14	937
11	7.87	6584	0.17	604
12	8.61	56892	1.48	6625
13	8.88	69056	1.80	5559
14	9.21	55366	1.44	7054
Total		3840286	100.00	581066

PeakTable

PDA Ch2 244nm 4nm						
Peak#	Ret. Time	Area	Area %	Height		
1	3.41	5474	0.14	968		
2	3.83	7299	0.19	715		
3	4.21	48642	1.25	7842		
4	4.57	17775	0.46	2652		
5	4.90	1554	0.04	306		
6	5.13	4286	0.11	726		
7	5.49	19027	0.49	2623		
8	5.90	24325	0.63	2313		
9	6.61	3308844	85.22	506293		
10	6.88	161467	4.16	25504		
11	7.27	4317	0.11	664		
12	7.52	5705	0.15	973		
13	7.88	8033	0.21	859		
14	8.61	77998	2.01	9379		
15	8.88	93792	2.42	7424		
16	9.21	94113	2.42	12453		
Total		3882650	100.00	581695		

Channel 1 at wavelength 220nm, Channel 2 at wavelength 260 nm

Br

Sample Name Sample ID	2 CR080-96-97-97A 2 CR080-96-97-97A	
Column	: Gemini C-18 (50 x 4.6 mm) 5u	Data File Name : 05031016.lcd
Vial #	: 49	Method File Name : GENERAL.lcm
Inj. Volume	: 2 uL	Batch File Name : 050310.lcb
Tray #	: 2	Data Acquired : 3/5/2010 3:32:40 PM
Acquired by	: AVINASH	Data Processed : 3/5/2010 3:45:28 PM
		Ref.No.:NP/A0011/51

3.535 9.948 4.386

2.5

0-

0.0 1 PDA Multi 1/244nm 4nm 2 PDA Multi 2/264nm 4nm 8

5.0

PeakTable

		A 0.000 A 0.00						
PDA Ch1 244nm 4nm								
Peak#	Ret. Time	Area	Area %	Height				
1	3.54	6772	0.21	1513				
2	3.95	1437	0.04	333				
3	4.38	1527	0.05	235				
4	4.67	37319	1.14	8574				
5	4.88	3125584	95.32	655590				
6	5.34	78146	2.38	12929				
7	6.04	15889	0.48	2235				
8	6.40	12322	0.38	1097				
Total		3278996	100.00	682505				

PeakTable

			I Can I a	010				
]	PDA Ch2 264nm 4nm							
	Peak#	Ret. Time	Area	Area %	Height			
	1	3.54	12391	0.37	2841			
	2	3.95	1352	0.04	301			
	3	4.39	1919	0.06	262			
	4	4.88	3199471	96.64	670681			
	5	5.34	61963	1.87	9787			
	6	6.04	33620	1.02	2057			
	Total		3310716	100.00	685929			

7.5

10. min

 \cap

N

22

Br∘

Channel 1 at wavelength 220nm, Channel 2 at wavelength 260 nm

SAMPLE: CR080-96 Column: GEMINI-C	-51-43 В 18(150X4.6)mm 5µ	->
Injection date	: Mon, 8. Mar. 2010	Location : Vial 16
Sample Name	: CR080-96-51-43 B	Inj. No. : 1
Acq Operator	: GANESH Z	Inj. Vol. : 10 µl
Analysis Method	: C:\CHEM32\2\METHODS\UPLC G	ENARAL GRAD 33.M
Last Changed	: Mon, 8. Mar. 2010,	
Acg. Method	: C:\Chem32\2\DATA\MAR-10\08	0310C 2010-03-08 11-42-19\
-	UPLC GENARAL GRAD 33.M	
Method ref	: NP/A0011/57	
*DAD1 B, Sig=	205,4 Ref=off (C:\CHEM32\2\DATA\MAR-10\00	80310C 2010-03-08 11-42-19\080310000011.D - C:\Cl
mAU	1	80
		8.0
800-		F I I I I I I I I I I I I I I I I I I I
1 1		
600		
400-		
1]		g
200	233	3.96
	10.2	E - 10 00 00 00 00 00 00 00 00 00 00 00 00
0-1	N ² 6	
Ó .	5 10	15 min

DAD1 B, Sig=205,4 Ref=off

Peak		RT		Width	Area	Area %
#		(Min)		(Min)	1	1
	÷		÷			
1		7.051		0.141	38.844	0.477
2		7.301		0.113	53.580	0.658
3		9.027		0.164	24.842	0.305
4		10.233		0.168	166.695	2.047
5		10.808		0.143	7.086e3	87.001
6		11.374		0.109	39.993	0.491
7		11.847		0.077	14.607	0.179
8		12.086		0.134	15.508	0.190
9		12.531		0.117	10.940	0.134
10		13.969		0.190	693.677	8.517

*** End of Report***

S141

10.991

8.760 8.401 8.386 8.241 8.241 8.222 7.813 7.798 7.798 7.771 7.683 7.683

S144

S157

Sample:CR080-67-163-163A ->							
Column: ZORBAX S	B-C18(50X4.6)mm 1.8µ						
Injection date	: Fri, 23. Oct. 2009	Location	: Via	1 21			
Sample Name	: CR080-67-163-163A	Inj. No.	1 · · · ·	1			
Acq Operator	: GANESH Z	Inj. Vol.	: 1	.0 µl			
Analysis Method	: C:\CHEM32\2\METHODS\UPLC_GENAR	RAL_GRAD _2	5.M				
Last Changed	: Fri, 23. Oct. 2009,						
Acq. Method	:C:\Chem32\2\DATA\OCT-09\231009E	2009-10-23	3 11-54-41	. \			
	UPLC GENARAL GRAD 25.M						
Method ref	: DI/A0257/45						

DAD1, Sig=274.00, 2.00 Ref=off, EXT

10

Peak		RT	Ι	Width	1	Area	L	Area 🖇 🕴		
#	1	(Min)	I	(Min)	I.		1		г	
1	1.		-		1-		-			
1 1	1	4.560	Ι	0.044	1	14.392	Ι	0.272		
2	1	4.866		0.027	1	12.573		0.238		Br
3	1	4.948		0.030	I.	76.562	Ι	1.446		
4	- [5.058	ŧ	0.043	5	189.865	Ι	98.044		
									L	24 H

*** End of Report***

S165

S169

С

d

N

÷O

С

d

N

=0

*

Sample:CR080-90-41-41A Column: ZORBAX SB-C18[50X4.6]mm 1.8µ Injection date :Mon, 26. Oct. 2009 Location : Vial 13 Sample Name :CR080-90-41-41A Inj. No. : 1 Acq Operator :BHUSHAN Inj. Vol. : 5 µl Analysis Method :C:\CERN32\2\METHODS\UPLC_GENARAL_GRAD_5.M Last Changed :Wed, 21. Oct. 2009, Acq. Method :C:\Chem32\2\DATA\OCT-09\261009C 2009-10-26 11-49-49\ UPLC_GENARAL_GRAD_5.M Method ref : DI/A0257/44	IPeak RT Width Area Area I I # (Min) (Min) I I 3 5.741 0.085 32.673 0.378 + I 3 5.741 0.085 32.673 0.378 + + I 3 5.741 0.085 32.673 0.378
*DADI E, Sig=260.4 Ref=0ff (C:CHEM32/2/DATAIOCT-09/201009C 2009-10-20 11-40-49/2010000004,D - C:ICH mAU 1600- 1400- 1200- 10000- 800- 800- 800-	
400 200 0 0 0 0 0 0 0 0 0 0 0 0	Br 25 N N N
1000 500 0 0 0 0 0 1000 500 0 0 10 1000 1	
Peak RT Width Area Area Area I I I Image: Minimum Science Sci	
DAD1, Sig=278.00, 2.00 Ret=011, EXT iPeak RT Width Area Area % # (Min) 	2 Instrument 2 Mon, 26. Oct. 2009 01:37:51 pm Page 2 of 2

S184

*

Channel 1 at wavelength 220nm, Channel 2 at wavelength 260 nm

Analysed By :

OН

'N

Sample Name	: CR080-90-65-53B	
Sample ID	: CR080-90-65-53B	
Column	: Xterra RP-18 (250 x 4.6 mm) 5u	Data File Name : 17-02-10_CR080-90-65-53B_01.lcd
Vial #	: 22	Method File Name : GENERAL_B11.lcm
Inj. Volume	: 2 uL	Batch File Name : 170210.lcb
Tray #	:2	Data Acquired : 2/18/2010 3:32:59 AM
Acquired by	: AVINASH	Data Processed : 2/18/2010 4:03:02 AM
		Ref.No.: DI/A0257/97

1 PDA Multi 1/252nm 4nm

PDA Ch1 2	52nm 4nm	Pe	akTable	
Peak#	Ret. Time	Area	Area %	Height
1	6.33	3095	0.04	563
2	6.61	7980395	99.14	1247755
3	7.09	14101	0.18	1716
4	7.32	52185	0.65	9224
Total		8049776	100.00	1259258

27

Analysed by: Yogita

*

Br

27

Sample Name	e: CR080-90-69-69A	
Sample ID	: CR080-90-69-69A	
Column	: Xterra RP-18 (150 x 4.6 mm) 5u	
Vial #	: 53	M
Inj. Volume	:1uL	B
Tray #	:1	D
Acquired by	: VISHAL	Data
		D

Data File Name : 07-01-2010_CR080-90-69-69A_07.lcd Method File Name : GENERAL_B1.lcm Batch File Name : 07-01-2010.lcb Data Acquired : 1/7/2010 2:46:10 PM ata Processed : 1/7/2010 3:10:08 PM Ref.No.: DI/A0257/84

Peak#	Ret. Time	Area	Area %	Height
16	18.19	126536	1.58	5193
17	19.35	157137	1.96	4077
18	20.21	35339	0.44	3458
19	20.80	90998	1.14	4991
Total		8006384	100.00	1572550

Area 103804

96307 91270

138058 16736 5632554

254781

13327 6494103

PeakTable

Area % 1.60

1.48 1.41 2.13 0.26 86.73

3.92

0.69 0.21 0.19 0.90 0.28

0.21 100.00

Height 15388

14946 17503

31548 4168 1036381

44996

1 PDA Multi 1/200nm 4nm 2 PDA Multi 2/252nm 4nm

		Pe	akTable	
PDA Ch1 2	200nm 4nm			
Peak#	Ret. Time	Area	Area %	Height
1	1.77	75640	0.94	15376
2	3.30	90352	1.13	13629
3	3.83	124462	1.55	18675
4	4.15	104525	1.31	18912
5	4.34	15819	0.20	3788
6	4.45	117919	1.47	26412
7	4.71	25822	0.32	5779
8	5.02	6594694	82.37	1377696
9	5.35	310478	3.88	56713
10	5.64	33575	0.42	7536
11	6.25	12408	0.15	1385
12	6.81	16178	0.20	3206
13	7.26	11390	0.14	1308
14	8.68	52312	0.65	3580
15	9.21	10800	0.13	836

0 В Ó 'N N 27

PDA Ch2 252nm 4nm Peak# Ret. Time

10 11 12

13

Total

3.30

3.83

4.45 4.71 5.02 5.35

5.64 6.25 6.63 8.68 14.05

18.11

C:\LabSolutions\Data\Project1\HPLC-01\JAN-10\07-01-2010_CR080-90-69-69A_07.lcd

Analysed by: Yogita

Channel 1 at wavelength 220nm, Channel 2 at wavelength 260 nm

Br∙

28

Sample Name	: CR080-90-47-03B1
Sample ID	: CR080-90-47-03B1
Column	: Xterra RP-18 (250 x 4.6 mm) 5u
Vial #	: 23
Inj. Volume	: 4 uL
Tray #	: 2
Acquired by	: AVINASH

Data File Name : 17-02-10_CR080-90-47-03B1_02.lcd Method File Name : GENERAL_B11.lcm Batch File Name : 170210.lcb Data Acquired : 2/18/2010 5:05:56 AM Data Processed : 2/18/2010 5:35:59 AM Ref.No.: DI/A0257/98

1 PDA Multi 1/252nm 4nm

PeakTable

		10	akiaute	
PDA Ch1 2	52nm 4nm			
Peak#	Ret. Time	Area	Area %	Height
1	6.31	3452	0.10	534
2	6.70	3362	0.10	319
3	7.12	1029	0.03	153
4	7.34	729	0.02	160
5	7.55	50295	1.45	9915
6	7.75	3328354	96.02	511507
7	8.10	36183	1.04	5768
8	10.49	7190	0.21	885
9	10.99	28623	0.83	3718
10	16.17	3454	0.10	328
11	18.25	3510	0.10	132
Total		3466182	100.00	533419

*Channel 1 at wavelength 220 nm . Channel 2 at wavelength 260 nm

Sample:CR080-90-49-49A3 ->											
Column:GEMINI-Ci	18(150X4.6)mm 5µ										
Injection date	: Tue, 17. Nov. 2009	Location	: Vial	15							
Sample Name	: CR080-90-49-49A3	Inj. No.	:	1							
Acq Operator	: PRAKASH	Inj. Vol.	: 5	μl							
Analysis Method	: C:\CHEM32\2\METHODS\UPLC_GENAM	RAL_GRAD _G	1.M								
Last Changed	: Wed, 18. Nov. 2009,										
Acq. Method	:C:\Chem32\2\DATA\NOV-09\171109B	F 2009-11-1	7 17-19-25\								
	UPLC_GENARAL_GRAD _G1.M										
Method ref	:DI/A0257/50										

P(eak #	I	RT (Min)	ł	Width (Min)	I	Area	I	Area % 	
		Ì		Ì		1-		Ì		
	1	L	4.790		0.047		20.452		0.828	
	2	L	4.928		0.048		33.080		1.339	
	3	I	5.030		0.023		0.458		0.019	
	4	L	5.121		0.048	12	2385.486		96.560	
	5	L	5.298		0.046		22.999		0.931	Br
	6	I	7.101		0.070		7.986		0.323	
										N [×] N
										20
										23

*** End of Report***

Table S1: Comparison of Chemical shift values (δ) of quinoline ring protons after formation of fused ring system[¶]

Structure	H_5	H ₇	H_8	Ha	Hb	Hc	Hd	Other signals
a	9.00	8.27	8.12	8.66	7.90	7.78	7.90	
Br 5 0	(<i>a</i> , <i>J</i> – 1.9Hz)	(aa, J - 1.9, 9.1 Hz)	(a, J - 9.1) Hz)	(a, J - 7.6 Hz)	(<i>m</i>)	(t, J - 7.4)Hz)	(<i>m</i>)	
0	8 66	7 95	7 77	8 34	7 70	7 58	7 66	4.08(s) CH ₂
a d	(d, J =	(dd, J = 1.9,	(d, J = 9.1)	(d, J =	(t, J = 7.6	(t, J = 7.6	(d, J = 7.2)	
Br	1.9Hz)	9.1 Hz)	Hz)	7.6Hz)	Hz)	Hz)	Hz)	
N O								
2b								

a	8.89 (<i>d</i> , <i>J</i> =	8.20 (<i>dd</i> , <i>J</i> = 1.9,	8.14 (<i>d</i> , <i>J</i> = 9.1	8.51 (<i>d</i> , <i>J</i> =	7.78 (dt, J = 1.1,	7.66 (t, J = 7.4	7.76 (d, J = 6.8	
Br	1.9Hz)	9.1 Hz)	Hz)	7.6Hz)	7.6 Hz)	Hz)	Hz)	
N CF3								
<u>2c</u>		0.10	0.01	0.55				
a d	8.90	8.13	8.01	8.55	7.80	7.67	7.78	8.44 $(t, J = 1 \text{ Hz})$
	(d, J = 1 OUL)	(dd, J = 1.9,	(d, J = 8.8	(d, J = 7	(dt, J = 1.3, 7.6 Hz)	(t, J = /.6)	(d, J = /.6)	$H2^{\circ}, /.89(t, J = 1.2, H_{-})$
Br	1.9HZ)	8.8 HZ)	HZ)	/.0HZ)	7.6 HZ)	HZ)	HZ)	(A) HZ) H5', $(.15)$
								(1) 114
2d								
d	9.01	8.24	8.11	8.65	7.85	7.71	7.82	9.85 (<i>t</i> , <i>J</i> = 1.3
a	(d, J =	(dd, J = 1.9,	(d, J = 9.1	(d, J =	(dt, J = 1.3,	(t, J = 7.4	(d, J = 7.3)	Hz) H2', 8.35 (<i>t</i> , <i>J</i>
Br	1.9Hz)	9.1 Hz)	Hz)	7.6 Hz)	7.6, Hz)	Hz)	Hz)	= 1.7 Hz) H5',
								7.98 (<i>t</i>) H4'
2dH+ 2dH+								
d	8.88	8.11	8.01	8.51	7.78	7.65	7.72	8.42 (d, J = 2.5
	(d, J = 1.9)	(dd, J = 1.9,	(d, J = 8.8)	(d, J =	(dt, J =	(t, J = 7.4	(d, J = 7.3)	Hz) H3', 7.84 (<i>d</i> , <i>J</i>
Br	Hz)	8.8 Hz)	Hz)	7.6 Hz)	7.6,1.3 Hz)	Hz)	Hz)	= 1.6 Hz H5',
								6.59 (<i>dd</i>) H4 ⁻
2e								
a d	8.85	8.07	7.97	8.49	7.75	7.61	7.69	8.41 (<i>s</i>) H3', 7.83
	(br. s)	(d, J = 8.8	(d, 8.8 Hz)	(d, 7)	(dt, J = 7.6)	(t, J = 7.4	(d, J = 7.3)	(s) H5', 6.57 (d)
Br		HZ)		/.0HZ)	HZ, 1.3 HZ)	пZ)	пΖ)	<u>П</u> 4
2eH⁺								

	8.62 (d, J =	7.86 (<i>dd</i> , <i>J</i>	7.66 (<i>d</i> , <i>J</i>	8.33 (<i>d</i> , <i>J</i>	7.70(t, J =	7.57(t, J =	7.67 (<i>d</i> , <i>J</i>	8.15 (dd, J = 1.7,
\rightarrow	2 Hz)	= 2, 9.1	= 9.1 Hz)	= 7.6 Hz)	7.3 Hz)	7.3Hz)	= 7.6 Hz)	4.7 Hz), 7.56
Br		Hz)		-				(ddd, J = 1.9, 6.9,
								8.8 Hz), 6.89 (<i>d</i> , <i>J</i>
								= 8.5 Hz), 6.67
								(dd, J = 6.9, 4.7)
2f 🗇								Hz), 3.72 (s, 8H)
	8.65 (d, J =	7.90 (<i>dd</i> , <i>J</i>	7.69 (<i>d</i> , <i>J</i>	8.37 (<i>d</i> , <i>J</i>	7.71(t, J =	7.57(t, J =	7.68 (<i>d</i> , <i>J</i>	8.07 (dt, J = 1.9,
\rightarrow	2 Hz)	=2, 9.1	= 9.1 Hz)	= 7.6 Hz)	7.3 Hz)	7.3Hz)	= 7.3 Hz)	6.9 Hz), 8.06 (<i>d</i> , J
Br		Hz)	,		,			= 6.9 Hz), 7.51 (d,
								J = 9.1 Hz), 7.00
								(t, J = 7.3 Hz),
								3.94-3.84 (<i>m</i> , 8H)
	$0.05(h_{\rm m}, z)$	0 16 0 11	0 16 0 11	974(11		772(4 1-	957(11	$0.67(h_{22}, r) 0.25$
a d	9.03(Dr. s)	8.10-8.11	8.10-8.11	8.74(a, J)	7.77(l, J - 7.6 Hz)	7.75(l, J - 7.6 Hz)	8.37(a, J)	9.07 (DT. S), 8.23
		(<i>m</i>)	(m)	– /.9 пz)	/.0 HZ)	7.0 ПZ)	– 7.0 HZ)	$(l, J = 1.0 \ \Pi Z),$ 7 00 (br. s)
								1.30(01.3)
								(OII)
								(ОП)
2y	0.06 (hr, z)	0 10 0 10	0 10 0 12	075 (J I		771(4I-	957 (J I	0.92 (4 I - 1.5)
a d	9.00(Dr. s)	0.10-0.12	0.10 - 0.12	8.73(a, J)	7.77(l, J - 7.6 Hz)	7.74(l, J - 7.6 Hz)	8.37(a, J)	9.83(l, J - 1.3)
		(<i>m</i>)	(m)	– 7.9 HZ)	/.0 HZ)	7.0 HZ)	– 7.0 HZ)	ΠZ , 0.30 (<i>l</i> , J = 1.7 Π_{z}), 7.08 (<i>t</i> , J
								$1.7 \Pi Z$, 7.98 (l, J = 1.5 U=) U2.5 %
								-1.5 HZ) HZ, 5&4
								Im, 13.43 (OH)
2gH	9.72(1)	77(())	77(())	0.42(1.1)	757 (1	7.52 (1.1	072(11	9.06(11.1-1.6)
	δ . /2 (br. s)	/./6 (<i>s</i>)	/./6 (<i>s</i>)	8.45 (d, J)	/.5/(t, J = 7.6 Hz)	7.52(t, J = 7.4 H)	δ . /3 (d , J	$\delta.00 (dd, J = 1, 6, 4, 4, 11)$
				= /.6 Hz)	/.0 HZ)	7.4 HZ)	= /.6 Hz)	4.4 HZ), $/.34$ (br.
								t, J = /.0 HZ),
								0.08 (d, J = 8.2)
								HZ), $6.59 (dd, J =$
2h								5.0, 6.9 Hz), 3.70-
								3.60 (<i>m</i> , 8H)

	8.77 (<i>d</i> , <i>J</i> = 1.9 Hz)	7.88 (<i>d</i> , <i>J</i> = 8.8 Hz)	7.84 (<i>dd</i> , <i>J</i> = 1.9, 8.8 Hz)	8.51 (<i>d</i> , <i>J</i> = 7.6 Hz)	7.68 (<i>dt</i> , <i>J</i> = 1.3, 7.6 Hz)	7.63 (<i>t</i> , <i>J</i> = 7.3 Hz)	8.61	8.14-8.07 (<i>m</i> , 2H), 7.53 (<i>d</i> , <i>J</i> = 9.5 Hz), 7.02 (<i>t</i> , <i>J</i> = 6.6 Hz), 3.95-3.74 (<i>m</i> , 8H)
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	9.15 (s)	8.48 (<i>d</i> , <i>J</i> = 8.7 Hz)	8.85 (<i>d</i> , <i>J</i> = 8.7 Hz)	8.66 (<i>d</i> , <i>J</i> = 7.6 Hz)	7.88 (<i>m</i>)	7.76 (<i>t</i> , <i>J</i> = 7.2 Hz)	7.92 (<i>d</i> , <i>J</i> = 7.2 Hz)	
a d Br N ^{or} OH N=N 8	9.11 (br. s)	8.33 (<i>d</i> , <i>J</i> = 8.7 Hz)	8.82 (<i>d</i> , <i>J</i> = 8.4 Hz)	8.65- 8.70(<i>m</i>)	7.78-7.82 (<i>m</i> , <i>J</i> = 6.4, 6.8 , Hz)	7.72-7.77 (<i>m</i> , <i>J</i> = 6.8 Hz, 6.4 Hz)	8.65 (<i>d</i> , <i>J</i> = 6.4 Hz)	13.82 (br. s)
$Br \qquad \qquad$	9.01 (<i>d</i> , <i>J</i> = 1.9 Hz)	8.27 (<i>d</i> , <i>J</i> = 1.9 Hz, 9.1 Hz)	8.73 (<i>d</i> , <i>J</i> = 9.1 Hz)	8.61 (<i>d</i> , <i>J</i> = 7.6 Hz)	7.76 (<i>t</i> , <i>J</i> = 7.6 Hz)	7.70 (<i>d</i> , <i>J</i> = 7.6 Hz)	8.40 (<i>d</i> , <i>J</i> = 7.6 Hz)	3.22 (s); 3.07 (s)
$Br \qquad 0 \\ N = N \\ 13$	9.18 (<i>d</i> , <i>J</i> = 2 Hz)	8.38 (<i>dd</i> , <i>J</i> = 2.0, 9.1 Hz)	8.86 (d, J) = 9.1 Hz	8.68 (<i>d</i> , <i>J</i> = 7.6 Hz)	7.69-7.76 (<i>m</i>)	7.69-7.76 (<i>m</i>)	7.87 (m)	0.90 (t, J = 7.1 Hz); 1.18-1.35 (m); 1.49 (quint, J = 6.9 Hz); 2.04 (s); 2.39 (t, J = 7.3 Hz)

	8.84 (<i>d</i>)	8.31 (<i>d</i> , <i>J</i> = 9.1 Hz)	8.65 (<i>d</i> , <i>J</i> = 9.1 Hz)	8.39 (<i>d</i> , <i>J</i> = 7.6 Hz)	7.77 (<i>t</i> , <i>J</i> = 7.6 Hz)	7.64 (<i>t</i> , <i>J</i> = 7.2 Hz)	7.78 (<i>d</i> , <i>J</i> = 6.6 Hz)	10.17 (s, 1H) H9
	8.68 (<i>d</i> , <i>J</i> = 2.1 Hz)	8.08 (<i>dd</i> , <i>J</i> = 2.1, 9.1 Hz)	8.37 (<i>d</i> , <i>J</i> = 9.1 Hz)	8.22 (<i>d</i> , <i>J</i> = 7.6 Hz)	7.65 (<i>t</i> J = 7.6 Hz)	7.52 (<i>t</i> , <i>J</i> = 7.3 Hz)	7.64 (<i>d</i> , <i>J</i> = 7.3 Hz)	3.06 (s, 3H)
Br O N N S NH 23	8.76 (s, 1H)	8.23 (<i>d</i> , <i>J</i> = 9.1 Hz)	10.98 (<i>d</i> , <i>J</i> = 9.1 Hz)	8.39 (<i>d</i> , <i>J</i> = 7.6 Hz)	7.80 (<i>t</i> , <i>J</i> = 7.6 Hz)	7.67 (<i>t</i> , <i>J</i> = 7.5 Hz)	7.78 (<i>d</i> , <i>J</i> = 6.6 Hz)	14.93 (s)
$ \begin{array}{c c} a & d \\ Br & O \\ 9 & 10 \\ 25 \\ \end{array} $	8.19 (<i>d</i> , <i>J</i> = 1.9 Hz)	7.57 (m)	6.68 (<i>d</i> , J = 9.1 Hz)	7.87 (<i>d</i> , <i>J</i> = 7.6 Hz)	7.48 (m)	7.56 (<i>t</i> , <i>J</i> = 7.6 Hz)	7.73 (<i>d</i> , <i>J</i> = 7.2 Hz)	4.26 (<i>t</i> , <i>J</i> = 10.2 Hz), 3.93 (<i>t</i> , <i>J</i> = 10.2 Hz)
a d Br N NH ⁺ 9 10 25H⁺	8.65 (s)	8.10 (<i>d</i> , <i>J</i> = 9.1 Hz)	7.52 (<i>d</i> , <i>J</i> = 9.1 Hz)	8.15 (<i>d</i> , <i>J</i> = 7.6 Hz)	7.76 (<i>d</i> , <i>J</i> = 7.6 Hz)	7.67 (<i>t</i> , <i>J</i> = 7.4 Hz)	7.83 (<i>d</i> , <i>J</i> = 7.2 Hz)	4.86 (<i>dd</i> , <i>J</i> = 9.1, 10.6 Hz); 4.49 (<i>dd</i> , <i>J</i> = 9.1, 10.6 Hz)

	8.28 (<i>d</i> , <i>J</i> = 2.3 Hz)	7.63 (<i>dd</i> , <i>J</i> = 2.3, 8.7 Hz)	6.94 (<i>d</i> , <i>J</i> = 8.7 Hz)	8.16 (<i>d</i> , <i>J</i> = 7.6 Hz)	7.48 (<i>dt</i> , <i>J</i> = 1.1,7.6 Hz)	7.44 (<i>t</i> , <i>J</i> = 7.2 Hz)	7.55 (<i>d</i> , <i>J</i> = 7.2 Hz)	4.08-3.93 (<i>m</i> , 4H), 2.95 & 2.59 (2 <i>xbr. s</i> , 2 <i>x</i> 3H), 1.73 (<i>s</i> , 3H)
27 Br O N N NH ⁺ 27H ⁺	8.87 (<i>d</i> , <i>J</i> = 1.9 Hz)	8.15 (<i>dd</i> , <i>J</i> = 1.9, 8.8 Hz)	7.76 (<i>d</i> , <i>J</i> = 8.8 Hz)	8.57 (<i>d</i> , <i>J</i> = 7.6 Hz)	7.67 (<i>t</i> , <i>J</i> = 7.3 Hz)	7.63 (<i>t</i> , <i>J</i> = 7.6 Hz)	7.74 (<i>d</i> , <i>J</i> = 7.3 Hz)	4.90-4.77 (<i>m</i> , 2H), 4.29-4.19 (<i>m</i> , 2H), 3.05 & 2.63 (2 <i>xbr</i> . <i>s</i> , 2 <i>x</i> 3H), 1.84 (<i>s</i> , 3H), 9.97 (<i>s</i> , 1H)
Br OH N N 28	8.46 (<i>d</i> , <i>J</i> = 2.2 Hz)	7.76 (<i>dd</i> , <i>J</i> = 2.2, 8.8 Hz)	7.16 (<i>d</i> , <i>J</i> = 8.8 Hz)	8.31 (<i>m</i>)	7.55 (m)	7.55 (m)	8.00 (<i>m</i>)	4.38 (t, J = 10.1 Hz, 2H), 4.10 (t, J = 10.1 Hz, 2H), 15.58 (s, OH)
Br N N NH+ 28H ⁺	8.74 (br. s)	8.11 (<i>d</i> , <i>J</i> = 9.1 Hz)	7.73 (<i>d</i> , <i>J</i> = 9.1 Hz)	8.56 (<i>m</i>)	7.67 (<i>t</i> , <i>J</i> = 7.3 Hz)	7.63 (t, J) = 7.6 Hz	8.45 (m)	4.78 (<i>t</i> , <i>J</i> = 9.5 Hz, 2H), 4.20 (<i>t</i> , <i>J</i> = 9.5 Hz, 2H), 9.23 (<i>s</i> , OH)

Synthesis of compounds 2b, 2d, 2g, 2h and 2f and their analytical data has been given in reference 14 of manuscript.

2c Unpublished result

[¶] We have used arbitrary systematic position numbering of protons for the sake of easier comparison within the same structural scaffold.

The IUPAC nomenclature of compounds is used throughout text in the Experimental section.

Figure S1: Plot of aromatic ¹H Chemical shifts for various fused azoles. Maximum variation of proton shifts is observed for aromatic protons H8, Hd and H7 (shown in the square box).

Computational details: All geometry optimizations have been carried out using closed-shell Hartree-Fock method¹ and 6-31G(d,p) basis set² as it is implemented in Gaussian 03.³ Then GIAO nuclear magnetic shielding tensors were calculated using the same method and basis set as the one employed during the geometry optimizations. Isotopic shielding part of the GIAO nuclear magnetic shielding tensors⁴ have employed to calculated proton NMR chemical shifts relative to TMS (see Table S3). The TMS reference signal for proton chemical shifts was found located at 32.3355 ppm. Chemical shifts have been calculated as follows: δ (calc) = Isotropic Shielding(TMS) – Isotropic Shielding(proton).

1 Ab initio studies and comparison of theoretical proton chemical shifts with those of experimentals.

1.1 Thiol-thione tautomerism of compound 23

Our energy calculations have showed that thione tautomeric form of compound 23 is more stable than thiol form by 16.95 kcal/mol. Calculated proton chemical shifts for both forms are found to be almost identical (see Table S2) with exceptions of proton associated with the tautomerization (proton in position **A**, Table S2) and proton interacting with the mercapto part of 23 (proton in position **8**, Table S2). Comparison of experimental and theoretical proton chemical shifts (see Table S2) suggests that thione form is indeed the only tautomeric form present in solution. Thus the calculated chemical shift of proton in position **8** (11.10 ppm) in the thione form is found to be within 0.12 ppm from the experimental value of 10.98 ppm while in thiol form the theoretical value is 8.39 ppm (2.59 ppm from the experimental δ). Calculated chemical shift of proton in position **A** in thione form is also much closer to experimental value than the one in thiol (9.54 ppm versus 5.58 ppm) but is still quite far from the experimental value of 14.93 ppm. This difference suggests that proton in position **A** is probably involved in interaction with solvent which is not taken into account in our theoretical calculations.
1.2 Ab intio simulation of proton chemical shifts

The assignment of experimental NMR spectra has been confirmed via *ab initio* simulations of proton chemical shifts (see Calculations details in computational part). A good agreement (standard error 0.37 ppm, Figure 2) between experimental and theoretical values has been obtained for the aromatic and aliphatic protons of all compounds (see Figure 2 as well as Table S3). However, the fast exchanging protons of hydroxyl groups in compounds **8**, **2g**, **2gH**+ as well as proton in position **A** of compound **23** are not reproduced well missing the target 13 to 14 ppm chemical shift by almost 7 ppm (Table S3). Taking into account generally good reproducibility of experimental values by the computational technique employed (see Figure 2), such large deviation cannot be explained by deficiencies in technique *per se* and can probably be attributed to strong interactions of these protons with solvent which has not been taken into account in the gas phase calculations employed. Calculated chemical shifts of protons in position **d** of all compounds under investigation have also shown quite large 0.5-1.2 ppm deviation from the experimental values (see Table S3) which suggests presence of interactions unaccounted for by the theoretical model employed.

Experimental δ (ppm)

Figure S2. Comparison between theoretical and experimental proton chemical shifts of all protons (excluding hydroxyl protons of **8** and **2g** as well as proton in position **A** of compound **23**) in all compounds investigated (Table S3). Linear regression $y = (1.0146 \pm 0.0179) x - (0.0120 \pm 0.1405)$, R = 0.982, $R^2 = 0.965$, standard error of estimate = 0.37 ppm. Excluding from this statistics the aromatic protons in positions **8** and **d** as well as imidazole proton in position **A** of compound **2g** (red diamonds) significantly improves statistical parameters (linear regression $y = (1.0121 \pm 0.0105) x - (-0.0940 \pm 0.0809)$, R = 0.995, $R^2 = 0.991$, standard error of estimate = 0.21 ppm). The fact that these protons can spacially interact with C2-substituents in the series via solvent suggests a presence of additional interactions with the solvent which are not accounted for in the theoretical model employed. Blue dashed line represents ideal 1 to 1 correspondence between theoretical and experimental values.

	HF energy (a.u.)	δ(H ₅)	δ(H ₇)	δ(H ₈)	δ(H _a)	δ(H _b)	δ(H _c)	δ(H _d)
$Br \xrightarrow{5} N = N$ SH A 23 (thiol)	-3854.02610644	8.76 (8.89) Δ=0.13	8.23 (8.21) Δ0.02	10.98 (8.39) Δ=2.59	8.39 (8.12) Δ=0.27	7.80 (7.89) Δ=0.09	7.67 (7.77) Δ=0.10	7.78 (8.49) ∆=0.71
$Br \xrightarrow{5} \\ N \\ S \\ A$ 23 (thione)	-3854.05312372	8.76 (8.74) Δ=0.02	8.23 (8.20) Δ=0.03	10.98 (11.10) Δ=0.12	8.39 (8.21) Δ=0.18	7.80 (7.93) Δ=0.13	7.67 (7.83) Δ=0.16	7.78 (8.48) ∆=0.70

Table S2. Hartree-Fock energy of thiol and thione tautomeric forms^{a,b,c} of compound 23 as well as calculated
(relative to TMS) and experimental chemical shifts^b of aromatic protons (ppm) in compound 23.

^aThe chemical shifts in parenthesis are from the *ab initio* calculations. ^b Δ is a difference between experimental and calculated values (ppm).

 $^{c}\Delta E = -0.02701728$ a.u. = -16.95 kcal/mol, which means 23 (thione) is stabilized by 16.95 kcal/mol over 23 (thiol).

Sr. No.	Structure	Proton position	δ (exp), ppm	δ (calc), ppm	$\Delta = \delta(\exp) - \delta(\operatorname{calc}),$
	L C	5	9.00	8.80	0.20
	b	7	8.27	8.08	0.19
	a	8	8.12	8.39	-0.27
6	Br. 5 $f > 0$	а	8.66	8.34	0.32
		b	7.90	7.94	-0.04
		с	7.78	7.84	-0.06
	8 0.	d	7.90	8.49	-0.59
	bC	5	9.15	9.00	0.15
	a d	7	8.48	8.39	0.09
7	5	8	8.85	9.38	-0.53
	Br	а	8.66	8.27	0.39
		b	7.88	7.96	-0.08
	N N	с	7.76	7.87	-0.11
	S N≂N	d	7.92	8.57	-0.65
	ć	5	9.01	9.01	0.00
	b	7	8.33	8.28	0.05
8	a	8	8.82	9.39	-0.57
Ŭ	5 SNOH	а	8.68	8.40	0.28
		b	7.80	7.95	-0.15
		с	7.76	7.88	-0.12
	8 N = N	d	8.65	9.15	-0.50
		OH	13.82	7.09	6.73
		5	9.01	9.01	0.00
	b	7	8.27	8.31	-0.04
	a d A	8	8.73	9.42	-0.69
Q	5 N B	a	8.61	8.42	0.20
,	Br	b	7.76	7.99	-0.23
		с	7.70	7.84	-0.14
	N N	d	8.40	8.99	-0.59
	N≃N	A	3.07	2.97	0.10
		В	3.22	2.99	0.23
		5	9.18	9.05	0.13
		7	8.38	8.29	0.09
	L C	8	8.86	9.37	-0.51
	d o c r o	a	8.68	8.35	0.33
		b	7.73	7.88	-0.16
	$Br_{h} \stackrel{5}{\rightarrow} \downarrow \downarrow 0 \checkmark \lor$	с	7.73	7.84	-0.12
13	B D F	d	7.87	9.08	-1.21
15		A	2.04	2.34	-0.30
	⁸ N≈N	B	2.39	2.04	0.35
			1.49	1.53	-0.04
		D F	1.27 (1.18-1.35)	0.93	0.33
		E	1.27 (1.18-1.35)	1.14	0.12
		F	1.27 (1.18-1.35)	1.15	0.12
		G	0.90	0.95	-0.05

Table S3: Comparison between theoretical and experimental chemical shifts

	L C	5	8.84	8.91	-0.07
	d				
15		7	8.31	8.21	0.10
	Br	8	8.65	8.23	0.42
		а	8.39	8.12	0.27
	N N	b	7.77	7.89	-0.12
	A	с	7.64	7.77	-0.13
		d	7.78	8.51	-0.73
		A	10.17	9.21	0.96
	b	5	8.76	8.89	-0.13
23	a d	7	8.23	8.21	0.02
(thiol form)	5	8	10.98	8.39	2.59
	Br	<u>a</u>	8.39	8.12	0.27
	7	b	7.80	7.89	-0.09
	N N	C 1	/.0/	/.//	-0.10
	N N	<u>d</u>	/./8	8.49	-0./1
	SHA	A	14.93	5.58	9.33
	b C	5	8.76	8.74	0.02
23	a 🌾 🎽 d	/	8.23	8.20	0.03
	5	8	10.98	<u> </u>	-0.12
(thione form,	Br	a b	8.39 7.80	8.21 7.03	0.18
more stable)		0	7.80	7.53	-0.13
,		d	7.07	8.48	-0.10
		A	14.93	9 536	5 39
		5	8.17	8 51	-0.34
25	b d	7	7 57	7.86	-0.34
25	a	8	6.68	6.80	-0.12
	$\mathbf{Br} \stackrel{5}{\longrightarrow} \mathbf{O}$	a	7 89	8.05	-0.16
		b	7.57	7.80	-0.23
		с	7.46	7.75	-0.29
	8	d	7.73	8.36	-0.63
	A B	Α	3.92	3.34	0.58
		В	4.25	3.97	0.28
	b_C	5	8.65	9.25	-0.60
25 H+	a 🖉 为 d	7	8.10	8.76	-0.66
	5	8	7.52	7.57	-0.05
	Br	a	8.15	8.62	-0.47
		b	7.76	8.36	-0.60
	N NH	c	7.67	8.43	-0.76
	A B	d	7.83	8.82	-0.99
		A D	4.80	4.41	0.45
		Б	4.49	4.21	0.28
		5	0.05	0./3 8 06/0 06	0.00/0.00
	b c		9.05	0.90/0.90	0.09/0.09
2g	a	/ 	0.11	0.03/0.04 8 11/8 12	-0.28/-0.26
	5)=\OH	0 2	8.10 8.7/	8 50/8 50	0.15/0.15
		h a	7 77	8 00/8 00	-0 23/-0 23
		c	7 73	7.89/7.90	-0.16/-0.17
	8 × C	d	8.57	9.14/9.15	-0.57/-0.58
	A N	A	9.67	8.45/8.15	1.22/1.52

-					
		В	8.25	7.50/7.83	0.75/0.42
		C	7 90	7 23/7 27	0.67/0.63
		ОН	13 43	6 44/6 48	6 99/6 95
		5	9.06	9.25	-0.19
		7	8.15	8.50	-0.35
2 . 1 .		8	8.15	8.47	-0.32
2g H+	b	а	8.75	8.83	-0.08
	a 🆉 🎽 d	b	7.77	8.36	-0.59
	5)=\OH	с	7.74	8.29	-0.55
	Br	d	8.57	9.28	-0.71
		A	7.98	8.41	-0.43
	8 C	B	9.83	9.34	0.49
	D	<u> </u>	8.30	9.16	-0.86
		D	13.43	6.46	6.97
	b C	5	8.66	8.76	-0.10
2b	a 🖉 🎽 d	7	7.95	8.02	-0.07
	Br. 5 0	8	7.77	8.19	-0.42
		<u>a</u>	8.34	8.31	0.03
		b	7.70	7.89	-0.19
	8	C	7.58	7.79	-0.21
		d	/.66	8.42	-0.76
		A 5	4.08	4.01	0.07
	b	7	8.90	0.07	0.03
2d	a	/	8.13	8.11	0.02
	5	3	8.55	8.30	-0.33
	Br	h	7.80	8.00	-0.20
	B	C C	7.67	7.88	-0.21
	$\begin{pmatrix} & & \\ & 8 \end{pmatrix} = \begin{pmatrix} & & \\ & 8 \end{pmatrix} = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} C$	d	7 78	8.54	-0.76
	A N	A	8.44	8.77	-0.33
		В	7.89	8.12	-0.23
		С	7.13	7.32	-0.19
	b C	5	8.90	8.87	0.03
20	b d	7	8.13	8.11	0.02
20	a	8	8.01	8.36	-0.35
	Br = 5	а	8.55	8.43	0.12
		b	7.80	8.00	-0.20
		с	7.67	7.88	-0.21
	8 N ⇒ C	d	7.78	8.54	-0.76
	Ā	Α	7.84	8.06	-0.22
		В	8.42	8.60	-0.18
		С	6.59	6.45	0.14
	b_C	5	8.89	8.92	-0.03
2c	a ∕∕ ∖d	7	8.20	8.16	0.04
		8	8.14	8.64	-0.50
	Br D	a	8.51	8.41	0.10
		b	7.78	7.99	-0.21
	7 N CF3	с	7.66	7.87	-0.21
		d	7.76	8.55	-0.79
1					

Table S4. Coordinates, charge, multiplicity, Hartree-Fock energy and dipole moment of *ab initio* optimized geometries (HF/6-31G**, Gaussian 03).

Compound 6

Charge = 0 Multiplicity = 1C,0,2.8321931156,-0.3539189876,0.0001501645 C.0.2.9056053728,-1.7657535663,0.0012153337 C,0,1.7614997579,-2.4922835998,0.0015944185 C,0,0.4953369331,-1.8527663348,0.0010105859 C,0,0.4307432081,-0.4434296756,0.0001151986 C,0,1.6441732963,0.2951614289,-0.0003822407 C,0,-0.8735941104,0.1178225207,-0.0002080945 C,0,-1.9618938651,-0.7197704298,-0.0006451507 C.0.-1.7597109082,-2.115926438,-0.0003887429 N,0,-0.5957282278,-2.6535667933,0.000816634 C,0,-1.3550495041,1.5370077913,0.0001312069 C.0.-2.7492440943.1.5090408507.-0.0005111458 C,0,-3.2211478661,0.092397202,-0.0010721999 O,0,-4.3488120441,-0.2777590361,-0.001558295 Cl,0,-3.1157194747,-3.1907555048,0.0000072416 C,0,-0.7054317893,2.7548467321,0.0013695015 C,0,-2.8537753288,3.8765813488,0.0006192099 C.0.-3.5119932421,2.6500293798,-0.0002921291 H,0,1.777963683,-3.5654690114,0.0023117374 H,0,-3.4177256151,4.7916527318,0.0007340403 H.0,-4.5846367036,2.584829923,-0.0008161826 Br,0,4.4465412433,0.6383757844,-0.0007433574 H,0,3.8651940481,-2.2461841863,0.0016581501 H.0,1.6341203189,1.3625673132,-0.0014550378 H,0,0.3613349522,2.8444797842,0.0024307023 C,0,-1.4719923372,3.9198258183,0.0015077274 H,0,-0.9716810099,4.8716701691,0.002499054

HF=-3768.686413 RMSD=6.219e-009 Dipole =1.0156339,1.6672115,0.0008983 PG=C01 [X(C16H7Br1Cl1N1O1)]

Compound 7

```
Charge = 0 Multiplicity = 1

C,0,-2.7546423812,-0.211321651,0.0301817128

C,0,-2.8608595116,-1.6013872744,0.0045938737

C,0,-1.7244253663,-2.3669670465,-0.0243731759

C,0,-0.4790968458,-1.7417665378,-0.027751935

C,0,-0.3510963872,-0.3457086034,-0.0023178356

C,0,-1.534716591,0.407920594,0.0269862453

C,0,0.9914188179,0.2221703118,-0.0080475764

C,0,2.0806958966,-0.579992122,-0.0371896005

C,0,1.9320981158,-2.0009533558,-0.0628024104

N,0,0.6836766345,-2.4919802425,-0.0567459169

C,0,1.4510556106,1.6542933034,0.0140273104

C,0,2.8483953621,1.646712965,-0.0036707184

C,0,3.3331874557,0.2347426361,-0.0371300736

O,0,4.4557628738,-0.1449517814,-0.0584983975
```

$$\begin{split} &\mathsf{N}, 0, 2.7594395824, -3.0051799111, -0.0924304918\\ &\mathsf{C}, 0, 0.788683952, 2.8623856056, 0.0458835204\\ &\mathsf{C}, 0, 2.920999511, 4.01559428, 0.0415186265\\ &\mathsf{C}, 0, 3.5949507302, 2.7953502971, 0.0093133967\\ &\mathsf{H}, 0, -1.7761707248, -3.4378319267, -0.044458224\\ &\mathsf{H}, 0, 3.4738316749, 4.9372718473, 0.0524973491\\ &\mathsf{H}, 0, 4.6683306056, 2.7441040382, -0.0051681794\\ &\mathsf{Br}, 0, -4.3300456313, 0.8374457994, 0.0700545265\\ &\mathsf{H}, 0, -3.8275490205, -2.0669758121, 0.007604584\\ &\mathsf{H}, 0, -1.5007450866, 1.4737154276, 0.047185071\\ &\mathsf{H}, 0, -0.2782735774, 2.9446630267, 0.0608823728\\ &\mathsf{C}, 0, 1.5416197065, 4.039420711, 0.0593249412\\ &\mathsf{H}, 0, 1.0272772793, 4.9834250821, 0.0841704199\\ &\mathsf{N}, 0, 0.7690182894, -3.8247037347, -0.0835657969\\ &\mathsf{N}, 0, 1.9948918514, -4.0941825534, -0.1041024299 \end{split}$$

HF=-3472.4876487 RMSD=4.911e-009 Dipole=-2.0009017,2.5810999,0.0749247 PG=C01 [X(C16H7Br1N4O1)]

Compound 8

Charge = 0 Multiplicity = 1C,0,-3.0030838179,-0.2478445663,0.039511649 C,0,-3.1048994734,-1.6370444626,0.013903926 C,0,-1.9624294829,-2.3938401885,-0.017766694 C,0,-0.7218625018,-1.7602797899,-0.0237401007 C.0.-0.5976756806.-0.3650713535.0.0016933905 C.0.-1.7864435263.0.3795506425.0.033784192 C,0,0.7446560631,0.2093235518,-0.0069287041 C,0,1.8385802222,-0.5870496283,-0.0387831751 C,0,1.6922544754,-2.010561627,-0.0644389952 N,0,0.4465868622,-2.5053367491,-0.0556049822 C,0,1.2070264541,1.6288575735,0.0141484161 C,0,2.61217113,1.6308512131,-0.0066823921 C,0,3.0685563212,0.2229486386,-0.0411481553 N,0,4.2064840429,-0.3091058692,-0.0685939816 N,0,2.5226588864,-3.0141963739,-0.0963613958 C.0.0.5270089849.2.8314892037.0.0479803934 C.0.2.6327203632.4.0112996104.0.0399791371 C,0,3.3296854104,2.8086252511,0.0058904601 H.0.-2.0064905153,-3.4651035957,-0.0380422504 H.0.3.1740756385.4.9400972884.0.0502838072 H,0,4.399943413,2.7957432071,-0.0102531321 Br.0.-4.5838250993.0.7950194802.0.0832039243 H,0,-4.0689086111,-2.1079069096,0.0189576972 H,0,-1.7616264875,1.4452750832,0.0542010492 H,0,-0.5411465359,2.8903377826,0.0649885729 C,0,1.2516942126,4.0188182636,0.0606434721 H,0,0.7225076976,4.9545905562,0.0869798023 N.0.0.5350581935,-3.8366149803,-0.0828077573 N.0.1.7618773849.-4.104338331.-0.1063463177 0,0,5.2292307072,0.578291381,-0.0663820545 H.0.6.0052657043.0.0416658648.-0.0884763341

HF=-3527.4606282 RMSD=5.653e-009 Dipole=-0.5696856,2.1381979,0.0503419 PG=C01 [X(C16H8Br1N5O1)]

Compound 9

Charge = 0 Multiplicity = 1C.0.-4.2900581858.-0.2404878818.0.074473012 C,0,-4.425679385,-1.6222083728,0.1918538627 C.0.-3.3023941946.-2.4050655225.0.2545006973 C,0,-2.0462340782,-1.8049680374,0.2005163769 C,0,-1.8881067556,-0.4179969584,0.0846663328 C.0.-3.0582542492.0.3538522397.0.0213776593 C,0,-0.5312734318,0.11881887,0.0341087966 C,0,0.5425024942,-0.7024483081,0.0832400182 C,0,0.3620700062,-2.1174058281,0.2124420101 N,0,-0.8973113525,-2.5762135132,0.2624320702 C,0,-0.0358235802,1.5242827921,-0.069990371 C,0,1.3691532245,1.494339749,-0.0800315665 C,0,1.7937645691,0.0754943208,0.0074620921 N,0,2.9108728117,-0.4988394312,0.0102523807 N,0,1.1651255344,-3.1369904773,0.3121626037 C,0,-0.6902210279,2.7377465843,-0.150082508 C,0,1.4377526889,3.8695056603,-0.2596295486 C,0,2.1083989043,2.6536483712,-0.1773861106 H,0,-3.3725748085,-3.4713334727,0.3439379408 H,0,1.9991753749,4.7831074814,-0.3357057927 H,0,3.1776134009,2.6221472614,-0.1922872057 Br,0,-5.8445142075,0.8380571327,-0.0144525385 H,0,-5.401099525,-2.0672259122,0.231658655 H,0,-3.0083968447,1.4146658776,-0.0714590785 H,0,-1.7566239338,2.819596228,-0.1433329164 C,0,0.0583558644,3.9072765297,-0.2437671077 H,0,-0.4519235363,4.8517015114,-0.3060802095 N,0,-0.8434355478,-3.9027929914,0.3931635932 N,0,0.3762309392,-4.2015002406,0.4194230113 O,0,3.9544087868,0.3837830081,0.0031404877 C,0,5.1127268632,-0.1573723108,-0.4645275142 N,0,6.1760545179,0.5630052991,-0.0495295807 C.0.6.1074543437,1.6921047241,0.8558116757 C.0.7.4801552637.0.2577648882.-0.6049186629 O,0,5.1428843575,-1.10956004,-1.1700014354 H,0,5.2137945615,1.6530061033,1.4559837599 H,0,6.1330353127,2.637019224,0.3173714385 H,0,6.9648898219,1.659633806,1.518234131 H,0,7.8743592576,1.1189955483,-1.1375257167 H,0,7.3956185011,-0.5726945877,-1.2850431586 H,0,8.1732902018,-0.0023720306,0.1889311681

HF=-3773.3083721 RMSD=5.117e-009 Dipole=-0.5776884,3.4349931,0.4627808 PG=C01 [X(C19H13Br1N6O2)] Isomer 1

Charge = 0 Multiplicity = 1C,0,-4.7836692929,-0.1983297716,-1.2972301773 C,0,-4.7783617447,-1.5486436696,-1.6389824322 C,0,-3.7068064421,-2.3268873696,-1.2847974938 C,0,-2.6450196932,-1.7529481699,-0.5897175321 C.0.-2.6318024978.-0.3977241886.-0.2341455916 C,0,-3.742291582,0.3702158937,-0.6134680207 C.0,-1.4719854482,0.1192300392,0.4932905347 C,0,-0.4470764674,-0.6910273413,0.8168462336 C,0,-0.4791757038,-2.0691349684,0.4438399595 N.0.-1.5491971919.-2.5188267155.-0.2218510501 C,0,-1.148704238,1.4857426868,0.9945286615 C,0,0.1110445558,1.4331187731,1.6032761846 C,0,0.6657833003,0.0137554173,1.5597669534 O,0,1.8020581936,-0.1269596787,0.6996843055 N,0,0.3375638536,-3.0713755098,0.6165164433 C,0,-1.8473015287,2.6802272536,0.9635063308 C,0,-0.0361581045,3.7512417486,2.1372339364 C,0,0.6678460444,2.5527862932,2.1816188815 H,0,-3.6712732551,-3.3694393009,-1.5338247969 H,0,0.389169366,4.634893834,2.5783067762 H,0,1.6318873273,2.5016920671,2.6477189165 Br,0,-6.264841319,0.8746424309,-1.7903545638 H,0,-5.6052544374,-1.973202983,-2.1747510986 H,0,-3.7922824722,1.4087931495,-0.3768049797 H,0,-2.8165681192,2.7691028247,0.5184555922 C.0.-1.2782803919.3.8112667032.1.5352134524 H,0,-1.8178388297,4.7411928093,1.5099618624 N,0,-1.3685747364,-3.8212844508,-0.4563265655 N,0,-0.2560403437,-4.1156745186,0.0466868195 C,0,3.0211470984,0.2992738717,1.0115230075 C,0,4.0057754279,-0.1037524983,-0.0579874158 C,0,5.4318102068,0.3579877229,0.2238980838 O,0,3.288494492,0.9131230788,1.9942081313 C,0,6.4057206014,-0.0665594549,-0.8759832066 C,0,0.9010119826,-0.6030283299,2.9399027346 H,0,3.6392878822,0.2955769285,-1.0000270376 H.0.3.9487442495,-1.1847256093,-0.1525033418 H.0.5.7557826756.-0.044384614.1.1790808104 H,0,5.4444531554,1.4387114158,0.3312935625 H,0,6.0730812691,0.3378469729,-1.8312656963 H.0.6.384155112.-1.1504512088.-0.9807221614 C,0,7.8417218544,0.3862673548,-0.6091761877 C,0,8.8222871372,-0.0344259567,-1.7047861579 C,0,10.2550289681,0.4206785964,-1.4320627519 H,0,-0.0361765702,-0.6141890939,3.4849890081 H,0,1.6261446594,-0.035390211,3.5018042084 H,0,1.2504888553,-1.6222785801,2.8287497385 H,0,8.1747743384,-0.0182803643,0.345533202 H.0,7.863748316,1.4701434686,-0.5042296448 H.0.8.4908071786.0.3702181911.-2.6593211099 H,0,8.8016420427,-1.1175370966,-1.8096122091 H.0,10.6282223324,0.0040492924,-0.5005464626 H,0,10.3151720807,1.5029655525,-1.3563811186

HF=-3859.6739138 RMSD=4.372e-009 Dipole=-0.8192255,1.5281333,-0.307326 PG=C01 [X(C24H23Br1N4O2)]

Isomer 2

Charge = 0 Multiplicity = 1C,0,-4.6382289576,-0.2509237662,1.7405099546 C.0.-4.5806776669.-1.597053397.2.0938183707 C,0,-3.5352131721,-2.3641150571,1.6489125252 C,0,-2.5516514703,-1.7832284095,0.8519597828 C.0.-2.5921005562,-0.4320932957,0.4831641557 C,0,-3.673856317,0.3244054358,0.9567974804 C,0,-1.5131310212,0.0928114306,-0.3546003835 C,0,-0.5108576827,-0.7065945807,-0.7645272799 C,0,-0.4872537903,-2.0806765468,-0.3763760929 N,0,-1.4835286054,-2.5377504536,0.3909576103 C.0.-1.2586454122,1.4579814631,-0.8973843603 C,0,-0.060645008,1.4161325477,-1.6208614286 C,0,0.5169378234,0.0052890965,-1.6153542342 N,0,0.3248099372,-3.0732556677,-0.6145446405 C,0,-1.9690095266,2.6428678869,-0.8128303031 C,0,-0.2917409035,3.7258391197,-2.1615133124 C,0,0.4228667288,2.5368807089,-2.2598031873 H,0,-3.4608984855,-3.4031587853,1.9039698715 H,0,0.0772552807,4.6103311631,-2.6491646399 H,0,1.3397828393,2.4940124677,-2.8135766787 Br.0.-6.0830141466.0.8065952547.2.3590110259 H.0.-5.3475035671.-2.0270865419.2.7087163399 H,0,-3.7613913948,1.3593963815,0.7153599105 H,0,-2.8936119644,2.7232643628,-0.279814749 C,0,-1.4728726812,3.7752701628,-1.4464416445 H,0,-2.021545763,4.6977953569,-1.3798967891 N,0,-1.2622145592,-3.8347664556,0.6206122523 N,0,-0.1971767467,-4.119204689,0.0187306256 O,0,1.7306526426,-0.1096868688,-0.8639956638 C,0,2.9086816178,0.3302035973,-1.2926445371 C,0,3.9947596225,-0.0465609953,-0.3157837456 C.0.5.381159382.0.4318815094.-0.7344110771 O.0.3.0739031742.0.9365268045.-2.3021254396 C,0,6.459680719,0.0338724856,0.2739845298 H,0,3.9630942166,-1.127058871,-0.2052913233 H.0.3.7118001993.0.3584739983.0.6522572819 H,0,5.3674096109,1.5113529722,-0.8535921751 H,0,5.6206653346,0.0230162611,-1.7114968472 H.0.6.4643282251.-1.048926046.0.391377815 H,0,6.2115118617,0.4446328132,1.251964606 C,0,7.8575474933,0.5037238105,-0.130422265 C,0,0.6315246039,-0.6237878211,-3.0051877443 C,0,8.94222664,0.1096008324,0.8730662238 C.0.10.3362846731.0.5815233021.0.4630110199 H.0.7.8533368786.1.5865121694.-0.2480523342 H,0,8.1061905356,0.0928490328,-1.1078730176 H.0,1.2924470141,-0.0524638366,-3.638071058 H,0,-0.3521671985,-0.6542217507,-3.4601616566 $\begin{array}{l} \text{H}, 0, 1.0050952997, -1.6367064075, -2.9169934366\\ \text{H}, 0, 8.9477360287, -0.9723976644, 0.9905079445\\ \text{H}, 0, 8.6951644377, 0.52066387, 1.8501741551\\ \text{H}, 0, 10.3728012235, 1.6635839997, 0.3708147954\\ \text{H}, 0, 10.6272322165, 0.1592575517, -0.4949112159\\ \text{H}, 0, 11.0823747572, 0.286667846, 1.1945505045\\ \end{array}$

HF=-3859.6739138 RMSD=4.372e-009 Dipole=-0.8103326,1.5200273,0.367354 PG=C01 [X(C24H23Br1N4O2)]]

Compound 15

```
Charge = 0 Multiplicity = 1
C,0,-2.7653725384,-0.1913512223,0.0306524043
C.0.-2.8847954436.-1.5749886312.0.0061271348
C,0,-1.7509931619,-2.3493242168,-0.0223779792
C,0,-0.4922263176,-1.7529429206,-0.026673808
C,0,-0.3602275773,-0.3549183459,-0.0021263831
C,0,-1.5331443069,0.4086651479,0.0267040331
C,0,0.9850780934,0.2143751165,-0.0081275274
C,0,2.0679669698,-0.5883729145,-0.0363346947
C,0,1.9338023199,-2.0157230364,-0.061164209
N,0,0.661935164,-2.5272331836,-0.0552965419
C,0,1.4419010495,1.6484964783,0.0126804329
C,0,2.8391836808,1.6407798075,-0.0047566975
C,0,3.3222483424,0.2280455199,-0.0368229147
O,0,4.4462122639,-0.1473567829,-0.0577436858
N,0,2.8043095252,-2.964880784,-0.0892996474
C,0,0.7828285437,2.8584554347,0.0431152329
C,0,2.9166734985,4.0099957989,0.0380014218
C,0,3.5876162189,2.7877305642,0.0071493973
H,0,-1.8445431115,-3.4177534271,-0.0412845452
H,0,3.4711019265,4.9307773255,0.0481333267
H,0,4.6609282792,2.7335812333,-0.0071395432
Br,0,-4.3257531648,0.880312453,0.0700790553
H.0.-3.8542531117,-2.0348922844,0.0094310253
H.0.-1.4844687465.1.4737114006.0.0461642974
H,0,-0.2837992674,2.9450143608,0.0578105195
C,0,1.5378647682,4.0348503692,0.0554899483
H,0,1.0241631455,4.9793912328,0.0792487941
C,0,0.8651662092,-3.8782340908,-0.0825942078
N,0,2.1188958285,-4.1347881536,-0.1025765348
H,0,0.0851278258,-4.6068297362,-0.0866217606
```

HF=-3456.5228163 RMSD=4.870e-009 Dipole=-2.5890061,1.6114949,0.0613891 PG=C01 [X(C17H8Br1N3O1)]

Compound 23

Thiol form

```
Charge = 0 Multiplicity = 1
C,0,-2.7498096995,0.267081408,0.0361160337
C.0.-2.8816811233.-1.1111117979.0.0133987089
C,0,-1.7558631393,-1.9009119132,-0.0133896668
C,0,-0.4847849435,-1.3327509049,-0.0179654057
C.0.-0.3460975507.0.069618392.0.0051641851
C,0,-1.5075233328,0.8465276964,0.0321041314
C,0,0.9934166715,0.650164468,0.0001198368
C,0,2.0754022719,-0.1480630522,-0.0263684117
C,0,1.9485233744,-1.5737861579,-0.0500996283
N,0,0.6776375298,-2.1165952941,-0.0451316344
C.0.1.4460085766.2.0867040472.0.0204040666
C,0,2.8436491711,2.0804690057,0.0043110919
C.0.3.3296422048.0.6690478981.-0.0262251133
O,0,4.4543847334,0.2962207115,-0.0456644234
N,0,2.8425527789,-2.4926615677,-0.0765575974
C,0,0.7877130897,3.2973690329,0.0494071903
C,0,2.9215128597,4.4496312157,0.0453823015
C,0,3.5921590546,3.2272495503,0.0160546029
H,0,-1.8877547805,-2.96081568,-0.0305224889
H,0,3.4758225921,5.3704832184,0.0553451979
H,0,4.6654582977,3.1725657609,0.0028088293
Br,0,-4.2932772267,1.3612814405,0.0729927644
H.0,-3.8538638697,-1.5650360322,0.0165571671
H.0,-1.4409807643,1.9100227236,0.0500262008
H,0,-0.2785260154,3.386532592,0.0632325342
C.0.1.5428837301,4.4738201958,0.0616041791
H,0,1.0286159757,5.41807893,0.0842330039
C,0,0.9305427419,-3.466970909,-0.0718733108
N,0,2.1935305008,-3.6805347653,-0.0901123973
S,0,-0.2427893503,-4.7816596008,-0.0817362175
H,0,0.6952738285,-5.7158816674,-0.1095896778
```

HF=-3854.0261064 RMSD=4.565e-009 Dipole=-2.1563163,1.403344,0.0493519 PG=C01 [X(C17H8Br1N3O1S1)]|

Thione form

```
Charge = 0 Multiplicity = 1
C.0.-2.7599825159.0.2489170144.0.0212177502
C.0.-2.8872638383.-1.1278969522.0.0056421774
C,0,-1.7611271928,-1.9220099825,-0.0113492481
C,0,-0.4951832908,-1.3477860193,-0.0129331286
C.0.-0.3589314576.0.0555607929.0.0030323265
C,0,-1.5180946899,0.8322589967,0.0199681676
C,0,0.9782405443,0.6448963799,0.0013090502
C,0,2.066387779,-0.1432822039,-0.0156294497
C,0,1.9469248742,-1.5703571897,-0.0321980209
N,0,0.6767039797,-2.1356867728,-0.0303096612
C,0,1.4255620399,2.0839361192,0.0160401378
C,0,2.8236251265,2.0835483419,0.0066464989
C.0.3.3154288434.0.674337715.-0.0139465585
O,0,4.4410595554,0.3010550967,-0.0260336683
N,0,2.8616715943,-2.4563729806,-0.0492746639
C.0.0.7608819731.3.2910644968.0.0354503466
C,0,2.8894691318,4.452501629,0.0354208584
```

 $\begin{array}{l} C,0,3.5669251673,3.2335749198,0.0158298043\\ H,0,-1.8632618879,-2.9847035041,-0.023388752\\ H,0,3.4392915031,5.3760139375,0.0431080066\\ H,0,4.6404914325,3.1847632421,0.0080249313\\ Br,0,-4.3036843215,1.3434858478,0.0444718908\\ H,0,-3.8583956752,-1.5842785354,0.006650573\\ H,0,-1.4538120604,1.895690111,0.0321835518\\ H,0,-0.3055290807,3.3749822221,0.043747794\\ C,0,1.5106789103,4.4709416619,0.0449567804\\ H,0,0.9922046471,5.4128721505,0.0600966023\\ C,0,0.857107404,-3.5029925987,-0.0481935693\\ N,0,2.1771997547,-3.6205945023,-0.0587287332\\ S,0,-0.2073480588,-4.8043037648,-0.0565999901\\ H,0,2.6541347197,-4.49162377,-0.0724618263 \end{array}$

HF=-3854.0531237 RMSD=8.709e-009 Dipole=-0.3412225,2.4638613,0.0323475 PG=C01 [X(C17H8Br1N3O1S1)]|

Compound 25

```
Charge = 0 Multiplicity = 1
C,0,-2.7882386501,-0.1234294834,0.0349727118
C,0,-2.9010909136,-1.504944916,0.0111520027
C,0,-1.7689392851,-2.2848937345,-0.0181981483
C,0,-0.4993277426,-1.6979336474,-0.0243760224
C,0,-0.3841875537,-0.2905262128,-0.0002489829
C,0,-1.5512520512,0.4725378809,0.0293689448
C,0,0.9650923942,0.2657562216,-0.0081107194
C,0,2.0468878673,-0.5391539176,-0.036908009
C,0,1.9305103753,-1.9836968681,-0.0616252466
N,0,0.6260029492,-2.4693389837,-0.0533185681
C,0,1.4236614644,1.7002726142,0.0116836681
C,0,2.8193012813,1.6896011668,-0.006767483
C.0.3.2984580884.0.2730316134.-0.0386183084
O,0,4.4279412744,-0.0899923399,-0.0599358478
N.0.2.8440234613,-2.8476679109,-0.0894543909
C.0.0.7653688927,2.9113513851,0.0419203171
C,0,2.9006662222,4.0581352013,0.0346449402
C,0,3.5699239873,2.8352454786,0.0039633858
H,0,-1.8668875792,-3.3526641864,-0.036395101
H,0,3.4565733326,4.978270142,0.0438973105
H,0,4.643117543,2.7790329069,-0.0111060707
Br,0,-4.3496844379,0.9524359859,0.0755939394
H,0,-3.8703708208,-1.9666336428,0.0156233256
H.0.-1.5010513202,1.5378392307,0.048317033
H.0.-0.3010119904.2.9987004734.0.0572351096
C,0,1.521457836,4.0863896407,0.0531167229
H.0.1.009666612,5.0320127587,0.0767069919
C.0.0.6845762786.-3.9245280184.-0.0805857768
C,0,2.2162805601,-4.1602803127,-0.1051909971
H,0,0.1854659869,-4.3140016824,-0.9614838859
H.0.0.2088159295.-4.346025189.0.7984929187
H,0,2.5214475723,-4.7041818664,-0.9924607196
H,0,2.5445806836,-4.7362260182,0.7531247034
```

HF=-3441.7125376 RMSD=8.244e-009 Dipole=-1.5758249,0.1144842,0.022368 PG=C01 [X(C18H11Br1N2O1)]

Compound 25 H+

Charge = 1 Multiplicity = 1C,0,-2.8183252567,-0.1203978507,0.0463851809 C,0,-2.8972196284,-1.5149008551,0.0188301416 C,0,-1.7560958941,-2.2744731801,-0.0167501332 C,0,-0.5058364283,-1.6532151424,-0.0255827934 C,0,-0.4111806399,-0.2455073856,0.0019572544 C,0,-1.6022503506,0.5008916332,0.0381409622 C,0,0.9079183735,0.333872481,-0.0089323748 C.0.2.0026898669.-0.4836637506.-0.0449769913 C,0,1.866752335,-1.8767031746,-0.0714596717 N.0.0.6486879225.-2.4159462817.-0.0614805571 C,0,1.4006171082,1.7457236793,0.0119313842 C,0,2.8038429167,1.7131898988,-0.0130209284 C,0,3.2602978649,0.2969193756,-0.0504725633 O,0,4.3635723021,-0.1497625178,-0.0789162164 N,0,2.807890574,-2.792942141,-0.1066728454 C,0,0.7527094333,2.9618609498,0.0484523669 C,0,2.9025191713,4.0795481565,0.0345096746 C,0,3.5652975319,2.8517286745,-0.0024956646 H,0,-1.8366368104,-3.3436367773,-0.0375415184 H,0,3.4676900672,4.9931884233,0.0437297155 H.0.4.6379050397.2.7934290671.-0.022252135 Br,0,-4.4002508009,0.9010631384,0.0950574589 H.0.-3.8577765038,-1.9938083088,0.0255950462 H.0.-1.5686390446.1.5674625024.0.0596671364 H,0,-0.3132298853,3.0569211914,0.0689220247 C,0,1.5229232547,4.1268539271,0.0593622924 H,0,1.0253617423,5.0787882745,0.0877813883 C,0,0.733191258,-3.8871559747,-0.0932860602 C.0.2.2587222599,-4.1441054746,-0.1252032755 H.0.0.2351979283.-4.2658617223.-0.9747693378 H,0,0.2659584901,-4.3021935017,0.7886798815 H.0.2.5613404764,-4.6672729405,-1.0216490625 H.0.2.5919954175.-4.703841518.0.7376483895 H,0,3.7755441638,-2.5528613585,-0.1187518449

HF=-3442.1415096 RMSD=5.212e-009 Dipole=1.2767589,-2.3448734,-0.0708537 PG=C01 [X(C18H12Br1N2O1)]

Compound 2g

Charge = 0 Multiplicity = 1 C,0,-3.4139534617,-0.1682739282,0.1962565909 C,0,-3.4076773197,-1.5769454835,0.093721865 C,0,-2.2226732944,-2.2276820993,-0.0041958103 C.0.-0.9978051412,-1.5121942737,-0.003479443 C,0,-1.0123720643,-0.1086648362,0.1041709047 C.0.-2.2661163367.0.5509856167.0.2021541839 C,0,0.2598134006,0.5282224676,0.0649242291 C,0,1.3967374889,-0.2307450909,-0.0776823573 C,0,1.2841175081,-1.647276529,-0.1060614277 N,0,0.137771135,-2.2382552418,-0.08169261 C,0,0.6463186909,1.9653423689,0.0921820576 C.0.2.0289757338,2.0518824829,-0.1160867083 C,0,2.5584498846,0.6760092226,-0.2696548261 N,0,3.7020900537,0.2555265201,-0.5758433833 N.0.2.3998047495,-2.4980650867,-0.1645230734 C.0.-0.089791382.3.1190176612.0.2938933877 C.0.1.9243627098.4.4247110763.0.056938378 C,0,2.6752630868,3.2728141238,-0.1397643288 H,0,-2.1759348793,-3.2974320489,-0.0816350444 H,0,2.4099195381,5.3839090642,0.0448602265 H,0,3.7311074031,3.3308968433,-0.3020937989 Br,0,-5.0818904404,0.724869216,0.3243060096 H,0,-4.3366002594,-2.1142598919,0.0940474438 H,0,-2.3235303944,1.6140499647,0.2712593183 H,0,-1.1436551955,3.1027182984,0.4777042307 C,0,0.5609784831,4.3461671986,0.2736611739 H.0,-0.007822705,5.2449276276,0.4318905455 C.0.3.5456041482,-2.4782698085,0.6101910102 C,0,4.1973947891,-3.6170820849,0.3230149373 N.0.3.4972259175,-4.3555348646,-0.6060632725 C.0.2.4383939655.-3.6768344034.-0.8515457529 H,0,3.7728129615,-1.6747029485,1.2723385745 H,0,5.1286812236,-3.9602183825,0.7228913382 H,0,1.6496479745,-3.9548105802,-1.5177203359 O,0,4.6201794065,1.2360255208,-0.7755384664 H.0,5.4057361659,0.7734939546,-1.0189171132

HF=-3588.4210539 RMSD=5.458e-009 Dipole=-0.0307091,2.0660834,0.2518793 PG=C01 [X(C19H11Br1N4O1)]

Compound 2gH+

```
Charge = 1 Multiplicity = 1

C,0,-3.4376962199,-0.1497917312,0.2215476191

C,0,-3.4262739095,-1.5633608778,0.1514472138

C,0,-2.2437622364,-2.2172233756,0.0570631911

C,0,-1.0235153438,-1.4969764658,0.0283884306

C,0,-1.035059497,-0.0867281774,0.1016214177

C,0,-2.2906681102,0.5709611974,0.1984969604

C,0,0.2285153099,0.5610589164,0.0473244863

C,0,1.3763648906,-0.1982371532,-0.0681112148

C,0,1.2422408882,-1.5933047552,-0.0898951863

N,0,0.1191275824,-2.2147336443,-0.0539710093

C,0,0.6190182374,1.9953847048,0.0471673967

C,0,2.009632429,2.0756247581,-0.1229361792

C,0,2.54637382,0.7006760171,-0.224977449

N,0,3.7021964942,0.2556885064,-0.4430796763
```

```
N.0.2.3786007931,-2.4774135735,-0.1662189845
C,0,-0.1228882854,3.1537327826,0.1862165576
C,0,1,9009152284,4.4506854019,-0.0272563105
C,0,2.6586916043,3.2938841373,-0.1640602281
H,0,-2.2006911002,-3.2886038476,0.0065530938
H.0.2.3864511825,5.408942943,-0.05485244
H,0,3.7188809168,3.3496499133,-0.295800835
Br,0,-5.0993559847,0.7346359832,0.3486134183
H,0,-4.3544038938,-2.1012450162.0.1749163221
H,0,-2.3488694709,1.6345959059,0.2495772095
H,0,-1.1826406196,3.1461829219,0.3304367616
C.0.0.5311112632,4.3792804065,0.1472235969
H.0,-0.0407848705,5.2826600413,0.256109085
C.0.3.5063983112.-2.4963582109.0.6381001427
C.0.4.2049217091,-3.5883021062,0.3097547519
N,0,3.4920980526,-4.2228834964,-0.6914275326
C,0,2.4007049318,-3.5391217599,-0.9418859773
H,0,3.6994160664,-1.7351018142,1.357603873
H,0,5.1256578648,-3.9739194767,0.6874905986
H,0,1.6407010742,-3.7962515465,-1.6472827123
O,0,4.6407646903,1.221057091,-0.5998752087
H,0,5.4407774069,0.7629960584,-0.8014758317
H,0,3.7525368041,-5.0665290215,-1.154237995
```

HF=-3588.8237819 RMSD=7.051e-009 Dipole=4.6452388,-3.7795648,-0.7429579 PG=C01 [X(C19H12Br1N4O1)]

Compound 2b

```
Charge = 0 Multiplicity = 1
C,0,-2.8124827911,-0.1866511805,0.0161225686
C,0,-2.9427105787,-1.590696118,-0.0062719526
C,0,-1.8285485564,-2.3660595086,-0.0267325077
C,0,-0.5353160958,-1.7872486632,-0.0260048412
C,0,-0.4169309658,-0.3813957138,-0.0035996538
C,0,-1.5943473383,0.4074937688,0.0176020201
C,0,0.9147172172,0.1278587127,-0.0042988851
C,0,1.9627070945,-0.7484178755,-0.0256429537
C.0.1.715396296, -2.1477646535, -0.0469942074
N.0.0.5221217648.-2.6352767044.-0.0470768178
C,0,1.4562981634,1.526740354,0.0148813913
C.0.2.8487684062,1.4373636163,0.0042961888
C.0.3.2552827809.-0.0028658035.-0.0219361761
O,0,4.366634294,-0.422207996,-0.0360637395
O,0,2.7674846295,-2.9400459377,-0.0670192208
C,0,0.8603077987,2.7705613615,0.038819851
C,0,3.054437474,3.7987459091,0.0412073219
C,0,3.6590108413,2.5440089644,0.016924591
H,0,-1.8961433332,-3.4373282034,-0.0439800151
H,0,3.6580409128,4.6883199735,0.0516846776
H.0,4.7279751271,2.4329713216,0.0080977367
Br,0,-4.3828836516,0.8775481101,0.0446889196
H,0,-3.9207818485,-2.032976778,-0.0069067499
H.0,-1.5361552974,1.4736926564,0.035037803
H,0,-0.2018983162,2.9053994176,0.0477695096
```

 $\begin{array}{l} C,0,1.6766957843,3.9021747016,0.0518229715\\ H,0,1.2179013639,4.8746812189,0.0705246233\\ C,0,2.5652189718,-4.338475788,-0.088535223\\ H,0,2.0138109029,-4.6334107016,-0.9710008164\\ H,0,2.0253322384,-4.6621976468,0.7909570016\\ H,0,3.5540153033,-4.7705992159,-0.1020575716\\ \end{array}$

HF=-3423.6905686 RMSD=8.253e-009 Dipole=-0.5022873,0.5041672,0.0112763 PG=C01 [X(C17H10Br1N1O2)]

Compound 2d

Charge = 0 Multiplicity = 1C.0.-3.2110980415,-0.0992350338,0.146798779 C,0,-3.2071045236,-1.5104976955,0.0409476045 C,0,-2.027791918,-2.1696402235,-0.0510121668 C,0,-0.7959395847,-1.4617029565,-0.0413784487 C,0,-0.809280255,-0.0561496061,0.0657868946 C,0,-2.0608832031,0.612227532,0.159002544 C.0.0.4613642142.0.5706470758.0.0416207933 C,0,1.6028930089,-0.1948290096,-0.0681189417 C,0,1.4884549646,-1.6102222089,-0.124183448 N,0,0.3319126437,-2.1921306836,-0.1181736537 C,0,0.8398228204,2.0207236096,0.062036742 C,0,2.2198047187,2.0946757971,-0.1036001202 C,0,2.7833691121,0.7193815246,-0.21009517 O,0,3.9286633709,0.452506228,-0.3881607863 N,0,2.5858517723,-2.4712322032,-0.2054636149 C,0,0.1169558944,3.1879836543,0.2077197252 C,0,2.1701719344,4.4603074142,0.0003971296 C,0,2.9021560872,3.2851321167,-0.1407183057 H.0.-1.9884349942.-3.2393967611.-0.1298676601 H,0,2.6679060502,5.4127279116,-0.0226652746 H,0,3.9684307408,3.2956587229,-0.2737151244 Br,0,-4.8762642375,0.7969624787,0.2712586152 H.0.-4.1388695214.-2.0430988599.0.0349919291 H,0,-2.1097433451,1.6754112913,0.2355615904 H,0,-0.9433040089,3.2032759368,0.351834791 C.0.0.799819019.4.40347594.0.1747010099 H,0,0.2420803824,5.3158029861,0.2884322435 C,0,3.8463271721,-2.3712370664,0.3672304181 C,0,4.4480487085,-3.5451616798,0.1237984074 N,0,3.6130662289,-4.3856791159,-0.5828393802 C.0.2.5263018916, -3.7314433904, -0.7437039519 H,0,4.1838738051,-1.4929958453,0.8628982102 H,0,5.4346584742,-3.8463639267,0.4070483007 H.0,1.6471771256,-4.0780787771,-1.2413246728

HF=-3533.4539629 RMSD=8.752e-009 Dipole=-1.2295682,2.3341505,0.4290611 PG=C01 [X(C19H10Br1N3O1)]

Compound 2e

Charge = 0 Multiplicity = 1C,0,-3.0626403782,-1.008425992,0.0162591648 C,0,-2.6581183911,-2.364521498,-0.0229229471 C,0,-1.338247833,-2.6658074769,-0.0349451329 C,0,-0.3561846687,-1.6386002319,-0.0077573588 C,0,-0.7696714208,-0.2901447316,0.0309963593 C.0.-2.1620031837.0.0000096718.0.0412511084 C,0,0.2724980737,0.668841613,0.0376667909 C,0,1.5835278925,0.247226833,0.0207601557 C,0,1.8700296332,-1.1425337172,0.0069073981 N,0,0.9320711151,-2.027910085,-0.0057523078 C,0,0.2377090453,2.1671259637,0.0067659515 C,0,1.5539088751,2.6151910161,-0.0763764893 C,0,2.478403718,1.445750103,-0.0759987629 O,0,3.6654818851,1.4958202753,-0.1399205755 N.0.3.1863810649,-1.6300331477,0.0004978947 C.0.-0.7859757041,3.0922079439,0.042965499 C.0.0.8489031335.4.8768421572.-0.0991356006 C,0,1.8836719779,3.9463582773,-0.1310405467 H,0,-0.9928347871,-3.6815504709,-0.0657792787 H,0,1.0667450725,5.9286228365,-0.1409217071 H,0,2.9130063322,4.24816225,-0.196360594 Br,0,-4.9172849564,-0.6157521928,0.0319012477 H,0,-3.4019011779,-3.137937248,-0.0435850683 H,0,-2.5113629308,1.008186656,0.0675956743 H,0,-1.817585057,2.8162913085,0.1148993267 C,0,-0.4622376555,4.4479502287,-0.0110787565 H.0,-1.255938307,5.1730253342,0.0168562899 C.0.4.2420519505.-1.2238180504.0.750874362 C,0,5.2526269077,-2.0940155128,0.522658188 C,0,4.7058304396,-3.0204314185,-0.4029256968 N.0.3.4766240385.-2.7454881575.-0.6945955309 H,0,4.1904279162,-0.358918317,1.3720309577 H,0,6.2354922438,-2.0769476655,0.9431220396 H,0,5.1850410888,-3.865381478,-0.8556292142

HF= -3533.42936975 HF=-3533.4293698| RMSD=9.021e-009 Dipole=-0.7143412,1.496856,0.5894937 PG=C01 [X(C19H10Br1N3O1)]

Compound 2c

```
Charge = 0 Multiplicity = 1

C,0,-3.1179834437,-0.052030197,0.156271184

C,0,-3.2001301068,-1.4608139089,0.0726723508

C,0,-2.0605306189,-2.1872171477,-0.0308506319

C,0,-0.7937955639,-1.5501153482,-0.0559622021

C,0,-0.7205361237,-0.1440473354,0.0279458896

C,0,-1.9285414275,0.5951564492,0.1358116751

C,0,0.5847685707,0.4151464226,-0.0039467081

C,0,1.6651266084,-0.4239048413,-0.1113810184

C,0,1.4654168576,-1.8204715787,-0.1881939148

N,0,0.2923567785,-2.3495280456,-0.1612262493
```

```
C,0,1.0704333622,1.8315412402,0.0593929446
C,0,2.4628644538,1.8026830022,-0.0135204385
C.0.2.9268852078.0.3891845985.-0.1253093003
O,0,4.0493113267,0.0127340352,-0.2062620659
C,0,2.6348890655,-2.7842433534,-0.3083611831
C,0,0.4268405743,3.0475169479,0.167821937
C,0,2.5771555874,4.1655399309,0.1276685183
C,0,3.2294750686,2.9406307775,0.018160917
H,0,-2.0813410153,-3.2584391739,-0.0965366868
H,0,3.1441325395,5.0783109745,0.1555528732
H,0,4.3005009311,2.8746613295,-0.0406044923
Br,0,-4.724286195,0.9415003414,0.3003536396
H,0,-4.1610847731,-1.93793373,0.0920850982
H,0,-1.9141000652,1.660467776,0.201509466
H,0,-0.6381982369,3.1383568663,0.2277203808
C,0,1.1974783892,4.2096143802,0.2007717082
H,0,0.7015574003,5.1600632723,0.2851580716
F,0,3.4410909959,-2.6709655379,0.7300543931
F,0,3.3316587642,-2.5379421891,-1.401512494
F,0,2.2315461527,-4.0320028793,-0.3654899199
```

HF=-3645.4038559 RMSD=5.418e-009 Dipole=-1.3094064,1.853069,0.1824836 PG=C01 [X(C17H7Br1F3N1O1)]

References:

- 1 C. C. J. Roothan, Rev. Mod. Phys. 1951, 23, 69-89.
- 2 R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724-728.
- 3 Gaussian 03, Revision B.02, J. A. Pople et. al., Gaussian, Inc., Pittsburgh PA, 2003.
- 4 K. Ruud, T. Helgaker, K. L. Bak, P. Jørgensen, H. J. A. Jensen, J. Chem. Phys. 1993, 99, 3847-3859.