Supporting Information

Synthesis and Structure of Azole-Fused Indeno[2,1-c]Quinolines and their Antimycobacterial properties

Ram Shankar Upadhayaya ${ }^{\text {a }}$, Popat D. Shinde ${ }^{\text {a }}$, Aftab Y. Sayyed ${ }^{\text {a }}$, Sandip A. Kadam ${ }^{\text {a }}$, Amit N. Bawane ${ }^{\text {a }}$, Avijit Poddar ${ }^{\text {b }}$, Oleksandr Plashkevych ${ }^{\text {c }}$, Andras Földesi ${ }^{\text {c }}$ and Jyoti Chattopadhyaya*,c
${ }^{a}$ Institute of Molecular Medicine, Pune 411 057, India.
${ }^{b}$ Institute of Molecular Medicine, Calcutta 700 091, India.
${ }^{c}$ Bioorganic Chemistry Program, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, SE-75123 Uppsala, Sweden.
* Corresponding Author
Phone: +46-18-4714577, Fax: +46-18-554495
Email: jyoti@boc.uu.se

Table of Contents

Sr. No.	Contents	Page No.
1	${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 7	S9
2	COSY-spectrum of compound 7	S10
3	MASS spectrum of compound 7	S11
4	LCMS spectrum of compound 7	S12
5	HPLC chromatogram of compound 7	S13
6	IR spectrum of compound 7	S14
7	${ }^{1} \mathrm{H}$-NMR spectrum of compound 8	S15
8	${ }^{1} \mathrm{H}$-NMR spectrum of compound 8 (expansion)	S16
9	COSY spectrum of compound 8	S17
10	HSQC spectrum of compound $\mathbf{8}$	S18
11	HMBC spectrum of compound $\mathbf{8}$	S19
12	MASS spectrum of compound $\mathbf{8}$	S20
13	LCMS spectrum of compound 8	S21
14	HPLC chromatogram of compound 8	S22
15	IR spectrum of compound 8	S23
16	${ }^{1} \mathrm{H}$-NMR spectrum of compound 9	S24
17	${ }^{1} \mathrm{H}$-NMR spectrum of compound 9(expansion)	S25
18	COSY spectrum of compound 9	S26
19	HSQC spectrum of compound 9	S27
20	HMBC spectrum of compound 9	S28
21	HMBC spectrum of compound 9(expansion)	S29
22	MASS spectrum of compound 9	S30
23	LCMS spectrum of compound 9	S31
24	HPLC chromatogram of compound 9	S32
25	IR spectrum of compound 9	S33
26	${ }^{1} \mathrm{H}$-NMR spectrum of compound 10	S34
27	$\mathrm{D}_{2} \mathrm{O}$ exchange spectrum of compound $\mathbf{1 0}$	S35
28	${ }^{13} \mathrm{C}$-NMR spectrum of compound 10	S36
29	MASS spectrum of compound $\mathbf{1 0}$	S37
30	LCMS spectrum of compound $\mathbf{1 0}$	S38

31	HPLC chromatogram of compound 10	S39
32	IR spectrum of compound $\mathbf{1 0}$	S40
33	${ }^{1} \mathrm{H}$-NMR spectrum of compound 11	S41
34	${ }^{13} \mathrm{C}$-NMR spectrum of compound 11	S42
35	MASS spectrum of compound 11	S43
36	LCMS spectrum of compound $\mathbf{1 1}$	S44
37	HPLC chromatogram of compound 11	S45
38	IR spectrum of compound $\mathbf{1 1}$	S46
39	${ }^{1} \mathrm{H}$-NMR spectrum of compound 12	S47
40	${ }^{13} \mathrm{C}$-NMR spectrum of compound 12	S48
41	MASS spectrum of compound 12	S49
42	LCMS spectrum of compound 12	S50
43	HPLC chromatogram of compound 12	S51
44	IR spectrum of compound 12	S52
45	${ }^{1} \mathrm{H}$-NMR spectrum of compound 13	S53
46	${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 13	S54
47	${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{1 3}$	S55
48	COSY spectrum of compound 13	S56
49	COSY spectrum of compound 13 (expansion)	S57
50	HSQC spectrum of compound 13	S58
51	HSQC spectrum of compound 13 (expansion)	S59
52	HMBC spectrum of compound 13	S60
53	HMBC spectrum of compound 13 (expansion)	S61
54	HMBC spectrum of compound 13 (expansion)	S62
55	HMBC spectrum of compound 13 (expansion)	S63
56	HMBC spectrum of compound 13 (expansion)	S64
57	MASS spectrum of compound 13	S65
58	LCMS spectrum of compound 13	S66
59	HPLC chromatogram of compound 13	S67
60	IR spectrum of compound 13	S68
61	${ }^{1} \mathrm{H}$-NMR spectrum of compound 14	S69

62	$\mathrm{D}_{2} \mathrm{O}$ exchanged spectrum of compound 14	S70
63	LCMS spectrum of compound 14	S71
64	IR spectrum of compound 14	S72
65	${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 15	S73
66	${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 15	S74
67	COSY spectrum of compound 15	S75
68	COSY spectrum of compound 15 (expansion)	S76
69	HSQC spectrum of compound 15	S77
70	HMBC spectrum of compound 15	S78
71	HMBC spectrum of compound 15 (expansion)	S79
72	HMBC spectrum of compound 15 (expansion)	S80
73	MASS spectrum of compound 15	S81
74	LCMS spectrum of compound 15	S82
75	HPLC chromatogram of compound 15	S83
76	IR spectrum of compound 15	S84
77	${ }^{1} \mathrm{H}$-NMR spectrum of compound 16	S85
78	$\mathrm{D}_{2} \mathrm{O}$ exchanged spectrum of compound 16	S86
79	${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 16	S87
80	MASS spectrum of compound 16	S88
81	LCMS spectrum of compound 16	S89
82	HPLC chromatogram of compound 16	S90
83	IR spectrum of compound 16	S91
84	${ }^{1} \mathrm{H}$-NMR spectrum of compound 17	S92
85	${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 17(expansion)	S93
86	${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 17(expansion)	S94
87	COSY spectrum of compound 17	S95
88	${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 17	S96
89	${ }^{13} \mathrm{C}$-NMR spectrum of compound 17(expansion)	S97
90	HSQC spectrum of compound 17	S98
91	HSQC spectrum of compound 17(expansion)	S99
92	HMBC spectrum of compound 17	S100

93	HMBC spectrum of compound 17(expansion)	S101
94	HMBC spectrum of compound 17(expansion)	S102
95	HMBC spectrum of compound 17(expansion)	S103
96	MASS spectrum of compound 17	S104
97	LCMS spectrum of compound 17	S105
98	HPLC chromatogram of compound 17	S106
99	IR spectrum of compound 17	S107
100	${ }^{1} \mathrm{H}$-NMR spectrum of compound 18	S108
101	${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 18	S109
102	DEPT spectrum of compound 18	S110
103	MASS spectrum of compound 18	S111
104	LCMS spectrum of compound 18	S112
105	HPLC chromatogram of compound 18	S113
106	IR spectrum of compound 18	S114
107	${ }^{1} \mathrm{H}$-NMR spectrum of compound 19	S115
108	${ }^{13} \mathrm{C}$-NMR spectrum of compound 19	S116
109	DEPT spectrum of compound 19	S117
110	MASS spectrum of compound 19	S118
111	LCMS spectrum of compound 19	S119
112	HPLC chromatogram of compound 19	S120
113	IR spectrum of compound 19	S121
114	${ }^{1} \mathrm{H}$-NMR spectrum of compound 20	S122
115	${ }^{13} \mathrm{C}$-NMR spectrum of compound 20	S123
116	DEPT spectrum of compound 20	S124
117	MASS spectrum of compound 20	S125
118	LCMS spectrum of compound 20	S126
119	HPLC chromatogram of compound 20	S127
120	IR spectrum of compound 20	S128
121	${ }^{1} \mathrm{H}$-NMR spectrum of compound 21	S129
122	${ }^{13} \mathrm{C}$-NMR spectrum of compound 21	S130
123	DEPT spectrum of compound 21	S131

124	MASS spectrum of compound 21	S132
125	LCMS spectrum of compound 21	S133
126	HPLC chromatogram of compound 21	S134
127	IR spectrum of compound 21	S135
128	${ }^{1}$ H-NMR spectrum of compound 22	S136
129	${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 22	S137
130	MASS spectrum of compound 22	S138
131	LCMS spectrum of compound 22	S139
132	HPLC chromatogram of compound 22	S140
133	IR spectrum of compound 22	S141
134	${ }^{1} \mathrm{H}$-NMR spectrum of compound 23	S142
135	$\mathrm{D}_{2} \mathrm{O}$ exchange spectrum of compound 23	S143
136	COSY spectrum of compound 23	S144
137	${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 23	S145
138	${ }^{13} \mathrm{C}$-NMR spectrum of compound 23 (expansion)	S146
139	HSQC spectrum of compound 23	S147
140	HMBC spectrum of compound 23	S148
141	HMBC spectrum of compound 23 (expansion)	S149
142	HMBC spectrum of compound 23 (expansion)	S150
143	HMBC spectrum of compound 23 (expansion)	S151
144	MASS spectrum of compound 23	S152
145	LCMS spectrum of compound 23	S153
146	IR spectrum of compound 23	S154
147	${ }^{1} \mathrm{H}$-NMR spectrum of compound 24	S155
148	$\mathrm{D}_{2} \mathrm{O}$ exchange spectrum of compound 24	S156
149	${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 24	S157
150	DEPT spectrum of compound 24	S158
151	MASS spectrum of compound 24	S159
152	LCMS spectrum of compound 24	S160
153	HPLC chromatogram of compound 24	S161
154	IR spectrum of compound 24	S162

155	${ }^{1} \mathrm{H}$-NMR spectrum of compound 25	S163
156	${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 25 (expansion)	S164
157	${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 25	S165
158	DEPT spectrum of compound 25	S166
159	COSY spectrum of compound 25	S167
160	COSY spectrum of compound 25 (expansion)	S168
161	HSQC spectrum of compound 25	S169
162	HSQC spectrum of compound 25 (expansion)	S170
163	HMBC spectrum of compound 25	S171
164	HMBC spectrum of compound 25 (expansion)	S172
165	HMBC spectrum of compound 25 (expansion)	S173
166	COSY spectrum of compound $25+\mathbf{H}$	S174
167	COSY spectrum of compound $\mathbf{2 5 + \mathbf { H } \text { (expansion) }}$	S175
168	MASS spectrum of compound 25	S176
169	LCMS spectrum of compound 25	S177
170	HPLC chromatogram of compound 25	S178
171	IR spectrum of compound 25	S179
172	${ }^{1} \mathrm{H}$-NMR spectrum of compound 26	S180
173	$\mathrm{D}_{2} \mathrm{O}$ exchanged spectrum of compound 26	S181
174	${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 26	S182
175	DEPT spectrum of compound 26	S183
176	MASS spectrum of compound 26	S184
177	LCMS spectrum of compound 26	S185
178	HPLC chromatogram of compound 26	S186
179	IR spectrum of compound 26	S187
180	${ }^{1} \mathrm{H}$-NMR spectrum of compound 27	S188
181	${ }^{13} \mathrm{C}$-NMR spectrum of compound 27	S189
182	DEPT spectrum of compound 27	S190
183	MASS spectrum of compound 27	S191
184	LCMS spectrum of compound 27	S192
185	HPLC chromatogram of compound 27	S193

186	IR spectrum of compound 27	S194
187	${ }^{1} \mathrm{H}$-NMR spectrum of compound 28	S195
188	${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 28	S196
189	DEPT spectrum of compound 28	S197
190	MASS spectrum of compound 28	S198
191	LCMS spectrum of compound 28	S199
192	HPLC chromatogram of compound 28	S200
193	IR spectrum of compound 28	S201
194	${ }^{1} \mathrm{H}$-NMR spectrum of compound 29	S202
195	$\mathrm{D}_{2} \mathrm{O}$ exchanged spectrum of compound 29	S203
196	${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 29	S204
197	DEPT spectrum of compound 29	S205
198	LCMS spectrum of compound 29	S206
199	HPLC chromatogram of compound 29	S207
200	IR spectrum of compound 29	S208
201	Comparison of Chemical shift values (δ) of quinoline ring protons after formation of fused ring system (Table S1)	S209
202	Plot of aromatic ${ }^{1} \mathrm{H}$ Chemical shifts for various fused azoles (Figure S1)	S215
203	Computational details Thiol-thione tautomerism of compound 23 $A b$ intio simulation of proton chemical shifts	$\begin{aligned} & \mathrm{S} 216 \\ & \mathrm{~S} 217 \\ & \hline \end{aligned}$
204	Comparison between theoretical and experimental proton chemical shifts of all protons (Figure S2)	S218
205	Hartree-Fock energy of thiol and thione tautomeric forms of compound 23 (Table S2)	S219
206	Comparison between theoretical and experimental chemical shifts (Table-S3)	S220
207	Coordinates, charge, multiplicity, Hartree-Fock energy and dipole moment of $a b$ initio optimized geometries (HF/631G**, Gaussian 03). (Table S4)	S223
208	References	S237

- +Q1: 3.588 to 3.655 min from Sample 5 (CR080-78-91-91A) of CR080-MONI-12MAR10-B01.wiff (Turbo Spray), Subtracted $<+$ Q1: 0.246...

+Q1: 3.588 to 3.655 min from Sample 5 (CR080-78-91-91A) of CR080-MONI-12MAR10-B01. wiff (Turbo Spray), Subtracted $<+$ Q1: $0.246 \ldots$
Max. 1.3e5 cps.

*Sample Comment: [M+H]
Bxpected 351
**Analyzed By
**Checked By :

Sample Name: CR080-78-91-91A
Sample ID
: CR080-78-91-91A
$\begin{array}{ll}\text { Column } & \text { Gemini C-18 (150 } \times 4.6 \mathrm{~mm}) \\ \text { Comple }\end{array}$
$\begin{array}{lc}\text { Vial \# } & \vdots 61 \\ \text { Inj. Volume } & \vdots 25 \mathrm{uL} \\ \text { Tray \# } & \vdots\end{array}$
Acquired by : AVINASH
Method File Name : GENERAL_B2.Icm
Ache Name :15/2010 $2 \cdot 48$.06 PM
ata Processed : 2/15/2010 3:13:10 PM
Ref.No.: DI/A0257/95

1 PDA Multi $1 / 246 \mathrm{~nm} 4 \mathrm{~nm}$

 $\dot{\sim} \infty \infty$

11711171

H5
H8 Hd Ha
H7
$\mathrm{Hb} \quad \mathrm{Hc}$

■ +Q1: 2.619 to 4.089 min from Sample 2 (CR080-78-199-195B) of CR080-MONI-290CT09-B01.wiff (Turbo Spray), Subtracted $<+$ Q1: 1.1...

- +Q1: 2.619 to 4.089 min from Sample 2 (CR080-78-199-195B) of CR080-MONI-290CT09-B01.wiff (Turbo Spray), Subtracted $<+$ Q1: 1.1...

Max. 1.7e4 cps

*Sample Comment: $[\mathrm{M}+\mathrm{H}] 366$ Expected **Analyzed By :
**Checked By
 TIC of +Q1: from Sample 2 (CR080-78-199-195B) of CR080-MON1-290CT09-B01. wiff (Turbo Spray)

- XIC of + Q1: 351.5 to 352.5 amu from \ldots

	st for "Detect	Area (counts)	\%Area	Height		Time (min)	Area (counts)	\%Area	Height
1	0.2267	2.3214 e4	0.4175	2876.6979	1	0.1861	2511.2043	0.1364	799.4722
2	0.5978	4.7779 e 6	85.9316	5.9095e5	2	0.6088	3.6593 e 5	19.8743	4.8006e4
3	3.6482	7.5901e5	13.6509	1.3223 e 5	3	3.6506	1.4728 e 6	79.9893	1.8550 e 5

Analysad By

Sample:CR080-78-199-195 B
Column: XTERRA RP (250X4.6) mm 5 1

Injection date	: Mon, 15. Feb. 2010	Location	Vial 22
Sample Name	: CRO80-78-199-195 B	Inj. No.	$:$
Acq Operator	: BHUSHAN	Inj. Vol.	:

Acq Operator
Inj. No.
$3 \mu 1$
Analysis Method : C:\CHEM32\2\METHODS \UPLC_GENARAL_GRAD _1.M
Last Changed

PLC GENARAL_GRAD 1.M

DAD1, Sig=248.00, 2.00 Ref=off, EXI

*** End of Report***

- +Q1: 2.485 to 4.122 min from Sample 5 (CR080-97-09-09 LOWER SPOT) of CR080-MONI-05NOV09-B01. wiff (Turbo Spray), Subtracte...

+Q1: 2.485 to 4.122 min from Sample 5 (CR080-97-09-09 LOWER SPOT) of CR080-MONI-05NOV09-B01.wiff (Turbo Spray), Subtracte...
Max. 1.8e4 cps

*Sample Comment: $[\mathrm{M}+\mathrm{H}] \quad 437$ Expected **Analyzed By
**Checked By :

Channel 1 at wavelength 220 mm , Channel 2 at wavelength 260 na
==============
Sample:CR080-97-09-09LOWER SPOT
$\begin{array}{llll}\text { Column: XTBRRA RP } & \\ \text { Injection date } & \text { Mon, 15.6) Feb. } 2010 & & \\ \text { Sample Name } & : \text { CRO80-97-09-09LOWER SPOT } & \text { Location } & \text { Inj. No. }\end{array}$
Sample Name
BHUSHAN
Inj. Vol
Analysis Method : C:\CHEM32\2\METHODS \backslash UPLC_GENARAL_GRAD _59.M
Last Changed : Mon, 15. Feb. 2010,
Acq. Method : C: \Chem32\2\DATA\FEB-10\150210B 2010-02-15 14-00-21\} UPLC_GENARAL_GRAD _59.M
Method ref :DI/A0 $\overline{2} 57 / 93$

DAD1 D, Sig=248, 4 Ref=off

- +Q1: 3.521 to 3.621 min from Sample 6 (CR080-78-103-103A.2) of CR080-MONI-12MAR10-B01.wiff (Turbo Spray), Subtracted < +Q1: $0 . .$.

+ +Q1: 3.521 to 3.621 min from Sample 6 (CR080-78-103-103A.2) of CR080-MONI-12MAR10-B01.wiff (Turbo Spray), Subtracted < +Q1: 0.... Max. 1.3e5 cps.

Sample:CR080-78-103-103 A2
Column: XTBRRA RP $(250 \times 4,6) \mathrm{mm} 5$
Injection date Sample Name
: Thu, 11. Feb. 2010
Location
Inj. No.
Vial 24
: CR080-78-103-103 A2
Inj. Vol
1

Analysis Method : C: \CHEM32\2\METHODS \UPLC_GENARAL_GRAD _1.M
Last Changed : Thu, 11. Feb. 2010,
Acq. Method : C:\Chem32\2\DATA \FEB-10\110210E 2010-02-11 16-18-57\
Method ref
: DI/A0257/88

DAD1, Sig=238.00, 2.00 Ref=off, EXT

*** End of Report***

Sample Name: CR080-97-51-51A
Acq. Time: 11:21
Acq. Date: Wednesday, December 02, 2009

+ +Q1: 3.153 to 4.356 min from Sample 6 (CR080-97-51-51A) of CR080-MONI-02DEC09-B01. wiff (Turbo Spray), Subtracted $<+$ Q1: $1.816 \ldots$
Max. 2.0e5 cps.

- +Q1: 3.187 to 4.390 min from Sample 6 (CR080-97-51-51A) of CR080-MONI-02DEC09-B01.wiff (Turbo Spray), Subtracted $<+$ Q1: $2.284 \ldots$

Max. 1.9e5 cps.

Sample Name : CR080-97-51-51
Sample ID CR080-97-51-51A
Vial \#
$\begin{array}{l:l}\text { Vial \# } & : 57 \\ \text { Inj. Volume } & : 4\end{array}$
Tray \#
Inj.
:
Acquired by : AVINASH
Data File Name : 11-02-10_CR080-97-51-51A_04.Icd
Method File Name : GENERAL_B2.Icm
Method File Name: GENERAL_B2.Icm
Data Acquired : 2/13/2010 3:36:00 PM
Data Processed : 2/13/2010 4:01:03 PM Ref.No.: DI/A0257/90

1 PDA Multi $1 / 242 \mathrm{~nm} 4 \mathrm{~nm}$

Spectrum Name: CR080-97-51-51A.sp
Description: CR080-97-51-51A IN KBr

Analyst: GANESH
Resolution: $4.00 \mathrm{~cm}-1$

Time: 10:04:53 AM
Date: $2 / 3 / 2010$

■ +Q1: 2.819 to 4.056 min from Sample 5 (CR080-97-81-81A) of CR080-MONI-25JAN10-B01.wiff (Turbo Spray), Subtracted < +Q1: 1.783 ...

Sample Name	CR080-97-81-81A	
Sample ID	CR080-97-81-81A	
Column	Gemini C-18 (150 $\times 4.6 \mathrm{~mm}$)	Data File Name : 11-02-10_CR080-97-81-81A_04.Icd
Vial \#	60	Method File Name : GENERAL_B2.lcm
Inj. Volume	4 uL	Batch File Name : $130210 . \mathrm{lcb}$
Tray \#	1	Data Acquired : $2 / 13 / 2010$ 6:11:59 PM
Acquired by	AVINASH	Data Processed : 2/13/2010 6:37:01 PM Ref No: DVA0257/91

maU

[^0]2 PDA Multt $2 / 220 \mathrm{~nm} 4 \mathrm{~nm}$

Peak\#	Ret. Time	Area	Area \%	Height
1	8.47	239135	2.24	30905
2	9.10	15125	0.14	1668
3	9.67	19700	0.18	2150
4	10.51	96383	0.90	8833
5	11.37	9795432	91.84	1112000
6	12.12	7310	0.07	977
7	12.34	23531	0.22	3559
8	12.92	90624	0.85	13432
9	13.23	137545	1.29	19655
10	14.74	145995	1.37	21516
11	15.06	43265	0.41	2331
12	16.27	11761	0.11	1019
13	17.34	11675	0.11	579
14	18.19	9189	0.09	591
15	18.87	19111	0.18	1485
Total		665781	00.00	20699

PeakTable

PeakTable
PDA Ch3 260 nm 4 nm

Peakk	Ret. Time	Area	Area $\%$	Height
1	8.47	127488	2.15	16586
2	9.10	946	0.16	934
3	9.67	33843	0.57	3851
4	10.51	51663	0.87	4856
5	11.37	5392938	99.03	608664
6	12.10	6931	0.12	853
7	12.34	17416	0.29	2283
8	12.92	5880	0.99	8083
9	13.23	80398	1.36	10680
10	14.74	123673	2.09	13895
11	16.27	7930	0.13	576
12	18.19	5575	0.09	323
13	18.87	8118	0.14	695
Total		5924251	100.00	672278

Spectrum Name: CR080-97-81-81A.sp
Description: CR080-97-81-81A IN KBr

Analyst: GANESH
Accumulations: 16
Resolution: $4.00 \mathrm{~cm}-1$

Time: 10:45:32 AM
Date: $1 / 25 / 2010$

H8

Sample Name: CR080-97-53-53A
■ +Q1: 3.153 to 4.891 min from Sample 6 (CR080-97-53-53A) of CR080-MONI-04DEC09-B02. wiff (Turbo Spray), Subtracted $<+$ Q1: 1.750 .
Max. 3.5e5 cps.

■ +Q1: 3.153 to 4.891 min from Sample 6 (CR080-97-53-53A) of CR080-MONI-04DEC09-B02.wiff (Turbo Spray), Subtracted $<+$ Q1: $1.750 \ldots$
Max. 3.5 S 5 cps.

*Sample Comment: [M+H] 480
Bxpected
**Analyzed By :
**Checked By :

Sample Name : CR080-97-53-53A

Sample ID	CR080-97-53-53A
Column	$:$ Gemini C-18 $(150 \times 4.6 \mathrm{~mm})$
Vial \#	$: 58$
Inj. Volume	$: 1 \mathrm{uL}$
Tray \#	$: 1$
Acquired by	AVINASH

Data File Name - 15-02-10 CR080-97-53-53A 06.Icd Method File Name : GENERAL_B1.Icm Batch File Name : 150210.Icb
Data Acquired : 2/15/2010 1:23:16 PM
Data Processed : 2/15/2010 1:45:20 PM Ref.No.: DI/A0257/94
mAU

1 PDA Multi $1 / 242 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch1 242 nm 4nm

Peak\#	Ret. Time	Area	Area $\%$	Height
1	6.44	202832	4.23	7133
2	6.96	3518	0.07	752
3	7.62	103626	2.16	13846
4	8.35	4318	0.09	646
5	8.75	27218	0.57	3593
6	9.72	4375879	91.31	392648
7	11.19	7426	0.15	886
8	12.30	7291	0.15	580
9	14.48	60431	1.26	1872
Total		4792539	100.00	421956

CHEMBIOTEK A TCG Lifesciences Enterprises, PUNE

Spectrum Name: CR080-97-53-53A.sp
Description: CR080-97-53-53A IN KBr

Analyst: GANESH
Accumulations: 16
Resolution: $4.00 \mathrm{~cm}-1$

Time: 10:30:35 AM
Date: $2 / 3 / 2010$

Analysed by: Yogita

Sample Name: CRO80-96-161-161-A-ITND spor
Acq. time: 17:29
Acq. Date: Monday, April 19, 2010

- TIC of +Q1: from Sample 4 (CR080-96-161-161-A-IIND SPOT) of CR080-MONI-TFA-19APR10-B01....

 - XIC of + Q1: 351.5 to 352.5 amu from...

- Detector A, Channel 1 from Sample 4 (CR...

Cous 2 Reaction Monitoring (rym Beffor

	Time (min)	Area (counts)	\%Area	Helight
1	2.6752	2.3972 e5	96.9652	7.0659 e 4
2	3.0425	4433.2904	1.7932	1229.8433
3	3.9743	1508.2804	0.6101	405.5891
4	4.9362	1561.2646	0.6315	265.1650

1 at 220 nm , Channol 2 ationth 260 mm

Spectum Name: CR080-96-161-161A.sp
Description: CR080-96-161-161A IN Kbr

Analyst: GANESH
Accumulations: 16
Resolution: $4.00 \mathrm{~cm}-1$

Time: 9:22:49 AM
Date: 4/23/2010

INDIA
Acq. Time: 13:23
Acq. Date: Friday, March 12, 2010

- +Q1: 0.847 to 4.557 min from Sample 9 (CR080-84-87-87A) of CR080-MONI-12MAR10-B01.wiff (Turbo Spray), Subtracted $<+$ Q1: 0.179...

- +Q1: 0.847 to 4.557 min from Sample 9 (CR080-84-87-87A) of CR080-MONI-12MAR10-B01.wiff (Turbo Spray), Subtracted < +Q1: $0.179 \ldots$

*Sample Comment: $[\mathrm{M}+\mathrm{H}] \quad$ Expected 350 **Analyzed By : **Checked By :

1 PDA Multi $1 / 263 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Multi $2 / 244 \mathrm{~nm} 4 \mathrm{~nm}$

PDA Ch1 263 nm 4 nm				
Peak\#	Ret. Time	Area	Area \%	Height
1	4.14	33361	1.15	5426
2	4.48	4262	0.15	614
3	5.06	7544	0.26	724
4	5.44	14605	0.50	2121
5	5.86	12304	0.42	1806
6	6.08	5419	0.19	522
7	6.58	2540919	87.23	389831
8	6.86	129594	4.45	20022
9	7.26	3256	0.11	467
10	7.51	4566	0.16	736
11	7.88	5400	0.19	488
12	8.62	40701	1.40	4832
13	8.89	62481	2.14	4655
14	9.20	47218	1.62	5628
15	9.46	1260	0.04	303
Total		2912891	100.00	438174

PeakTable
PDA Ch2 244nm 4nm

Peak\#				
Ret. Time	Area	Area $\%$	Height	
1	2.98	3854	0.13	400
2	3.29	3725	0.12	559
3	3.69	4615	0.15	540
4	4.14	34984	1.14	5862
5	4.48	13886	0.45	2049
6	4.83	1148	0.04	209
7	5.06	3400	0.11	562
8	5.44	14494	0.47	1971
9	5.86	9514	0.31	1569
10	6.07	3930	0.13	509
11	6.58	2538376	82.62	382074
12	6.86	170149	5.54	22795
13	7.26	2798	0.09	439
14	7.51	4984	0.16	779
15	7.88	6869	0.22	700
16	8.17	675	0.02	128
17	8.62	60921	1.98	7162
18	8.89	84746	2.76	6218
19	9.20	109320	3.56	10869
Total		3072388	100.00	445395

Spectrum Name: CR080-84-87-87A.sp
Description: CR080-84-87-87A IN KBr

Analyst: GANESH
Anty

Accumulations: 16
Resolution: $4.00 \mathrm{~cm}-1$

Time: 4:42:44 PM
Date: $2 / 5 / 2010$

INDIA
Acq. Time: 18:38
Acq. Date: Wednesday, November 11, 2009
+Q1: 2.786 to 3.788 min from Sample 19 (CR080-96-33-19B) of CR080-MONI-11NOV09-B02.wiff (Turbo Spray), Subtracted < +Q1: 1.31...
Max. 3.0 e 5 cps .

Channel 1 at wavelength 220 nmm , Channel 2 at wavelength 260 na

SAMPLE: CR080-96-33-19
Column: GEMINI-C18 (250X4.6) mm 5μ
Injection date : Mon, 8. Mar. 2010 $:$ LR080-96-33-19 B \quad Location : Vial 11
$\begin{array}{llll}\text { Sample Name } & \text { : CR080-96-33-19 B } & \text { Inj. No. : } & 1 \\ \text { Acq Operator } & \text { : GANESH Z } & \text { Inj. Vol. : } & 20 \mu \mathrm{l}\end{array}$
Acq Operator GANESH 2
Analysis Method : C: \CHEM32\2\METHODS $\backslash U P L C _G E N A R A L _G R A D ~ _2 _3 . M$
Last Changed : Mon, 8. Mar. 2010,
Acc. Method : C:\Chem32\2\DATA\MAR-10\080310E 2010-03-08 17-23-59\} UPLC_GENARAL_GRAD $23 . \mathrm{M}$ NP/AOO11/58
Method ref : NP/A0011/58 ${ }^{*}$ DAD1 A, Sig=200,4 Ref=off (C:ICHEM32L2IDATAIMAR-101080310E 2010-03-08 17-23-591080310000005.D - CICh

DAD1 A, Sig=200,4 Ref=off

| \| Peak | RT | Width | \| Area | \|Area \% | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | (Min) | (Min) | 1 \| | \| | |
| 1 | 11.515 | 0.067 | 26.724 | \| 0.110| | |
| 2 | 11.866 | 0.085 | \|1.355e3 | \| $5.564 \mid$ | |
| 3 | 12.424 | \| 0.116 | \| 30.074 | \| 0.123| | 1 |
| 4 | 13.525 | 0.191 | \| 40.173 | \| 0.165 | | - |
| 5 | 15.593 | 0.254 | \| 33.581 | \| 0.138| | 5 |
| 6 | 16.436 | \| 0.226 | \|2.193e4 | \| 90.047| | Br |
| 7 | 19.176 | 0.200 | 1679.650 | \| $2.790 \mid$ | $\bigcirc \quad \mathrm{CH}_{3}$ |
| 8 | 20.507 | 0.088 | 1110.934 | \| 0.455 | | \bigcirc |
| 9 | 21.576 | 10.120 | \| 61.662 | \| 0.253| | |
| \| 10 | 21.980 | 0.092 | \| 48.290 | \| $0.198 \mid$ | - N |
| \| 11 | 22.408 | 10.091 | \| 38.001 | \| $0.156 \mid$ | 16 |

** End of Report**

Spectrum Name: CR080-96-33-19B.sp
Description: CR080-96-33-19B IN KBr

Analyst: GANESH

Accumulations: 16
Resolution: $4.00 \mathrm{~cm}-1$

Time: 10:40:37 AM
Date: $2 / 10 / 2010$

Sample Name: CR080-96-99-99A1
INDIA
ime: 15:21
Acq. Date: Thursday, January 28, 2010
+Q1: 2.786 to 3.855 min from Sample 3 (CR080-96-99-99A1) of CR080-MONI-28JN10-B02.wiff (Turbo Spray), Subtracted < +Q1: $1.582 \ldots$
Max. 8.3 e 4 cps .

+ +Q1: 2.786 to 3.855 min from Sample 3 (CR080-96-99-99A1) of CR080-MON1-28JN10-B02.wiff (Turbo Spray), Subtracted < +Q1: $1.582 \ldots$
Max. 8.3 e 4 cps

Sample Comment: $[\mathrm{M}+\mathrm{H}] \quad 364$ Expected ${ }^{ *}$ Analyzed By : **Checked By :

Channel 1 at wavelength 220 mm , Channel 2 at wavelength 260 nm

DAD1 E, Sig=260,4 Ref=off

*** End of Report***

Spectrum Name: CR080-96-99-99A.sp
Description: CR080-96-99-99A IN KBr

Analyst: GANESH

Accumulations: 16
Resolution: $4.00 \mathrm{~cm}-1$

Time: 1:02:38 PM
Date: $2 / 5 / 2010$

2r6ibumeneme

*
Sample Name: CR080-96-39-39A
+Q1: 2.852 to 3.922 min from Sample 10 (CR080-96-39-39A) of CR080-MONI-16NOV09-B02.wiff (Turbo Spray), Subtracted < +Q1: 1.98...
Max. 3.6 e 5 cps .

- +Q1: 2.852 to 3.922 min from Sample 10 (CR080-96-39-39A) of CR080-MONI-16NOV09-B02. wiff (Turbo Spray), Subtracted < +Q1: 1.41...

Max. 3.6e5 cps

(CR080-96-39-39A) of CR080-MONI-16NOV09-B02. wiff (Turbo Spray) - +Q1: 3.487 to 3.554 min from Sample ... Max. 3.3e6 cps. Tir + Q1: 3.187 to 3.254 min from Sample Max. 1.6e5 cps.

	Time (min)	Area (counts)	\%Area	Height		Time (min)	Area (counts)	\%Area	Height
1	0.2199	1.5650 e 4	0.5804	2885.5159	1	0.1956	2.2211 e 4	0.6324	4249.1929
2	0.5854	3.1729 e 4	1.1767	1.1446e4	2	0.7174	2.7979e4	0.7966	5671.8634
3	0.7283	4.4141 e 4	1.6371	1.1932e4	3	0.8567	2886.5774	0.0822	546.7729
4	3.1892	1.6793 e 5	6.2283	4.2234 e 4	4	3.1906	2.0133 e 5	5.7323	4.9338 e 4
5	3.3177	3.9042 e 4	1.4480	9899.6632	5	3.3191	6.0928 e 4	1.7347	1.4381 e 4
6	3.4774	2.3916 e6	88.6997	5.5154e5	6	3.4781	2.9466e6	83.8944	6.6170e5
7	4.6650	6198.2488	0.2299	1657.1961	7	3.8298	4.2246 e 4	1.2028	5013.9989

Channel 1 at wavelength 220 am , Channel 2 at wavelength 260 nm

SAMPLE: CR080-96-39-39 A
Column: GEMINI-C18 (250X4.6) mm 5μ
Injection date
Sample Name
Fri, 5. Mar. 201
CR080-96-39-39 A
Location
Vial 14

Acq Operator BHUSHAN
tast Changed Mon, 8. Mar. 2010
Acq. Method : C: \Chem32\2\DATA $\backslash M A R-10 \backslash 050310 \mathrm{E}$ 2010-03-05 16-35-20\} UPLC_GENARAL_GRAD _1.M

DAD1, Sig=264.00, 2.00 Ref=off, EXT

Spectrum Name: CR080-96-39-39A.sp Analyst: GANESH
Description: CR080-96-39-39A IN KBr

Accumulations: 16
Resolution: $4.00 \mathrm{~cm}-1$

Time: 5:49:57 PM
Date: $2 / 5 / 2010$

INDIA
Acq. Time: 15:15
Acq. Date: Wednesday, November 11, 2009

Sample Name: CR080-96-35-35A
) of CR080-MONI-11NOV09-B02.wiff (Turbo Spray), Subtracted < +Q1: 1.482...
Max. 1.3 e 5 cps .

- +Q1: 2.184 to 4.123 min from Sample 6 (CR080-96-35-35A) of CR080-MONI-11NOV09-B02. wiff (Turbo Spray), Subtracted < +Q1: 1.014...

Max. 1.3 e 5 cps .

SR1)
AHPLE: CR080-96-35-35 A

Injection date	: Fri, 5. Mar. 2010	Location	Vial 13
Sample Name	CRO80-96-35-35 A	Inj. No.	:
Acq Operator	: BHUSHAN	Inj. Vol.	$10 \mu l$

Analysis Method : C: \CHEM32\2\METHODS $\backslash U P L C _G E N A R A L _G R A D ~ _1 . M ~$
Last Changed : Sun, 7. Mar. 2010,
Acc. Method : C: \Chem32\2\DATA \backslash MAR-10\050310E 2010-03-05 16-35-20 UPLC_GENARAL_GRAD _1.M
Method ref : NP/AOO11/54

DAD1 E, Sig=260, 4 Ref=off

1 Peak	RT	Width	\| Area	\|Area \%	
\| \#	(Min)	(Min)	\|	\|	
\| 1	8.697	0.067	\| 43.694	\| $0.800 \mid$	
2	9.941	0.074	\| 50.746	\| $0.930 \mid$	
3	11.908	0.080	\| 22.490	\| $0.412 \mid$	
14	12.616	0.080	\| 5.289 e 3	\| 96.888	
15	13.094	0.101	\| 9.533	\| $0.175 \mid$	
16	15.420	0.147	\| 43.441	\| $0.796 \mid$	

*** End of Report***

Spectrum Name: CR080-96-35-35A.sp
Description: CR080-96-35-35A IN KBr

Analyst: GANESH
bl: GANESH

Accumulations: 16
Resolution: $4.00 \mathrm{~cm}-1$

Time: 10:18:07 AM
Date: $2 / 10 / 2010$

*

Sample Name: CR080-96-101-101A1
INDIA
Acq. Time: 13:11
Acq. Date: Wednesday, January 27, 2010

- +Q1: 3.153 to 4.323 min from Sample 6 (CR080-96-101-101A1) of CR080-MONI-27JAN10-B01.wiff (Turbo Spray), Subtracted < +Q1: 1...

- +Q1: 3.153 to 4.323 min from Sample 6 (CR080-96-101-101A1) of CR080-MONI-27JAN10-B01. wiff (Turbo Spray), Subtracted $<+$ Q1: $1 \ldots$...

Max. 2.9e5 cps

*Sample Comment: $[\mathrm{M}+\mathrm{H}] 420$ Expected **Analyzed By :

Aeq. Date: Wednesday, January 27, 2010 + Q1: 3.822 to 3.889 min from Sample ... Max. 2.9 e 6 cps

\[

\] - XIC of + Q1: 363.5 to 364.4 amu from ...

Max. 3.0e4 cps.

$$
0.01
$$

0600 - Detector A, Channel 1 from Sample 6 (CR..
Max. 1.7e5.

Peak List for "Detector A, Channel 1 from Sample 6 (CR080-96-101Peak List for "Detector A, Channel 2 from Sample 6 (CR080-96-10

	Time (min)	Area (counts)	\%Area	Height		Time (min)	Area (counts)	\%Area	Height
1	0.1825	1.2445 e 4	1.1092	2507.9324	1	0.1605	2.1085 e 4	1.4096	4879.6883
2	0.5874	6.0706 e 4	5.4106	1.3183 e 4	2	0.7280	3.2566 e 4	2.1772	7316.2624
3	0.7542	1.7437 e 4	1.5542	2927.9639	3	2.7534	1275.4333	0.0853	509.3171
4	1.1028	5925.4056	0.5281	1086.4141	4	3.0142	1.3621 e 4	0.9107	3898.6749
5	3.7581	1.0255 e 6	91.3979	2.1588 e 5	5	3.3877	946.8859	0.0633	475.4406
					6	3.7566	1.4214 e 6	95.0252	2.8874 e5
					7	4.1375	1089.5715	0.0728	461.2059
					8	4.4458	3827.4378	0.2559	643.6293

Channel 1 at wavelength 220 nm , Channel 2 at wavelength 260 nm
Sample ID : CR080-96-101-101A1
$\begin{array}{ll}\text { Column } & \text { CR080-96-101-101A1 } \\ \text { Gemini } \mathrm{C}-18(50 \times 4.6 \mathrm{~mm}) 5 \mathrm{u}\end{array}$
$\begin{array}{ll}\text { Vial \# } & \vdots 47 \\ \text { Inj. Volume } & \vdots 8 \mathrm{uL}\end{array}$
$\begin{array}{ll}\text { Tray \# } & \vdots 2 \\ \text { Acquired by } & \text { : AVINASH }\end{array}$
$\begin{array}{ll}\text { Tray \# } & \vdots 2 \\ \text { Acquired by } & : \text { AVINASH }\end{array}$
Method File Name : GENERAL
Batch File Name : 050310.1 cb
Pres : $3 / 5 / 2010$ 3:59:20 PM
maU Ref.No.NPIA0011/52
mAU

1 PDA Multi $1 / 263 \mathrm{~nm} 4 \mathrm{~nm}$
2 PDA Multi $2 / 244 \mathrm{~nm} 4 \mathrm{~nm}$

PeakTable
PDA. Ch1 263 nm 4nm

Peak\#	Ret. Time	Area	Area $\%$	Height
1	4.21	45077	1.17	7223
2	4.57	5288	0.14	779
3	4.90	1369	0.04	246
4	5.14	5182	0.13	833
5	5.49	20524	0.53	2897
6	5.90	21766	0.57	2319
7	6.61	3377885	87.96	519168
8	6.88	165707	4.31	26200
9	7.27	4079	0.11	623
10	7.52	5512	0.14	937
11	7.87	6584	0.17	604
12	8.61	56892	1.48	6625
13	8.88	69056	1.80	5559
14	9.21	55366	1.44	7054
Total		3840286	100.00	581066

PeakTable
PDA Ch2 244nm 4nm

Peak\#	Ret. Time	Area	Area $\%$	Height
1	3.41	5474	0.14	968
2	3.83	7299	0.19	715
3	4.21	48642	1.25	7842
4	4.57	17775	0.46	2652
5	4.90	1554	0.04	306
6	5.13	4286	0.11	726
7	5.49	19027	0.49	2623
8	5.90	24325	0.63	2313
9	6.61	3308844	85.22	506293
10	6.88	161467	4.16	25504
11	7.27	4317	0.11	664
12	7.52	5705	0.15	973
13	7.88	8033	0.21	859
14	8.61	77998	2.01	9379
15	8.88	93792	2.42	7424
16	9.21	94113	2.42	12453
Total		3882650	100.00	581695

Spectrum Name: CR080-96-101-101A1.sp
Description: CR080-96-101-101A1 IN KBr

Analyst: GANESH
Accumulations: 16
Resolution: $4.00 \mathrm{~cm}-1$

Time: 10:02:49 AM
Date: $2 / 10 / 2010$

*
Sample Name: CR080-96-97-97A
INDIA
Acq. Time: 10:00
Acq. Date: Friday, January 15, 2010
+Q1: 2.919 to 4.356 min from Sample 1 (CR080-96-97-97A) of CR080-MONI-15JAN10-B01.wiff (Turbo Spray), Subtracted < +Q1: $2.385 \ldots$

+ +Q1: 2.919 to 4.356 min from Sample 1 (CR080-96-97-97A) of CR080-MONI-15JAN10-B01. wiff (Turbo Spray), Subtracted < +Q1: $1.917 \ldots$

ICMS-1 RZZCK MoNT (TPR Buffer)
Channel 1 at wavelength 220 omm,
Channel 1 at wavelength 220 mm , Channel 2 at wavelength 260 nm

PeakTable

Peak\#	Ret. Time	Area	Area \%	Height
1	3.54	6772	0.21	1513
2	3.95	1437	0.04	333
3	4.38	1527	0.05	235
4	4.67	37319	1.14	8574
5	4.88	3125584	95.32	655590
6	5.34	78146	2.38	12929
7	6.04	15889	0.48	2235
8	6.40	12322	0.38	1097
Total		3278996	100.00	682505

PeakTable
PDA Ch2 264 nm 4nm

Peak\#	Ret. Time	Area	Area \%	Height
1	3.54	12391	0.37	2841
2	3.95	1352	0.04	301
3	4.39	1919	0.06	262
4	4.88	3199471	96.64	670681
5	5.34	61963	1.87	9787
6	6.04	33620	1.02	2057
Total		3310716	100.00	685929

Description: CR080-96-97-97A IN KBr

Analyst: GANESH

Accumulations: 16
Resolution: $4.00 \mathrm{~cm}-1$

Time: 12:19:02 PM
Date: $2 / 10 / 2010$

- +Q1: 2.986 to 4.323 min from Sample 6 (CR080-96-51-43B) of CR080-MONI-30NOV09-B01. wiff (Turbo Spray), Subtracted < +Q1: 1.014...

- +Q1: 2.986 to 4.290 min from Sample 6 (CR080-96-51-43B) of CR080-MONI-30NOV09-B01, wiff (Turbo Spray), Subtracted < +Q1: 1.014...

Max. 4.9 e 5 cps .

*Sample Comment: $[\mathrm{M}+\mathrm{H}] 426$ Expected **Analyzed By : **Checked By :

SAMPLE: CR080-96-51-43 B
Column: GEMINI-C18(150X4.6) mm 5μ
Injection date : Mon, 8. Mar. 2010 Location Vial 16
: GANESH 2
Inj. No
Acq Operato
Inj. Vol
$10 \mu 1$
Inalysis Method
C: \CHEM32\2\METHODS \UPLC_GENARAL GRAD 33.
ast Changed
Acq. Method : C: \Chem32\2\DATA $\backslash M A R-10 \backslash 080310 \mathrm{C}$ 2010-03-08 11-42-19 UPLC_GENARAL_GRAD _ $33 . \mathrm{M}$
Method ref: NP/A0̄011/57

DAD1 B, Sig=205,4 Ref=off

Spectrum Name: CR080-96-51-43B.sp
Description: CR080-96-51-43B IN KBr

Analyst: GANESH
Accumulations: 16
Resolution: $4.00 \mathrm{~cm}-1$

Time: 2:48:26 PM
Date: $2 / 10 / 2010$

+Q1: 2.318 to 4.891 min from Sample 4 (CR080-97-33-33A) of CR080-MONI-20NOV09-B02.wiff (Turbo Spray), Subtracted < +Q1: 1.516...

+ +Q1: 2.351 to 4.891 min from Sample 4 (CR080-97-33-33A) of CR080-MONI-20NOV09-B02. wiff (Turbo Spray), Subtracted < +Q1: 0.780...
Max. 2.005 cps

Acq." Time: 15:37
Acq. Date: Friday, Hovember 20, 2009

Channel 1 at vavelength 220 mm , Channel 2 at wavelength 260 mm

Spectrum Name: CR080-97-33-33A.sp
Description: CR080-97-33-33A IN KBr

Analyst: GANESH
Accumulations: 16
Resolution: $4.00 \mathrm{~cm}-1$

Time: 1:17:39 PM
Date: 2/5/2010

Sample Name: CR080-67-163-163A
INDIA
Acq. Time: $12: 27$
Acq. Date: Friday, March 12, 2010
+Q1: 0.613 to 4.490 min from Sample 7 (CR080-67-163-163A) of CR080-M ONI-12MAR10-B01. wiff (Turbo Spray), Subtracted < +Q1: 0.0...
Max. 9.8 e 4 cps

- +Q1: 0.613 to 4.490 min from Sample 7 (CR080-67-163-163A) of CR080-MONI-12MAR10-B01.wiff (Turbo Spray), Subtracted < +Q1: 0.0...


```
Sample:CR080-67-163-163A
Column: ZORBAX SB-C18(50X4.6) mm 1.8\mu
Injection date : Eri, 23. Oct. 2009 Location : Vial 21
Sample Name : CR080-67-163-163A
Inj. No.
1
*
Acq Operator
Inj. Vol.
    10\mu1
GANESH Z
Analysis Method :
C:\CHEM32\2\METHODS\UPLC GENARAL_GRAD _25.M
Last Changed : Eri, 23. Oct. 2009,
Acq. Method :C:\Chem32\2\DATA\OCT-09\231009E 2009-10-23 11-54-41\
UPLC GENARAL_GRAD _25.M
Method ref


DAD1, Sig=274.00, 2.00 Ref=off, EXT

















INDIA
INDIA
Acq. Time: \(15: 32\)
Acq. Date: Thursday, October 22, 2009
+Q1: 1.516 to 3.755 min from Sample 2 (CR080-90-41-41A) of CR080-MONI-22OCT09-B02. wiff (Turbo Spray), Subtracted < +Q1: 0.914...
Max. 1.2e5 cps.

- +Q1: 1.516 to 3.755 min from Sample 2 (CR080-90-41-41A) of CR080-MONI-22OCT09-B02. wiff (Turbo Spray), Subtracted < +Q1: 0.914...

Max. 1.2 e 5 cps .



Channol 1 at wavelength 220 nm , Channel 2 at wavelength 260 nm

Injection date :Mon, 26. Oct. 2009 Location : Vial 13
 Acq Operator : BHUSHAN
Anast Changed CilChEM32\2\METHODS

UPLC_GEMARAL_GRAD _5.M
Yethod ret: DI/ \(/\) AL \(0257 / 44\)



Page 2 of 2






INDIA
Acq. Time: 16:38
Acq. Date: Tuesday, December 08, 2009
- +Q1: 1.549 to 3.721 min from Sample 1 (CR080-90-65-53B) of CR080-MONI-08DEC09-B02.wiff (Turbo Spray), Subtracted < +Q1: 0.647...

Max. 1.3 e 5 cps .

- +Q1: 1.549 to 3.721 min from Sample 1 (CR080-90-65-53B) of CR080-MONI-08DEC09-B02.wiff (Turbo Spray), Subtracted < +Q1: 0.647...

Sample Name: Cro80-90-65-53B Acq. Fime: 16:38 Acq. Date: Tuesday, Decenber 08, 2003
- TIC of +Q1: from Sample 1 (CR080-90-65-53B) of CR080-MONI-08DEC09-B02.wiff (Turbo Spray) Max. 1.8e8 cps.

- +Q1: 2.619 to 2.685 min from Sample

Max 2.5e6 cps. - +Q1: 2.619 to 2.685 min from Sample






- Detector A, Channel 1 from Sample 1 (CR... Max. 8.3e5. Detector A, Channel 2 from Sample 1 (CR...


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Peak List for "Detector A, Channel 1 from Sample 1 (CR080-90-65-} & \multicolumn{5}{|l|}{Peak List for "Detector A, Channel 2 from Sample 1 (CR080-90-65-1} \\
\hline & Time (min) & Area (counts) & \%Area & Height & & Time (min) & Area (counts) & \%Area & Height \\
\hline 2 & 0.5873 & 4.1746 e 4 & 1.1596 & 1.4379e4 & 1 & 0.7224 & 2.7191 e 4 & 0.7458 & 5739.3274 \\
\hline 3 & 0.7333 & 5.3065 e 4 & 1.4740 & 1.3802 e 4 & & 2.6367 & 3.6186 e 6 & 99.2542 & 8.5385e5 \\
\hline 4 & 2.6378 & 3.4912 e 6 & 96.9735 & 8.2786 e 5 & & & & & \\
\hline
\end{tabular}

LCHS-1 RZACK MONT (TTRA Buffer)
Analyzed \(\mathrm{By}_{\mathrm{Y}}\) :
Channel 1 at wavelength 220 mm , Channel 2 at wavelength 260 na
\begin{tabular}{ll} 
Sample Name & CR080-90-65-53B \\
Sample ID & CR080-90-65-53B \\
Column & : Xterra RP-18 \((250 \times 4.6 \mathrm{~mm}) 5 \mathrm{u}\) \\
Vial \# & \(: 22\) \\
Inj. Volume & \(: 2 \mathrm{uL}\) \\
Tray \# & \(: 2\) \\
Acquired by & : AVINASH
\end{tabular}

Data File Name: 17-02-10 CR080-90-65-53B 01.Icd Method File Name : GENERAL_B11.Icm Batch File Name : 170210 Icb Batch File Name : 170210.lcb
Data Acquired \(2 / 18 / 20103: 32 \cdot 59 \mathrm{AM}\)
Data Processed : 2/18/2010 4:03:02 AM Ref.No.: DI/A0257/97


1 PDA Multi 1/252nm 4nm

PeakTable
PDA Ch1 252 nm 4nm
\begin{tabular}{|r|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ Peak\# } & Ret. Time & \multicolumn{1}{c|}{ Area } & Area \(\%\) & \multicolumn{1}{c|}{ Height } \\
\hline 1 & 6.33 & 3095 & 0.04 & 563 \\
\hline 2 & 6.61 & 7980395 & 99.14 & 1247755 \\
\hline 3 & 7.09 & 14101 & 0.18 & 1716 \\
\hline 4 & 7.32 & 52185 & 0.65 & 9224 \\
\hline Total & & 8049776 & 100.00 & 1259258 \\
\hline
\end{tabular}



Spectrum Name: CR080-90-65-53B.sp
Description: CR080-90-65-53B IN KBr

Analyst: GANESH
Resolution: \(4.00 \mathrm{~cm}-1\)

Time: 11:15:50 AM
Date: \(2 / 5 / 2010\)




Analysed by Yogita
*
Sample Name: CR080-90-69-69A
Acq. Time: 10:29
Acq. Date: Wednesday, December 02, 2009
- +Q1: 1.449 to 3.889 min from Sample 1 (CR080-90-69-69A) of CR080-MONI-02DEC09-B01.wiff (Turbo Spray), Subtracted < +Q1: 0.312...

Max. 2.1e5 cps.

- +Q1: 1.482 to 3.889 min from Sample 1 (CR080-90-69-69A) of CR080-MONI-02DEC09-B01. wiff (Turbo Spray), Subtracted \(<+\) Q1: \(0.312 \ldots\)

Max. 2.1e5 cps.

*Sample Comment: \([\mathrm{M}+\mathrm{H}] 438 \quad\) Expected **Analyzed By : **Checked By :


Channel 1 at wavelength 220 mm , Channel 2 at wavelength 260 nm

C.ILabSolutions1DatalProject11HPLC-01JJAN-10107-01-2010 CR080-90-69-69A 07.Icd


Spectrum Name: CR080-90-69-69A.sp
Description: CR080-90-69-69A IN KBr

Analyst: GANESH

Accumulations: 16
Resolution: \(4.00 \mathrm{~cm}-1\)

Time: 11:32:02 AM
Date: \(2 / 5 / 2010\)



Analysed by: Yogita

- +Q1: 2.619 to 3.354 min from Sample 14 (CR080-90-47-03B1) of CR080-MONI-09NOV09-B02.wiff (Turbo Spray), Subtracted < +Q1: 1.0...

- +Q1: 2.619 to 3.354 min from Sample 14 (CR080-90-47-03B1) of CR080-MONI-09NOV09-B02.wiff (Turbo Spray), Subtracted < +Q1: 1.0...





Spectrum Name: CR080-90-47-03B1.sp
Description: CR080-90-47-03B1 IN KBr

Analyst: GANESH
Accumulations: 16
Resolution: \(4.00 \mathrm{~cm}-1\)

Time: 10:01:14 AM
Date: \(2 / 5 / 2010\)






Sample:CR080-90-49-49A3
Column: GEMINI-C18 (150X4.6) mm \(5 p\)
\begin{tabular}{|c|c|c|c|}
\hline Injection date & : Tue, 17. Nov. 2009 & Location & Vial \\
\hline Sample Name & : CR080-90-49-49A3 & Inj. No. & : \\
\hline Acci Operator & : PRAKASH & Inj. Vol. & 5 \\
\hline Analysis Method & \multicolumn{3}{|l|}{: C: \CHEM32\2\METHODS UUPLC_GENARAL_GRAD _G1.M \(^{\text {a }}\)} \\
\hline Last Changed & \multicolumn{3}{|l|}{: Wed, 18. Nov. 2009,} \\
\hline Acq. Method & :C: \Chem32\2\DATA \NOV-09\171109F UPLC GENARAL GRAD G1.M & 2009-11- & \[
17-19-25 \backslash
\] \\
\hline Method ref & : DI/A00257/50 & & \\
\hline
\end{tabular}


DAD1, Sig=248.00, 2.00 Ref=off, EXT

*** End of Report***


Spectrum Name: CR080-90-49-49A3.sp
Description: CR080-90-49-49A3 IN KBr

Analyst: GANESH
Al:

Accumulations: 16
Resolution: \(4.00 \mathrm{~cm}-1\)

Time: 10:15:44 AM
Date: \(2 / 5 / 2010\)

Table S1: Comparison of Chemical shift values ( \(\delta\) ) of quinoline ring protons after formation of fused ring system \({ }^{\text {® }}\)


2b: P = O, Q = Methoxy
2c : P = O, Q = Trifluoromethyl
2d: P = O, Q = Imodazol-1-yl
\(2 \mathrm{e}: \mathrm{P}=0, \mathrm{Q}=1 \mathrm{H}\)-Pyrazol-1-yl
2f: \(\mathrm{P}=\mathrm{O}, \mathrm{Q}=4\)-(2-Pyridyl)-piperazin-1-yl
\(2 \mathrm{~g}: \mathrm{P}=\mathrm{NOH}, \mathrm{Q}=\) Imidazol-1-yl
\(2 \mathrm{~h}: \mathrm{P}=\mathrm{NOH}, \mathrm{Q}=4\)-(2-Pyridyl)-piperazin-1-yl
6 : \(\mathrm{P}=\mathrm{O}, \mathrm{Q}=\mathrm{Cl}\)


7 : \(Y=Z=N, P=O\)
8 : \(Y=Z=N, P=N O H\)
9 : \(\mathrm{Y}=\mathrm{Z}=\mathrm{N}, \mathrm{P}=\mathrm{N}-\mathrm{O}-\mathrm{C}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\)
15: Y=N; Z=CH, P=O
17 : \(Y=N ; Z=\left(C-\mathrm{CH}_{3}\right), P=0\)
23 : \(Y=N H ; Z=(C=S), P=O\)
25: \(\mathrm{Y}=\mathrm{Z}=\mathrm{CH}_{2}, \mathrm{P}=\mathrm{O}\)
\(28: Y=Z=\mathrm{CH}_{2}, \mathrm{P}=\mathrm{NOH}\)

\(\stackrel{\mathrm{O}}{\stackrel{\mathrm{O}}{\|}-\mathrm{C}=\mathrm{Z}=\mathrm{N}, \mathrm{R}=\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}}\)
27: \(\mathrm{Y}=\mathrm{Z}=\mathrm{CH}_{2}, \mathrm{R}=\mathrm{O}-\mathrm{C}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline Structure & \multicolumn{1}{c|}{\(\mathbf{H}_{\mathbf{5}}\)} & \multicolumn{1}{c|}{\(\mathbf{H}_{7}\)} & \multicolumn{1}{c|}{\(\mathbf{H}_{\mathbf{8}}\)} & \multicolumn{1}{c|}{\(\mathbf{H a}\)} & \multicolumn{1}{c|}{\(\mathbf{H b}\)} & \multicolumn{1}{c|}{\(\mathbf{H c}\)} & \multicolumn{1}{c|}{\(\mathbf{H d}\)} & Other signals \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & \[
\begin{aligned}
& 8.89 \\
& (d, J= \\
& 1.9 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.20 \\
& (d d, J=1.9, \\
& 9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.14 \\
& (d, J=9.1 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.51 \\
& (d, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& \hline 7.78 \\
& (d t, J=1.1, \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.66 \\
& (t, J=7.4 \\
& H z)
\end{aligned}
\] & \[
\begin{aligned}
& 7.76 \\
& (d, J=6.8 \\
& \mathrm{Hz})
\end{aligned}
\] & \\
\hline  & \[
\begin{aligned}
& 8.90 \\
& (d, J= \\
& 1.9 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.13 \\
& (d d, J=1.9, \\
& 8.8 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.01 \\
& (d, J=8.8 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.55 \\
& (d, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.80 \\
& (d t, J=1.3, \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.67 \\
& (t, J=7.6 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.78 \\
& (d, J=7.6 \\
& \mathrm{Hz})
\end{aligned}
\] & \begin{tabular}{l}
\(8.44(t, J=1 \mathrm{~Hz})\) \\
H2', 7.89 ( \(t, J=\) 1.3 Hz) H5', 7.13 \\
(t) \(\mathrm{H} 4 '\)
\end{tabular} \\
\hline  & \[
\begin{aligned}
& \hline 9.01 \\
& (d, J= \\
& 1.9 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& \hline 8.24 \\
& (d d, J=1.9, \\
& 9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.11 \\
& (d, J=9.1 \\
& \mathrm{Hz})
\end{aligned}
\] & 8.65 ( \(d, J=\) 7.6 Hz) & \[
\begin{aligned}
& 7.85 \\
& (d t, J=1.3, \\
& 7.6, \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.71 \\
& (t, J=7.4 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.82 \\
& (d, J=7.3 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 9.85(t, J=1.3 \\
& \mathrm{Hz}) \mathrm{H} 2^{\prime}, 8.35(t, J \\
& =1.7 \mathrm{~Hz}) \mathrm{H} 5^{\prime}, \\
& 7.98(t) \mathrm{H} '^{\prime}
\end{aligned}
\] \\
\hline  & \[
\begin{aligned}
& 8.88 \\
& (d, J=1.9 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& \hline 8.11 \\
& (d d, J=1.9, \\
& 8.8 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.01 \\
& (d, J=8.8 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& \hline 8.51 \\
& (d, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& \hline 7.78 \\
& (d t, J= \\
& 7.6,1.3 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.65 \\
& (t, J=7.4 \\
& H z)
\end{aligned}
\] & \[
\begin{aligned}
& 7.72 \\
& (d, J=7.3 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.42(d, J=2.5 \\
& \mathrm{Hz}) \mathrm{H3}{ }^{\prime}, 7.84(d, J \\
& =1.6 \mathrm{~Hz}) \mathrm{H} 5^{\prime}, \\
& 6.59(d d) \mathrm{H} 4
\end{aligned}
\] \\
\hline  & \[
\begin{aligned}
& 8.85 \\
& (b r . s)
\end{aligned}
\] & \[
\begin{aligned}
& \hline 8.07 \\
& (d, J=8.8 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.97 \\
& (d, 8.8 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& \hline 8.49 \\
& (d, \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.75 \\
& (d t, J=7.6 \\
& \mathrm{Hz}, 1.3 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.61 \\
& (t, J=7.4 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.69 \\
& (d, J=7.3 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.41(s) \mathrm{H} 3 ', 7.83 \\
& \text { (s) H5', } 6.57 \text { (d) } \\
& \text { H4' }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & \[
\begin{aligned}
& 8.62(d, J= \\
& 2 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.86(d d, J \\
& =2,9.1 \\
& \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.66(d, J \\
& =9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.33(\mathrm{~d}, \mathrm{~J} \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.70(t, J= \\
& 7.3 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.57(t, J= \\
& 7.3 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.67(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.15(d d, J=1.7, \\
& 4.7 \mathrm{~Hz}), 7.56 \\
& (d d d, J=1.9,6.9, \\
& 8.8 \mathrm{~Hz}), 6.89(d, J \\
& =8.5 \mathrm{~Hz}), 6.67 \\
& (d d, J=6.9,4.7 \\
& \mathrm{Hz}), 3.72(s, 8 \mathrm{H})
\end{aligned}
\] \\
\hline  & \[
\begin{aligned}
& 8.65(d, J= \\
& 2 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.90(d d, J \\
& =2,9.1 \\
& \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.69(d, J \\
= & 9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.37(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.71(t, J= \\
& 7.3 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.57(t, J= \\
& 7.3 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.68(d, J \\
& =7.3 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.07(d t, J=1.9, \\
& 6.9 \mathrm{~Hz}), 8.06(d, J \\
& =6.9 \mathrm{~Hz}), 7.51(d, \\
& J=9.1 \mathrm{~Hz}), 7.00 \\
& (t, J=7.3 \mathrm{~Hz}) \\
& 3.94-3.84(\mathrm{~m}, 8 \mathrm{H})
\end{aligned}
\] \\
\hline  & 9.05 (br.s) & \[
\begin{aligned}
& 8.16-8.11 \\
& (m)
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
8.16-8.11 \\
(m)
\end{array} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.74(d, J \\
& =7.9 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.77(t, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.73(t, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.57(\mathrm{~d}, \mathrm{~J} \\
& =7 \mathrm{GH})
\end{aligned}
\] & \[
\begin{aligned}
& 9.67 \text { (br. s), } 8.25 \\
& (t, J=1.6 \mathrm{~Hz}), \\
& 7.90(b r . s) \\
& \mathrm{H} 2,5 \& 4 \mathrm{Im}, 13.43 \\
& (\mathrm{OH})
\end{aligned}
\] \\
\hline  & 9.06 (br. s) & \[
\begin{aligned}
& 8.18-8.12 \\
& (m)
\end{aligned}
\] & \begin{tabular}{l}
\[
8.18-8.12
\] \\
(m)
\end{tabular} & \[
\begin{aligned}
& 8.75(\mathrm{~d}, \mathrm{~J} \\
& =7.9 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.77(t, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.74(t, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.57(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 9.83(t, J=1.5 \\
& \mathrm{Hz}), 8.30(t, J= \\
& 1.7 \mathrm{~Hz}), 7.98(t, J \\
& =1.5 \mathrm{~Hz}) \mathrm{H} 2,5 \& 4 \\
& \mathrm{Im}, 13.43(\mathrm{OH})
\end{aligned}
\] \\
\hline  & 8.72 (br. s) & 7.76 (s) & 7.76 (s) & \[
\begin{aligned}
& 8.43(\mathrm{~d}, \mathrm{~J} \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.57(t, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.52(t, J= \\
& 7.4 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.73(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.06(d d, J=1,6, \\
& 4.4 \mathrm{~Hz}), 7.34(b r . \\
& t, J=7.6 \mathrm{~Hz}), \\
& 6.68(d, J=8.2 \\
& \mathrm{Hz}), 6.59(d d, J= \\
& 5.0,6.9 \mathrm{~Hz}), 3.70- \\
& 3.60(\mathrm{~m}, 8 \mathrm{H})
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & \[
\begin{aligned}
& 8.77(d, J= \\
& 1.9 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.88(d, J= \\
& 8.8 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.84(d d, J \\
& =1.9,8.8 \\
& \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.51(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.68(d t, J= \\
& 1.3,7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.63(t, J= \\
& 7.3 \mathrm{~Hz})
\end{aligned}
\] & 8.61 & \[
\begin{aligned}
& \text { 8.14-8.07 }(\mathrm{m}, 2 \mathrm{H}), \\
& 7.53(d, J=9.5 \\
& \mathrm{Hz}), 7.02(t, J= \\
& 6.6 \mathrm{~Hz}), 3.95-3.74 \\
& (m, 8 \mathrm{H})
\end{aligned}
\] \\
\hline \begin{tabular}{l}
 \\
7
\end{tabular} & 9.15 (s) & \[
\begin{aligned}
& 8.48(d, J= \\
& 8.7 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.85(d, J \\
& =8.7 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.66(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & 7.88 (m) & \[
\begin{aligned}
& 7.76(t, J= \\
& 7.2 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.92(d, J \\
& =7.2 \mathrm{~Hz})
\end{aligned}
\] & \\
\hline \begin{tabular}{l}
 \\
8
\end{tabular} & 9.11 (br.s) & \[
\begin{aligned}
& 8.33(d, J= \\
& 8.7 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.82(\mathrm{~d}, \mathrm{~J} \\
& =8.4 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.65- \\
& 8.70(m)
\end{aligned}
\] & \[
\begin{aligned}
& 7.78-7.82 \\
& (m, J=6.4, \\
& 6.8, \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& \hline 7.72-7.77 \\
& (m, J=6.8 \\
& \mathrm{Hz}, 6.4 \\
& \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.65(d, J \\
& =6.4 \mathrm{~Hz})
\end{aligned}
\] & 13.82 (br. s) \\
\hline  & \[
\begin{aligned}
& 9.01(d, J= \\
& 1.9 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.27(d, J= \\
& 1.9 \mathrm{~Hz}, 9.1 \\
& \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.73(d, J \\
& =9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.61(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.76(t, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.70(\mathrm{~d}, \mathrm{~J} \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.40(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & 3.22 (s); 3.07 (s) \\
\hline  & \[
\begin{aligned}
& 9.18(d, J= \\
& 2 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.38(d d, J \\
& =2.0,9.1 \\
& \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.86(d, J \\
& =9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.68(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.69-7.76 \\
& (m)
\end{aligned}
\] & \[
\begin{aligned}
& 7.69-7.76 \\
& (m)
\end{aligned}
\] & 7.87 (m) & \[
\begin{aligned}
& \hline 0.90(t, J=7.1 \\
& \mathrm{Hz}) ; 1.18-1.35 \\
& (\mathrm{~m}) ; 1.49 \text { (quint, } J \\
& =6.9 \mathrm{~Hz}) ; 2.04 \\
& (\mathrm{~s}) ; 2.39(t, J= \\
& 7.3 \mathrm{~Hz})
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
15
\end{tabular} & 8.84 (d) & \[
\begin{aligned}
& 8.31(d, J= \\
& 9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.65(d, J \\
& =9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.39(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.77(t, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.64(t, J= \\
& 7.2 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.78(d, J \\
& =6.6 \mathrm{~Hz})
\end{aligned}
\] & 10.17 (s, 1H) H9 \\
\hline \begin{tabular}{l}
 \\
17
\end{tabular} & \[
\begin{aligned}
& 8.68(d, J= \\
& 2.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.08(d d, J \\
& =2.1,9.1 \\
& \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.37(d, J \\
& =9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.22(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.65(t \quad J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.52(t, J= \\
& 7.3 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.64(d, J \\
& =7.3 \mathrm{~Hz})
\end{aligned}
\] & 3.06 (s, 3H) \\
\hline  & \[
\begin{aligned}
& 8.76(s, \\
& 1 \mathrm{H})
\end{aligned}
\] & \[
\begin{aligned}
& 8.23(d, J= \\
& 9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 10.98(d, J \\
& =9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.39(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.80(t, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.67(t, J= \\
& 7.5 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.78(d, J \\
& =6.6 \mathrm{~Hz})
\end{aligned}
\] & 14.93 (s) \\
\hline  & \[
\begin{array}{|l}
\hline 8.19 \\
(d, J=1.9 \\
\mathrm{Hz})
\end{array}
\] & 7.57 (m) & \[
\begin{aligned}
& \hline 6.68(d, \mathrm{~J} \\
& =9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.87(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & 7.48 (m) & \[
\begin{aligned}
& 7.56(t, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.73(d, J \\
= & 7.2 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 4.26(t, J=10.2 \\
& \mathrm{Hz}), 3.93 \quad(t, J= \\
& 10.2 \mathrm{~Hz})
\end{aligned}
\] \\
\hline  & \[
\begin{aligned}
& 8.65 \\
& (s)
\end{aligned}
\] & \[
\begin{aligned}
& 8.10(d, J= \\
& 9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.52(d, J \\
&=9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.15(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.76(d, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.67(t, J= \\
& 7.4 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.83(d, J \\
& =7.2 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 4.86(d d, J=9.1, \\
& 10.6 \mathrm{~Hz}) ; 4.49 \\
& (d d, J=9.1,10.6 \\
& \mathrm{Hz})
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
27
\end{tabular} & \[
\begin{aligned}
& 8.28 \\
& (d, J=2.3 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.63(d d, J \\
& =2.3,8.7 \\
& \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 6.94(d, J \\
& =8.7 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.16(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.48(d t, J= \\
& 1.1,7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.44(t, J= \\
& 7.2 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.55(d, J \\
& =7.2 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& \text { 4.08-3.93(m, 4H), } \\
& 2.95 \& 2.59 \\
& (2 x b r . s, 2 \times 3 H), \\
& 1.73(s, 3 H)
\end{aligned}
\] \\
\hline  & \[
\begin{aligned}
& 8.87 \\
& (d, J=1.9 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.15(d d, J \\
& =1.9,8.8 \\
& \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.76(d, J \\
& =8.8 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 8.57(d, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.67(t, J= \\
& 7.3 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.63(t, J= \\
& 7.6 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.74(\mathrm{~d}, \mathrm{~J} \\
& =7.3 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 4.90-4.77(\mathrm{~m}, 2 \mathrm{H}), \\
& 4.29-4.19(\mathrm{~m}, 2 \mathrm{H}), \\
& 3.05 \& 2.63 \\
& (2 \mathrm{xbr} . \mathrm{s}, 2 \mathrm{x} 3 \mathrm{H}), \\
& 1.84(\mathrm{~s}, 3 \mathrm{H}), 9.97 \\
& (\mathrm{~s}, 1 \mathrm{H})
\end{aligned}
\] \\
\hline \begin{tabular}{l}
 \\
28
\end{tabular} & \[
\begin{aligned}
& 8.46 \\
& (d, J=2.2 \\
& \mathrm{Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.76(d d, J \\
& =2.2,8.8 \\
& \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.16(d, J \\
= & 8.8 \mathrm{~Hz})
\end{aligned}
\] & 8.31 (m) & 7.55 (m) & 7.55 (m) & 8.00 (m) & \[
\begin{aligned}
& 4.38(t, J=10.1 \\
& \mathrm{Hz}, 2 \mathrm{H}), 4.10(t, J \\
& =10.1 \mathrm{~Hz}, 2 \mathrm{H}), \\
& 15.58(\mathrm{~s}, \mathrm{OH})
\end{aligned}
\] \\
\hline  & 8.74 (br. s) & \[
\begin{aligned}
& 8.11(d, J= \\
& 9.1 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.73(d, J \\
& =9.1 \mathrm{~Hz})
\end{aligned}
\] & 8.56 (m) & \[
\begin{aligned}
& \hline 7.67(t, J= \\
& 7.3 \mathrm{~Hz})
\end{aligned}
\] & \[
\begin{aligned}
& 7.63(t, J \\
& =7.6 \mathrm{~Hz})
\end{aligned}
\] & 8.45 (m) & \[
\begin{aligned}
& 4.78(t, J=9.5 \\
& \mathrm{Hz}, 2 \mathrm{H}), 4.20(t, J \\
& =9.5 \mathrm{~Hz}, 2 \mathrm{H}), \\
& 9.23(\mathrm{~s}, \mathrm{OH})
\end{aligned}
\] \\
\hline
\end{tabular}

Synthesis of compounds \(\mathbf{2 b}, \mathbf{2 d}, \mathbf{2 g}, \mathbf{2 h}\) and \(\mathbf{2 f}\) and their analytical data has been given in reference \(\mathbf{1 4}\) of manuscript.
2c Unpublished result
\({ }^{\text {a }}\) We have used arbitrary systematic position numbering of protons for the sake of easier comparison within the same structural scaffold.
The IUPAC nomenclature of compounds is used throughout text in the Experimental section.


Figure S1: Plot of aromatic \({ }^{1} \mathrm{H}\) Chemical shifts for various fused azoles. Maximum variation of proton shifts is observed for aromatic protons H8, Hd and H7 (shown in the square box).

Computational details: All geometry optimizations have been carried out using closed-shell Hartree-Fock method \({ }^{1}\) and 6-31G(d,p) basis \(\operatorname{set}^{2}\) as it is implemented in Gaussian \(03 .{ }^{3}\) Then GIAO nuclear magnetic shielding tensors were calculated using the same method and basis set as the one employed during the geometry optimizations. Isotopic shielding part of the GIAO nuclear magnetic shielding tensors \({ }^{4}\) have employed to calculated proton NMR chemical shifts relative to TMS (see Table S3). The TMS reference signal for proton chemical shifts was found located at 32.3355 ppm . Chemical shifts have been calculated as follows: \(\delta\) (calc) \(=\) Isotropic \(\operatorname{Shielding}(\mathrm{TMS})-\) Isotropic Shielding(proton).

\section*{1 Ab initio studies and comparison of theoretical proton chemical shifts with those of experimentals.}

\subsection*{1.1 Thiol-thione tautomerism of compound 23}

Our energy calculations have showed that thione tautomeric form of compound 23 is more stable than thiol form by \(16.95 \mathrm{kcal} / \mathrm{mol}\). Calculated proton chemical shifts for both forms are found to be almost identical (see Table S2) with exceptions of proton associated with the tautomerization (proton in position A, Table S2) and proton interacting with the mercapto part of \(\mathbf{2 3}\) (proton in position 8, Table S2). Comparison of experimental and theoretical proton chemical shifts (see Table S2) suggests that thione form is indeed the only tautomeric form present in solution. Thus the calculated chemical shift of proton in position \(\mathbf{8}(11.10 \mathrm{ppm})\) in the thione form is found to be within 0.12 ppm from the experimental value of 10.98 ppm while in thiol form the theoretical value is 8.39 ppm ( 2.59 ppm from the experimental \(\delta\) ). Calculated chemical shift of proton in position \(\mathbf{A}\) in thione form is also much closer to experimental value than the one in thiol ( 9.54 ppm versus 5.58 ppm ) but is still quite far from the experimental value of 14.93 ppm . This difference suggests that proton in position \(\mathbf{A}\) is probably involved in interaction with solvent which is not taken into account in our theoretical calculations.

\subsection*{1.2 Ab intio simulation of proton chemical shifts}

The assignment of experimental NMR spectra has been confirmed via \(a b\) initio simulations of proton chemical shifts (see Calculations details in computational part). A good agreement (standard error 0.37 ppm , Figure 2) between experimental and theoretical values has been obtained for the aromatic and aliphatic protons of all compounds (see Figure 2 as well as Table S3). However, the fast exchanging protons of hydroxyl groups in compounds \(\mathbf{8}, \mathbf{2 g}, \mathbf{2 g H}+\) as well as proton in position \(\mathbf{A}\) of compound \(\mathbf{2 3}\) are not reproduced well missing the target 13 to 14 ppm chemical shift by almost 7 ppm (Table S3). Taking into account generally good reproducibility of experimental values by the computational technique employed (see Figure 2), such large deviation cannot be explained by deficiencies in technique per se and can probably be attributed to strong interactions of these protons with solvent which has not been taken into account in the gas phase calculations employed. Calculated chemical shifts of protons in position \(\mathbf{d}\) of all compounds under investigation have also shown quite large \(0.5-1.2 \mathrm{ppm}\) deviation from the experimental values (see Table S3) which suggests presence of interactions unaccounted for by the theoretical model employed.


Figure S2. Comparison between theoretical and experimental proton chemical shifts of all protons (excluding hydroxyl protons of \(\mathbf{8}\) and \(\mathbf{2 g}\) as well as proton in position \(\mathbf{A}\) of compound 23) in all compounds investigated (Table S3). Linear regression \(y=(1.0146 \pm 0.0179) x-(0.0120 \pm 0.1405), R=0.982, R^{2}=0.965\), standard error of estimate \(=0.37 \mathrm{ppm}\). Excluding from this statistics the aromatic protons in positions \(\mathbf{8}\) and \(\mathbf{d}\) as well as imidazole proton in position \(\mathbf{A}\) of compound \(\mathbf{2 g}\) (red diamonds) significantly improves statistical parameters (linear regression \(y=(1.0121 \pm 0.0105) x-(-0.0940 \pm 0.0809), R=0.995, R^{2}=0.991\), standard error of estimate \(=0.21 \mathrm{ppm})\). The fact that these protons can spacially interact with C 2 -substituents in the series via solvent suggests a presence of additional interactions with the solvent which are not accounted for in the theoretical model employed. Blue dashed line represents ideal 1 to 1 correspondence between theoretical and experimental values.

Table S2. Hartree-Fock energy of thiol and thione tautomeric forms \({ }^{\text {a,b,c }}\) of compound 23 as well as calculated (relative to TMS) and experimental chemical shifts \({ }^{\mathrm{b}}\) of aromatic protons ( ppm ) in compound 23.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\end{tabular}
\({ }^{\mathrm{a}}\) The chemical shifts in parenthesis are from the \(a b\) initio calculations.
\({ }^{\mathrm{b}} \Delta\) is a difference between experimental and calculated values (ppm).
\({ }^{c} \Delta E=-0.02701728\) a.u. \(=-16.95 \mathrm{kcal} / \mathrm{mol}\), which means 23 (thione) is stabilized by \(16.95 \mathrm{kcal} / \mathrm{mol}\) over 23 (thiol).

Table S3: Comparison between theoretical and experimental chemical shifts
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sr. No. & Structure & Proton position & \[
\begin{gathered}
\delta(\text { exp }), ~ \\
\text { ppm }
\end{gathered}
\] & \[
\begin{gathered}
\delta \text { (calc), } \\
\text { ppm }
\end{gathered}
\] & \[
\begin{gathered}
\Delta=\delta(\exp )- \\
\delta(\text { calc }), \\
\text { ppm }
\end{gathered}
\] \\
\hline \multirow{7}{*}{6} & \multirow[t]{7}{*}{} & 5 & 9.00 & 8.80 & 0.20 \\
\hline & & 7 & 8.27 & 8.08 & 0.19 \\
\hline & & 8 & 8.12 & 8.39 & -0.27 \\
\hline & & a & 8.66 & 8.34 & 0.32 \\
\hline & & b & 7.90 & 7.94 & -0.04 \\
\hline & & c & 7.78 & 7.84 & -0.06 \\
\hline & & d & 7.90 & 8.49 & -0.59 \\
\hline \multirow{7}{*}{7} & \multirow[t]{7}{*}{} & 5 & 9.15 & 9.00 & 0.15 \\
\hline & & 7 & 8.48 & 8.39 & 0.09 \\
\hline & & 8 & 8.85 & 9.38 & -0.53 \\
\hline & & a & 8.66 & 8.27 & 0.39 \\
\hline & & b & 7.88 & 7.96 & -0.08 \\
\hline & & c & 7.76 & 7.87 & -0.11 \\
\hline & & d & 7.92 & 8.57 & -0.65 \\
\hline \multirow{8}{*}{8} & \multirow[b]{8}{*}{} & 5 & 9.01 & 9.01 & 0.00 \\
\hline & & 7 & 8.33 & 8.28 & 0.05 \\
\hline & & 8 & 8.82 & 9.39 & -0.57 \\
\hline & & a & 8.68 & 8.40 & 0.28 \\
\hline & & b & 7.80 & 7.95 & -0.15 \\
\hline & & c & 7.76 & 7.88 & -0.12 \\
\hline & & d & 8.65 & 9.15 & -0.50 \\
\hline & & OH & 13.82 & 7.09 & 6.73 \\
\hline \multirow{9}{*}{9} & \multirow[t]{9}{*}{} & 5 & 9.01 & 9.01 & 0.00 \\
\hline & & 7 & 8.27 & 8.31 & -0.04 \\
\hline & & 8 & 8.73 & 9.42 & -0.69 \\
\hline & & a & 8.61 & 8.42 & 0.20 \\
\hline & & b & 7.76 & 7.99 & -0.23 \\
\hline & & c & 7.70 & 7.84 & -0.14 \\
\hline & & d & 8.40 & 8.99 & -0.59 \\
\hline & & A & 3.07 & 2.97 & 0.10 \\
\hline & & B & 3.22 & 2.99 & 0.23 \\
\hline \multirow{14}{*}{13} & \multirow{14}{*}{} & 5 & 9.18 & 9.05 & 0.13 \\
\hline & & 7 & 8.38 & 8.29 & 0.09 \\
\hline & & 8 & 8.86 & 9.37 & -0.51 \\
\hline & & a & 8.68 & 8.35 & 0.33 \\
\hline & & b & 7.73 & 7.88 & -0.16 \\
\hline & & c & 7.73 & 7.84 & -0.12 \\
\hline & & d & 7.87 & 9.08 & -1.21 \\
\hline & & A & 2.04 & 2.34 & -0.30 \\
\hline & & B & 2.39 & 2.04 & 0.35 \\
\hline & & C & 1.49 & 1.53 & -0.04 \\
\hline & & D & 1.27 (1.18-1.35) & 0.93 & 0.33 \\
\hline & & E & 1.27 (1.18-1.35) & 1.14 & 0.12 \\
\hline & & F & 1.27 (1.18-1.35) & 1.15 & 0.12 \\
\hline & & G & 0.90 & 0.95 & -0.05 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{8}{*}{15} & \multirow[t]{8}{*}{} & 5 & 8.84 & 8.91 & -0.07 \\
\hline & & 7 & 8.31 & 8.21 & 0.10 \\
\hline & & 8 & 8.65 & 8.23 & 0.42 \\
\hline & & a & 8.39 & 8.12 & 0.27 \\
\hline & & b & 7.77 & 7.89 & -0.12 \\
\hline & & c & 7.64 & 7.77 & -0.13 \\
\hline & & d & 7.78 & 8.51 & -0.73 \\
\hline & & A & 10.17 & 9.21 & 0.96 \\
\hline \multirow{8}{*}{\[
\begin{gathered}
23 \\
\text { (thiol form) }
\end{gathered}
\]} & \multirow[t]{8}{*}{} & 5 & 8.76 & 8.89 & -0.13 \\
\hline & & 7 & 8.23 & 8.21 & 0.02 \\
\hline & & 8 & 10.98 & 8.39 & 2.59 \\
\hline & & a & 8.39 & 8.12 & 0.27 \\
\hline & & b & 7.80 & 7.89 & -0.09 \\
\hline & & c & 7.67 & 7.77 & -0.10 \\
\hline & & d & 7.78 & 8.49 & -0.71 \\
\hline & & A & 14.93 & 5.58 & 9.35 \\
\hline \multirow{8}{*}{23
(thione form,
more stable)} & \multirow[t]{8}{*}{} & 5 & 8.76 & 8.74 & 0.02 \\
\hline & & 7 & 8.23 & 8.20 & 0.03 \\
\hline & & 8 & 10.98 & 11.10 & -0.12 \\
\hline & & a & 8.39 & 8.21 & 0.18 \\
\hline & & b & 7.80 & 7.93 & -0.13 \\
\hline & & c & 7.67 & 7.83 & -0.16 \\
\hline & & d & 7.78 & 8.48 & -0.70 \\
\hline & & A & 14.93 & 9.536 & 5.39 \\
\hline \multirow{9}{*}{25} & \multirow[t]{9}{*}{} & 5 & 8.17 & 8.51 & -0.34 \\
\hline & & 7 & 7.57 & 7.86 & -0.29 \\
\hline & & 8 & 6.68 & 6.80 & -0.12 \\
\hline & & a & 7.89 & 8.05 & -0.16 \\
\hline & & b & 7.57 & 7.80 & -0.23 \\
\hline & & c & 7.46 & 7.75 & -0.29 \\
\hline & & d & 7.73 & 8.36 & -0.63 \\
\hline & & A & 3.92 & 3.34 & 0.58 \\
\hline & & B & 4.25 & 3.97 & 0.28 \\
\hline \multirow{10}{*}{25 H+} & \multirow[t]{10}{*}{} & 5 & 8.65 & 9.25 & -0.60 \\
\hline & & 7 & 8.10 & 8.76 & -0.66 \\
\hline & & 8 & 7.52 & 7.57 & -0.05 \\
\hline & & a & 8.15 & 8.62 & -0.47 \\
\hline & & b & 7.76 & 8.36 & -0.60 \\
\hline & & c & 7.67 & 8.43 & -0.76 \\
\hline & & d & 7.83 & 8.82 & -0.99 \\
\hline & & A & 4.86 & 4.41 & 0.45 \\
\hline & & B & 4.49 & 4.21 & 0.28 \\
\hline & & C & - & 6.73 & - \\
\hline \multirow{8}{*}{2g} & \multirow[t]{8}{*}{} & 5 & 9.05 & 8.96/8.96 & 0.09/0.09 \\
\hline & & 7 & 8.11 & 8.05/8.04 & 0.06/0.07 \\
\hline & & 8 & 8.16 & 8.44/8.42 & -0.28/-0.26 \\
\hline & & a & 8.74 & 8.59/8.59 & 0.15/0.15 \\
\hline & & b & 7.77 & 8.00/8.00 & -0.23/-0.23 \\
\hline & & c & 7.73 & 7.89/7.90 & -0.16/-0.17 \\
\hline & & d & 8.57 & 9.14/9.15 & -0.57/-0.58 \\
\hline & & A & 9.67 & 8.45/8.15 & 1.22/1.52 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & B & 8.25 & 7.50/7.83 & 0.75/0.42 \\
\hline & & C & 7.90 & 7.23/7.27 & 0.67/0.63 \\
\hline & & OH & 13.43 & 6.44/6.48 & 6.99/6.95 \\
\hline \multirow{11}{*}{2g H+} & \multirow[b]{11}{*}{} & 5 & 9.06 & 9.25 & -0.19 \\
\hline & & 7 & 8.15 & 8.50 & -0.35 \\
\hline & & 8 & 8.15 & 8.47 & -0.32 \\
\hline & & a & 8.75 & 8.83 & -0.08 \\
\hline & & b & 7.77 & 8.36 & -0.59 \\
\hline & & c & 7.74 & 8.29 & -0.55 \\
\hline & & d & 8.57 & 9.28 & -0.71 \\
\hline & & A & 7.98 & 8.41 & -0.43 \\
\hline & & B & 9.83 & 9.34 & 0.49 \\
\hline & & C & 8.30 & 9.16 & -0.86 \\
\hline & & D & 13.43 & 6.46 & 6.97 \\
\hline \multirow{8}{*}{2b} & \multirow[t]{8}{*}{} & 5 & 8.66 & 8.76 & -0.10 \\
\hline & & 7 & 7.95 & 8.02 & -0.07 \\
\hline & & 8 & 7.77 & 8.19 & -0.42 \\
\hline & & a & 8.34 & 8.31 & 0.03 \\
\hline & & b & 7.70 & 7.89 & -0.19 \\
\hline & & c & 7.58 & 7.79 & -0.21 \\
\hline & & d & 7.66 & 8.42 & -0.76 \\
\hline & & A & 4.08 & 4.01 & 0.07 \\
\hline \multirow{10}{*}{2d} & \multirow[t]{10}{*}{} & 5 & 8.90 & 8.87 & 0.03 \\
\hline & & 7 & 8.13 & 8.11 & 0.02 \\
\hline & & 8 & 8.01 & 8.36 & -0.35 \\
\hline & & a & 8.55 & 8.43 & 0.12 \\
\hline & & b & 7.80 & 8.00 & -0.20 \\
\hline & & c & 7.67 & 7.88 & -0.21 \\
\hline & & d & 7.78 & 8.54 & -0.76 \\
\hline & & A & 8.44 & 8.77 & -0.33 \\
\hline & & B & 7.89 & 8.12 & -0.23 \\
\hline & & C & 7.13 & 7.32 & -0.19 \\
\hline \multirow{10}{*}{2e} & \multirow[t]{10}{*}{} & 5 & 8.90 & 8.87 & 0.03 \\
\hline & & 7 & 8.13 & 8.11 & 0.02 \\
\hline & & 8 & 8.01 & 8.36 & -0.35 \\
\hline & & a & 8.55 & 8.43 & 0.12 \\
\hline & & b & 7.80 & 8.00 & -0.20 \\
\hline & & c & 7.67 & 7.88 & -0.21 \\
\hline & & d & 7.78 & 8.54 & -0.76 \\
\hline & & A & 7.84 & 8.06 & -0.22 \\
\hline & & B & 8.42 & 8.60 & -0.18 \\
\hline & & C & 6.59 & 6.45 & 0.14 \\
\hline \multirow{7}{*}{2c} & \multirow[t]{7}{*}{} & 5 & 8.89 & 8.92 & -0.03 \\
\hline & & 7 & 8.20 & 8.16 & 0.04 \\
\hline & & 8 & 8.14 & 8.64 & -0.50 \\
\hline & & a & 8.51 & 8.41 & 0.10 \\
\hline & & b & 7.78 & 7.99 & -0.21 \\
\hline & & c & 7.66 & 7.87 & -0.21 \\
\hline & & d & 7.76 & 8.55 & -0.79 \\
\hline
\end{tabular}

Table S4. Coordinates, charge, multiplicity, Hartree-Fock energy and dipole moment of ab initio optimized geometries (HF/6-31G**, Gaussian 03).

\section*{Compound 6}

Charge \(=0\) Multiplicity \(=1\)
C,0,2.8321931156,-0.3539189876,0.0001501645
C,0,2.9056053728,-1.7657535663,0.0012153337
C,0,1.7614997579,-2.4922835998,0.0015944185
C,0,0.4953369331,-1.8527663348,0.0010105859
C,0,0.4307432081,-0.4434296756,0.0001151986
C,0,1.6441732963,0.2951614289,-0.0003822407
C,0,-0.8735941104,0.1178225207,-0.0002080945
C, \(0,-1.9618938651,-0.7197704298,-0.0006451507\)
C,0,-1.7597109082,-2.115926438,-0.0003887429
\(\mathrm{N}, 0,-0.5957282278,-2.6535667933,0.000816634\)
C,0,-1.3550495041,1.5370077913,0.0001312069
C, \(0,-2.7492440943,1.5090408507,-0.0005111458\)
C,0,-3.2211478661,0.092397202,-0.0010721999
O,0,-4.3488120441,-0.2777590361,-0.001558295
Cl,0,-3.1157194747,-3.1907555048,0.0000072416
C, \(0,-0.7054317893,2.7548467321,0.0013695015\)
C,0,-2.8537753288,3.8765813488,0.0006192099
C,0,-3.5119932421,2.6500293798,-0.0002921291
Н,0,1.777963683,-3.5654690114,0.0023117374
H,0,-3.4177256151,4.7916527318,0.0007340403
H,0,-4.5846367036,2.584829923,-0.0008161826
Br,0,4.4465412433,0.6383757844,-0.0007433574
\(\mathrm{H}, 0,3.8651940481,-2.2461841863,0.0016581501\)
Н, \(0,1.6341203189,1.3625673132,-0.0014550378\)
Н, \(0,0.3613349522,2.8444797842,0.0024307023\)
C,0,-1.4719923372,3.9198258183,0.0015077274
Н,0,-0.9716810099,4.8716701691,0.002499054
\(\mathrm{HF}=-3768.686413\)
RMSD \(=6.219 \mathrm{e}-009\)
Dipole \(=1.0156339,1.6672115,0.0008983\)
\(\mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 16 \mathrm{H} 7 \mathrm{Br} 1 \mathrm{Cl} 1 \mathrm{~N} 1 \mathrm{O} 1)]\)

\section*{Compound 7}

Charge \(=0\) Multiplicity \(=1\)
C, \(0,-2.7546423812,-0.211321651,0.0301817128\)
C, \(0,-2.8608595116,-1.6013872744,0.0045938737\)
C, \(0,-1.7244253663,-2.3669670465,-0.0243731759\)
C,0,-0.4790968458,-1.7417665378,-0.027751935
С, \(0,-0.3510963872,-0.3457086034,-0.0023178356\)
C, \(0,-1.534716591,0.407920594,0.0269862453\)
C,0,0.9914188179,0.2221703118,-0.0080475764
C, \(0,2.0806958966,-0.579992122,-0.0371896005\)
C,0,1.9320981158,-2.0009533558,-0.0628024104
\(\mathrm{N}, 0,0.6836766345,-2.4919802425,-0.0567459169\)
C, \(0,1.4510556106,1.6542933034,0.0140273104\)
C,0,2.8483953621,1.646712965,-0.0036707184
C,0,3.3331874557,0.2347426361,-0.0371300736
O,0,4.4557628738,-0.1449517814,-0.0584983975
\(\mathrm{N}, 0,2.7594395824,-3.0051799111,-0.0924304918\)
C, \(0,0.788683952,2.8623856056,0.0458835204\)
C,0,2.920999511,4.01559428,0.0415186265
C,0,3.5949507302,2.7953502971,0.0093133967
H,0,-1.7761707248,-3.4378319267,-0.044458224
Н,0,3.4738316749,4.9372718473,0.0524973491
H,0,4.6683306056,2.7441040382,-0.0051681794
\(\mathrm{Br}, 0,-4.3300456313,0.8374457994,0.0700545265\)
H,0,-3.8275490205,-2.0669758121,0.007604584
Н, \(0,-1.5007450866,1.4737154276,0.047185071\)
H,0,-0.2782735774,2.9446630267,0.0608823728
C,0,1.5416197065,4.039420711,0.0593249412
H,0,1.0272772793,4.9834250821,0.0841704199
\(\mathrm{N}, 0,0.7690182894,-3.8247037347,-0.0835657969\)
\(\mathrm{N}, 0,1.9948918514,-4.0941825534,-0.1041024299\)
\(\mathrm{HF}=-3472.4876487\)
RMSD=4.911e-009
Dipole=-2.0009017,2.5810999,0.0749247
\(\mathrm{PG}=\mathrm{C} 01\) [ \(\mathrm{X}(\mathrm{C} 16 \mathrm{H} 7 \mathrm{Br} 1 \mathrm{~N} 4 \mathrm{O} 1)]\)

\section*{Compound 8}

Charge \(=0\) Multiplicity \(=1\)
C,0,-3.0030838179,-0.2478445663, 0.039511649
C, \(0,-3.1048994734,-1.6370444626,0.013903926\)
C,0,-1.9624294829,-2.3938401885,-0.017766694
С, \(0,-0.7218625018,-1.7602797899,-0.0237401007\)
C,0,-0.5976756806,-0.3650713535,0.0016933905
C, \(0,-1.7864435263,0.3795506425,0.033784192\)
C,0,0.7446560631,0.2093235518,-0.0069287041
C, \(0,1.8385802222,-0.5870496283,-0.0387831751\)
C, \(0,1.6922544754,-2.010561627,-0.0644389952\)
\(\mathrm{N}, 0,0.4465868622,-2.5053367491,-0.0556049822\)
C,0,1.2070264541,1.6288575735,0.0141484161
C,0,2.61217113,1.6308512131,-0.0066823921
C,0,3.0685563212,0.2229486386,-0.0411481553
\(\mathrm{N}, 0,4.2064840429,-0.3091058692,-0.0685939816\)
\(\mathrm{N}, 0,2.5226588864,-3.0141963739,-0.0963613958\)
C,0,0.5270089849,2.8314892037,0.0479803934
C,0,2.6327203632,4.0112996104,0.0399791371
C,0,3.3296854104,2.8086252511,0.0058904601
Н,, ,-2.0064905153,-3.4651035957,-0.0380422504
Н,0,3.1740756385,4.9400972884,0.0502838072
H,0,4.399943413,2.7957432071,-0.0102531321
Br,0,-4.5838250993,0.7950194802,0.0832039243
H,0,-4.0689086111,-2.1079069096,0.0189576972
H,0,-1.7616264875,1.4452750832,0.0542010492
H,0,-0.5411465359,2.8903377826,0.0649885729
C,0,1.2516942126,4.0188182636,0.0606434721
H,0,0.7225076976,4.9545905562,0.0869798023
N,0,0.5350581935,-3.8366149803,-0.0828077573
\(\mathrm{N}, 0,1.7618773849,-4.104338331,-0.1063463177\)
O,0,5.2292307072,0.578291381,-0.0663820545
H,0,6.0052657043,0.0416658648,-0.0884763341
\(\mathrm{HF}=-3527.4606282\)
RMSD=5.653e-009
Dipole=-0.5696856,2.1381979,0.0503419
\(\mathrm{PG}=\mathrm{C} 01\) [X(C16H8Br1N5O1)]

\section*{Compound 9}


\section*{Compound 13}

Isomer 1
Charge \(=0\) Multiplicity \(=1\)
C,0,-4.7836692929,-0.1983297716,-1.2972301773
C,0,-4.7783617447,-1.5486436696,-1.6389824322
C, \(0,-3.7068064421,-2.3268873696,-1.2847974938\)
C,0,-2.6450196932,-1.7529481699,-0.5897175321
C, \(0,-2.6318024978,-0.3977241886,-0.2341455916\)
C, \(,-3.742291582,0.3702158937,-0.6134680207\)
С,0,-1.4719854482,0.1192300392,0.4932905347
C, \(0,-0.4470764674,-0.6910273413,0.8168462336\)
C, \(, 0,-0.4791757038,-2.0691349684,0.4438399595\)
\(\mathrm{N}, 0,-1.5491971919,-2.5188267155,-0.2218510501\)
C,0,-1.148704238,1.4857426868,0.9945286615
C, \(, 0,0.1110445558,1.4331187731,1.6032761846\)
C,0,0.6657833003,0.0137554173,1.5597669534
O, \(0,1.8020581936,-0.1269596787,0.6996843055\)
\(\mathrm{N}, 0,0.3375638536,-3.0713755098,0.6165164433\)
С,, ,-1.8473015287,2.6802272536,0.9635063308
С, \(,-0.00361581045,3.7512417486,2.1372339364\)
C,0,0.6678460444,2.5527862932,2.1816188815
H,0,-3.6712732551,-3.3694393009,-1.5338247969
H,0,0.389169366,4.634893834,2.5783067762
H,0,1.6318873273,2.5016920671,2.6477189165
\(\mathrm{Br}, 0,-6.264841319,0.8746424309,-1.7903545638\)
H,0,-5.6052544374,-1.973202983,-2.1747510986
H,0,-3.7922824722,1.4087931495,-0.3768049797
\(\mathrm{H}, 0,-2.8165681192,2.7691028247,0.5184555922\)
C,0,-1.2782803919,3.8112667032,1.5352134524
H,0,-1.8178388297,4.7411928093,1.5099618624
\(\mathrm{N}, 0,-1.3685747364,-3.8212844508,-0.4563265655\)
\(\mathrm{N}, 0,-0.2560403437,-4.1156745186,0.0466868195\)
C,0,3.0211470984,0.2992738717,1.0115230075
C,0,4.0057754279,-0.1037524983,-0.0579874158
C,0,5.4318102068,0.3579877229,0.2238980838
O,0,3.288494492,0.9131230788,1.9942081313
C, \(, 0,6.4057206014,-0.0665594549,-0.8759832066\)
С, \(, 0,0.9010119826,-0.6030283299,2.9399027346\)
H,0,3.6392878822,0.2955769285,-1.0000270376
H,0,3.9487442495,-1.1847256093,-0.1525033418
\(\mathrm{H}, 0,5.7557826756,-0.044384614,1.1790808104\)
H,0,5.4444531554,1.4387114158,0.3312935625
H,0,6.0730812691,0.3378469729,-1.8312656963
H,0,6.384155112,-1.1504512088,-0.9807221614
С, \(, 0,7.8417218544,0.3862673548,-0.6091761877\)
C,0,8.8222871372,-0.0344259567,-1.7047861579
C,0,10.2550289681,0.4206785964,-1.4320627519
H,0,-0.0361765702,-0.6141890939,3.4849890081
H,0,1.6261446594,-0.035390211,3.5018042084
Н, \(, 1.1 .2504888553,-1.6222785801,2.8287497385\)
H,0,8.1747743384,-0.0182803643,0.345533202
H,0,7.863748316,1.4701434686,-0.5042296448
H,0,8.4908071786,0.3702181911,-2.6593211099
\(\mathrm{H}, 0,8.8016420427,-1.1175370966,-1.8096122091\)
H,0,10.6282223324,0.0040492924,-0.5005464626
\(\mathrm{H}, 0,10.3151720807,1.5029655525,-1.3563811186\)
\(\mathrm{HF}=-3859.6739138\)
RMSD \(=4.372 \mathrm{e}-009\)
Dipole=-0.8192255,1.5281333,-0.307326
\(\mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 24 \mathrm{H} 23 \mathrm{Br} 1 \mathrm{~N} 4 \mathrm{O} 2)]\)
Isomer 2

Charge \(=0\) Multiplicity \(=1\)
C,0,-4.6382289576,-0.2509237662,1.7405099546
C,0,-4.5806776669,-1.597053397,2.0938183707
C, \(0,-3.5352131721,-2.3641150571,1.6489125252\)
C,0,-2.5516514703,-1.7832284095,0.8519597828
C,0,-2.5921005562,-0.4320932957,0.4831641557
C, \(0,-3.673856317,0.3244054358,0.9567974804\)
C,0,-1.5131310212,0.0928114306,-0.3546003835
C,0,-0.5108576827,-0.7065945807,-0.7645272799
C,0,-0.4872537903,-2.0806765468,-0.3763760929
\(\mathrm{N}, 0,-1.4835286054,-2.5377504536,0.3909576103\)
C, \(0,-1.2586454122,1.4579814631,-0.8973843603\)
C,0,-0.060645008,1.4161325477,-1.6208614286
C, \(0,0.5169378234,0.0052890965,-1.6153542342\)
N,0,0.3248099372,-3.0732556677,-0.6145446405
C,0,-1.9690095266,2.6428678869,-0.8128303031
C, \(0,-0.2917409035,3.7258391197,-2.1615133124\)
C, \(0,0.4228667288,2.5368807089,-2.2598031873\)
H,0,-3.4608984855,-3.4031587853,1.9039698715
H,0,0.0772552807,4.6103311631,-2.6491646399
H,0,1.3397828393,2.4940124677,-2.8135766787
Br,0,-6.0830141466,0.8065952547,2.3590110259
H,0,-5.3475035671,-2.0270865419,2.7087163399
H,0,-3.7613913948, 1.3593963815,0.7153599105
Н, \(0,-2.8936119644,2.7232643628,-0.279814749\)
C,0,-1.4728726812,3.7752701628,-1.4464416445
Н,0,-2.021545763,4.6977953569,-1.3798967891
N,0,-1.2622145592,-3.8347664556,0.6206122523
N,0,-0.1971767467,-4.119204689,0.0187306256
O,0,1.7306526426,-0.1096868688,-0.8639956638
C,0,2.9086816178,0.3302035973,-1.2926445371
C,0,3.9947596225,-0.0465609953,-0.3157837456
C,0,5.381159382,0.4318815094,-0.7344110771
O,0,3.0739031742,0.9365268045,-2.3021254396
C,0,6.459680719,0.0338724856,0.2739845298
Н, \(0,3.9630942166,-1.127058871,-0.2052913233\)
H,0,3.7118001993,0.3584739983,0.6522572819
Н,0,5.3674096109,1.5113529722,-0.8535921751
H,0,5.6206653346,0.0230162611,-1.7114968472
H,0,6.4643282251,-1.048926046,0.391377815
H,0,6.2115118617,0.4446328132,1.251964606
C, \(0,7.8575474933,0.5037238105,-0.130422265\)
C,0,0.6315246039,-0.6237878211,-3.0051877443
C,0,8.94222664,0.1096008324,0.8730662238
C,0,10.3362846731,0.5815233021,0.4630110199
H,0,7.8533368786,1.5865121694,-0.2480523342
H,0,8.1061905356,0.0928490328,-1.1078730176
H,0,1.2924470141,-0.0524638366,-3.638071058
H,0,-0.3521671985,-0.6542217507,-3.4601616566

H,0,1.0050952997,-1.6367064075,-2.9169934366
\(\mathrm{H}, 0,8.9477360287,-0.9723976644,0.9905079445\)
H,0,8.6951644377,0.52066387,1.8501741551
H,0,10.3728012235,1.6635839997,0.3708147954
H,0,10.6272322165,0.1592575517,-0.4949112159
H,0,11.0823747572,0.286667846,1.1945505045
\(\mathrm{HF}=-3859.6739138\)
RMSD=4.372e-009
Dipole=-0.8103326,1.5200273,0.367354
\(\mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 24 \mathrm{H} 23 \mathrm{Br} 1 \mathrm{~N} 4 \mathrm{O} 2)]\)

\section*{Compound 15}

Charge \(=0\) Multiplicity \(=1\)
C, \(0,-2.7653725384,-0.1913512223,0.0306524043\)
C, \(0,-2.8847954436,-1.5749886312,0.0061271348\)
С, \(0,-1.7509931619,-2.3493242168,-0.0223779792\)
C, \(0,-0.4922263176,-1.7529429206,-0.026673808\)
C, \(0,-0.3602275773,-0.3549183459,-0.0021263831\)
C, \(0,-1.5331443069,0.4086651479,0.0267040331\)
C,0,0.9850780934,0.2143751165,-0.0081275274
C, \(0,2.0679669698,-0.5883729145,-0.0363346947\)
C, \(0,1.9338023199,-2.0157230364,-0.061164209\)
\(\mathrm{N}, 0,0.661935164,-2.5272331836,-0.0552965419\)
C,0,1.4419010495,1.6484964783,0.0126804329
C,0,2.8391836808,1.6407798075,-0.0047566975
C,0,3.3222483424,0.2280455199,-0.0368229147
O, \(0,4.4462122639,-0.1473567829,-0.0577436858\)
\(\mathrm{N}, 0,2.8043095252,-2.964880784,-0.0892996474\)
C, \(0,0.7828285437,2.8584554347,0.0431152329\)
C,0,2.9166734985,4.0099957989,0.0380014218
C,0,3.5876162189,2.7877305642,0.0071493973
Н, \(0,-1.8445431115,-3.4177534271,-0.0412845452\)
H,0,3.4711019265,4.9307773255,0.0481333267
\(\mathrm{H}, 0,4.6609282792,2.7335812333,-0.0071395432\)
\(\mathrm{Br}, 0,-4.3257531648,0.880312453,0.0700790553\)
H,0,-3.8542531117,-2.0348922844,0.0094310253
H,0,-1.4844687465,1.4737114006,0.0461642974
H,0,-0.2837992674,2.9450143608,0.0578105195
C,0,1.5378647682,4.0348503692,0.0554899483
Н, 0, 1.0241631455,4.9793912328,0.0792487941
C, \(0,0.8651662092,-3.8782340908,-0.0825942078\)
N,0,2.1188958285,-4.1347881536,-0.1025765348
H,0,0.0851278258,-4.6068297362,-0.0866217606
\(\mathrm{HF}=-3456.5228163\)
RMSD \(=4.870 \mathrm{e}-009\)
Dipole \(=-2.5890061,1.6114949,0.0613891\)
\(\mathrm{PG}=\mathrm{C} 01\) [ \(\mathrm{X}(\mathrm{C} 17 \mathrm{H} 8 \mathrm{Br} 1 \mathrm{~N} 3 \mathrm{O} 1)]\)

\section*{Compound 23}

Thiol form

Charge \(=0\) Multiplicity \(=1\)
C, \(0,-2.7498096995,0.267081408,0.0361160337\)
C,0,-2.8816811233,-1.1111117979,0.0133987089
C,0,-1.7558631393,-1.9009119132,-0.0133896668
С,0,-0.4847849435,-1.3327509049,-0.0179654057
C, \(0,-0.3460975507,0.069618392,0.0051641851\)
C, \(0,-1.5075233328,0.8465276964,0.0321041314\)
C,0,0.9934166715,0.650164468,0.0001198368
C, \(0,2.0754022719,-0.1480630522,-0.0263684117\)
C, \(0,1.9485233744,-1.5737861579,-0.0500996283\)
N,0,0.6776375298,-2.1165952941,-0.0451316344
C,0,1.4460085766,2.0867040472,0.0204040666
C,0,2.8436491711,2.0804690057,0.0043110919
C,0,3.3296422048,0.6690478981,-0.0262251133
O,0,4.4543847334,0.2962207115,-0.0456644234
\(\mathrm{N}, 0,2.8425527789,-2.4926615677,-0.0765575974\)
C,0,0.7877130897,3.2973690329,0.0494071903
C,0,2.9215128597,4.4496312157,0.0453823015
C,0,3.5921590546,3.2272495503,0.0160546029
Н, \(0,-1.8877547805,-2.96081568,-0.0305224889\)
Н,0,3.4758225921,5.3704832184,0.0553451979
H,0,4.6654582977,3.1725657609,0.0028088293
Br,0,-4.2932772267,1.3612814405,0.0729927644
Н,0,-3.8538638697,-1.5650360322,0.0165571671
H,0,-1.4409807643,1.9100227236,0.0500262008
Н, \(0,-0.2785260154,3.386532592,0.0632325342\)
C,0,1.5428837301,4.4738201958,0.0616041791
H,0,1.0286159757,5.41807893,0.0842330039
C, \(0,0.9305427419,-3.466970909,-0.0718733108\)
\(\mathrm{N}, 0,2.1935305008,-3.6805347653,-0.0901123973\)
S, \(0,-0.2427893503,-4.7816596008,-0.0817362175\)
H,0,0.6952738285,-5.7158816674,-0.1095896778
\(\mathrm{HF}=-3854.0261064\)
RMSD \(=4.565 \mathrm{e}-009\)
Dipole \(=-2.1563163,1.403344,0.0493519\)
\(\mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 17 \mathrm{H} 8 \mathrm{Br} 1 \mathrm{~N} 3 \mathrm{O} 1 \mathrm{~S} 1)] \mid\)

\section*{Thione form}

Charge \(=0\) Multiplicity \(=1\)
C,0,-2.7599825159,0.2489170144,0.0212177502
C,0,-2.8872638383,-1.1278969522,0.0056421774
C,0,-1.7611271928,-1.9220099825,-0.0113492481
C, \(0,-0.4951832908,-1.3477860193,-0.0129331286\)
C, \(0,-0.3589314576,0.0555607929,0.0030323265\)
C,0,-1.5180946899,0.8322589967,0.0199681676
C,0,0.9782405443,0.6448963799,0.0013090502
C, \(0,2.066387779,-0.1432822039,-0.0156294497\)
C, \(0,1.9469248742,-1.5703571897,-0.0321980209\)
\(\mathrm{N}, 0,0.6767039797,-2.1356867728,-0.0303096612\)
C,0,1.4255620399,2.0839361192,0.0160401378
C, \(0,2.8236251265,2.0835483419,0.0066464989\)
C,0,3.3154288434,0.674337715,-0.0139465585
O,0,4.4410595554,0.3010550967,-0.0260336683
\(\mathrm{N}, 0,2.8616715943,-2.4563729806,-0.0492746639\)
C, \(0,0.7608819731,3.2910644968,0.0354503466\)
C,0,2.8894691318,4.452501629,0.0354208584

C,0,3.5669251673,3.2335749198,0.0158298043
H, \(0,-1.8632618879,-2.9847035041,-0.023388752\)
Н,0,3.4392915031,5.3760139375,0.0431080066
H,0,4.6404914325,3.1847632421,0.0080249313
Br,0,-4.3036843215,1.3434858478,0.0444718908
Н, \(0,-3.8583956752,-1.5842785354,0.006650573\)
\(\mathrm{H}, 0,-1.4538120604,1.895690111,0.0321835518\)
H,0,-0.3055290807,3.3749822221,0.043747794
C, \(0,1.5106789103,4.4709416619,0.0449567804\)
H,0,0.9922046471,5.4128721505,0.0600966023
C,0,0.857107404,-3.5029925987,-0.0481935693
N,0,2.1771997547,-3.6205945023,-0.0587287332
S, \(0,-0.2073480588,-4.8043037648,-0.0565999901\)
H,0,2.6541347197,-4.49162377,-0.0724618263
\(\mathrm{HF}=-3854.0531237\)
RMSD=8.709e-009
Dipole \(=-0.3412225,2.4638613,0.0323475\)
\(\mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 17 \mathrm{H} 8 \mathrm{Br} 1 \mathrm{~N} 3 \mathrm{O} 1 \mathrm{~S} 1)] \mid\)

\section*{Compound 25}

Charge \(=0\) Multiplicity \(=1\)
C, \(0,-2.7882386501,-0.1234294834,0.0349727118\)
C,0,-2.9010909136,-1.504944916,0.0111520027
C, \(0,-1.7689392851,-2.2848937345,-0.0181981483\)
С, \(0,-0.4993277426,-1.6979336474,-0.0243760224\)
C, \(0,-0.3841875537,-0.2905262128,-0.0002489829\)
C, \(0,-1.5512520512,0.4725378809,0.0293689448\)
C, \(0,0.9650923942,0.2657562216,-0.0081107194\)
C,0,2.0468878673,-0.5391539176,-0.036908009
C,0,1.9305103753,-1.9836968681,-0.0616252466
N,0,0.6260029492,-2.4693389837,-0.0533185681
C, \(0,1.4236614644,1.7002726142,0.0116836681\)
C, \(0,2.8193012813,1.6896011668,-0.006767483\)
C,0,3.2984580884,0.2730316134,-0.0386183084
O,0,4.4279412744,-0.0899923399,-0.0599358478
\(\mathrm{N}, 0,2.8440234613,-2.8476679109,-0.0894543909\)
C, \(0,0.7653688927,2.9113513851,0.0419203171\)
C, \(0,2.9006662222,4.0581352013,0.0346449402\)
C,0,3.5699239873,2.8352454786,0.0039633858
H, \(0,-1.8668875792,-3.3526641864,-0.036395101\)
H,0,3.4565733326,4.978270142,0.0438973105
H,0,4.643117543,2.7790329069,-0.0111060707
Br,0,-4.3496844379,0.9524359859,0.0755939394
H,0,-3.8703708208,-1.9666336428,0.0156233256
H,0,-1.5010513202,1.5378392307,0.048317033
H,0,-0.3010119904,2.9987004734,0.0572351096
C,0,1.521457836,4.0863896407,0.0531167229
H,0,1.009666612,5.0320127587,0.0767069919
C,0,0.6845762786,-3.9245280184,-0.0805857768
C,0,2.2162805601,-4.1602803127,-0.1051909971
H,0,0.1854659869,-4.3140016824,-0.9614838859
H,0,0.2088159295,-4.346025189,0.7984929187
H,0,2.5214475723,-4.7041818664,-0.9924607196
H,0,2.5445806836,-4.7362260182,0.7531247034
\(\mathrm{HF}=-3441.7125376\)
RMSD=8.244e-009
Dipole=-1.5758249,0.1144842,0.022368
\(\mathrm{PG}=\mathrm{C} 01\) [X(C18H11Br1N2O1)]

\section*{Compound 25 H+}

Charge \(=1\) Multiplicity \(=1\)
C, \(0,-2.8183252567,-0.1203978507,0.0463851809\)
C, \(0,-2.8972196284,-1.5149008551,0.0188301416\)
C,0,-1.7560958941,-2.2744731801,-0.0167501332
C, \(0,-0.5058364283,-1.6532151424,-0.0255827934\)
C,0,-0.4111806399,-0.2455073856,0.0019572544
C, \(0,-1.6022503506,0.5008916332,0.0381409622\)
C, \(0,0.9079183735,0.333872481,-0.0089323748\)
C,0,2.0026898669,-0.4836637506,-0.0449769913
C,0,1.866752335,-1.8767031746,-0.0714596717
\(\mathrm{N}, 0,0.6486879225,-2.4159462817,-0.0614805571\)
C, \(0,1.4006171082,1.7457236793,0.0119313842\)
C,0,2.8038429167,1.7131898988,-0.0130209284
C,0,3.2602978649, 0.2969193756,-0.0504725633
O,0,4.3635723021,-0.1497625178,-0.0789162164
\(\mathrm{N}, 0,2.807890574,-2.792942141,-0.1066728454\)
C,0,0.7527094333,2.9618609498,0.0484523669
C,0,2.9025191713,4.0795481565,0.0345096746
C, \(0,3.5652975319,2.8517286745,-0.0024956646\)
Н, \(0,-1.8366368104,-3.3436367773,-0.0375415184\)
H,0,3.4676900672,4.9931884233, 0.0437297155
H,0,4.6379050397,2.7934290671,-0.022252135
Br,0,-4.4002508009,0.9010631384,0.0950574589
H,0,-3.8577765038,-1.9938083088,0.0255950462
H,0,-1.5686390446,1.5674625024,0.0596671364
H,0,-0.3132298853,3.0569211914,0.0689220247
C, \(0,1.5229232547,4.1268539271,0.0593622924\)
Н,0,1.0253617423,5.0787882745,0.0877813883
C,0,0.733191258,-3.8871559747,-0.0932860602
C,0,2.2587222599,-4.1441054746,-0.1252032755
H,0,0.2351979283,-4.2658617223,-0.9747693378
\(\mathrm{H}, 0,0.2659584901,-4.3021935017,0.7886798815\)
H,0,2.5613404764,-4.6672729405,-1.0216490625
H,0,2.5919954175,-4.703841518,0.7376483895
H,0,3.7755441638,-2.5528613585,-0.1187518449
\(\mathrm{HF}=-3442.1415096\)
RMSD \(=5.212 \mathrm{e}-009\)
Dipole \(=1.2767589,-2.3448734,-0.0708537\)
\(\mathrm{PG}=\mathrm{C} 01\) [X(C18H12Br1N2O1)]

\section*{Compound 2g}

Charge \(=0\) Multiplicity \(=1\)
C,0,-3.4139534617,-0.1682739282,0.1962565909
C,0,-3.4076773197,-1.5769454835,0.093721865
C,0,-2.2226732944,-2.2276820993,-0.0041958103

C,0,-0.9978051412,-1.5121942737,-0.003479443
C, \(0,-1.0123720643,-0.1086648362,0.1041709047\)
C,0,-2.2661163367,0.5509856167,0.2021541839
С, \(0,0.2598134006,0.5282224676,0.0649242291\)
C, \(0,1.3967374889,-0.2307450909,-0.0776823573\)
C,0,1.2841175081,-1.647276529,-0.1060614277
\(\mathrm{N}, 0,0.137771135,-2.2382552418,-0.08169261\)
C,0,0.6463186909,1.9653423689,0.0921820576
C,0,2.0289757338,2.0518824829,-0.1160867083
C,0,2.5584498846,0.6760092226,-0.2696548261
\(\mathrm{N}, 0,3.7020900537,0.2555265201,-0.5758433833\)
N,0,2.3998047495,-2.4980650867,-0.1645230734
C,0,-0.089791382,3.1190176612,0.2938933877
C, \(0,1.9243627098,4.4247110763,0.056938378\)
C, \(0,2.6752630868,3.2728141238,-0.1397643288\)
H,0,-2.1759348793,-3.2974320489,-0.0816350444
H,0,2.4099195381,5.3839090642,0.0448602265
H,0,3.7311074031,3.3308968433,-0.3020937989
\(\mathrm{Br}, 0,-5.0818904404,0.724869216,0.3243060096\)
Н,0,-4.3366002594,-2.1142598919,0.0940474438
H,0,-2.3235303944,1.6140499647,0.2712593183
H,0,-1.1436551955,3.1027182984,0.4777042307
C,0,0.5609784831,4.3461671986,0.2736611739
Н,0,-0.007822705,5.2449276276,0.4318905455
C,0,3.5456041482,-2.4782698085, 0.6101910102
C,0,4.1973947891,-3.6170820849,0.3230149373
\(\mathrm{N}, 0,3.4972259175,-4.3555348646,-0.6060632725\)
C, \(0,2.4383939655,-3.6768344034,-0.8515457529\)
H,0,3.7728129615,-1.6747029485,1.2723385745
H,0,5.1286812236,-3.9602183825,0.7228913382
H,0,1.6496479745,-3.9548105802,-1.5177203359
O,0,4.6201794065,1.2360255208,-0.7755384664
H,0,5.4057361659,0.7734939546,-1.0189171132
HF=-3588.4210539
RMSD \(=5.458 \mathrm{e}-009\)
Dipole \(=-0.0307091,2.0660834,0.2518793\)
\(\mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 19 \mathrm{H} 11 \mathrm{Br} 1 \mathrm{~N} 4 \mathrm{O} 1)]\)

\section*{Compound 2gH+}

Charge \(=1\) Multiplicity \(=1\)
C, \(0,-3.4376962199,-0.1497917312,0.2215476191\)
C, \(0,-3.4262739095,-1.5633608778,0.1514472138\)
C, \(0,-2.2437622364,-2.2172233756,0.0570631911\)
C,0,-1.0235153438,-1.4969764658,0.0283884306
C,0,-1.035059497,-0.0867281774,0.1016214177
C,0,-2.2906681102,0.5709611974,0.1984969604
C, \(0,0.2285153099,0.5610589164,0.0473244863\)
C, \(0,1.3763648906,-0.1982371532,-0.0681112148\)
C, \(0,1.2422408882,-1.5933047552,-0.0898951863\)
\(\mathrm{N}, 0,0.1191275824,-2.2147336443,-0.0539710093\)
C,0,0.6190182374,1.9953847048,0.0471673967
C,0,2.009632429,2.0756247581,-0.1229361792
C,0,2.54637382,0.7006760171,-0.224977449
\(\mathrm{N}, 0,3.7021964942,0.2556885064,-0.4430796763\)
\(\mathrm{N}, 0,2.3786007931,-2.4774135735,-0.1662189845\)
C,0,-0.1228882854,3.1537327826,0.1862165576
C,0,1.9009152284,4.4506854019,-0.0272563105
C,0,2.6586916043,3.2938841373,-0.1640602281
H,0,-2.2006911002,-3.2886038476,0.0065530938
Н,0,2.3864511825,5.408942943,-0.05485244
H,0,3.7188809168,3.3496499133,-0.295800835
\(\mathrm{Br}, 0,-5.0993559847,0.7346359832,0.3486134183\)
H,0,-4.3544038938,-2.1012450162,0.1749163221
H,0,-2.3488694709,1.6345959059,0.2495772095
Н,0,-1.1826406196,3.1461829219,0.3304367616
C,0,0.5311112632,4.3792804065,0.1472235969
Н, \(0,-0.0407848705,5.2826600413,0.256109085\)
C,0,3.5063983112,-2.4963582109,0.6381001427
C,0,4.2049217091,-3.5883021062,0.3097547519
N,0,3.4920980526,-4.2228834964,-0.6914275326
C,0,2.4007049318,-3.5391217599,-0.9418859773
H,0,3.6994160664,-1.7351018142,1.357603873
H,0,5.1256578648,-3.9739194767,0.6874905986
H,0,1.6407010742,-3.7962515465,-1.6472827123
O,0,4.6407646903,1.221057091,-0.5998752087
H,0,5.4407774069,0.7629960584,-0.8014758317
H,0,3.7525368041,-5.0665290215,-1.154237995
\(\mathrm{HF}=-3588.8237819\)
RMSD \(=7.051 \mathrm{e}-009\)
Dipole \(=4.6452388,-3.7795648,-0.7429579\)
\(\mathrm{PG}=\mathrm{C} 01\) [X(C19H12Br1N4O1)]

\section*{Compound 2b}

Charge \(=0\) Multiplicity \(=1\)
C, \(0,-2.8124827911,-0.1866511805,0.0161225686\)
C, \(0,-2.9427105787,-1.590696118,-0.0062719526\)
C,0,-1.8285485564,-2.3660595086,-0.0267325077
C,0,-0.5353160958,-1.7872486632,-0.0260048412
C, \(0,-0.4169309658,-0.3813957138,-0.0035996538\)
C, \(0,-1.5943473383,0.4074937688,0.0176020201\)
C, \(0,0.9147172172,0.1278587127,-0.0042988851\)
C,0,1.9627070945,-0.7484178755,-0.0256429537
C,0,1.715396296,-2.1477646535,-0.0469942074
\(\mathrm{N}, 0,0.5221217648,-2.6352767044,-0.0470768178\)
C,0,1.4562981634,1.526740354,0.0148813913
C, \(0,2.8487684062,1.4373636163,0.0042961888\)
C,0,3.2552827809,-0.0028658035,-0.0219361761
O,0,4.366634294,-0.422207996,-0.0360637395
O,0,2.7674846295,-2.9400459377,-0.0670192208
C,0,0.8603077987,2.7705613615,0.038819851
C,0,3.054437474,3.7987459091,0.0412073219
C,0,3.6590108413,2.5440089644,0.016924591
H,0,-1.8961433332,-3.4373282034,-0.0439800151
H,0,3.6580409128,4.6883199735,0.0516846776
H,0,4.7279751271,2.4329713216,0.0080977367
Br,0,-4.3828836516,0.8775481101,0.0446889196
H,0,-3.9207818485,-2.032976778,-0.0069067499
H,0,-1.5361552974, 1.4736926564,0.035037803
H,0,-0.2018983162,2.9053994176,0.0477695096

C,0,1.6766957843,3.9021747016,0.0518229715
H,0,1.2179013639,4.8746812189,0.0705246233
C,0,2.5652189718,-4.338475788,-0.088535223
H,0,2.0138109029,-4.6334107016,-0.9710008164
H,0,2.0253322384,-4.6621976468,0.7909570016
H,0,3.5540153033,-4.7705992159,-0.1020575716
\(\mathrm{HF}=-3423.6905686\)
RMSD=8.253e-009
Dipole=-0.5022873,0.5041672,0.0112763
\(\mathrm{PG}=\mathrm{C} 01\) [X(C17H10Br1N1O2)]

\section*{Compound 2d}

Charge \(=0\) Multiplicity \(=1\)
C,0,-3.2110980415,-0.0992350338,0.146798779
C, \(0,-3.2071045236,-1.5104976955,0.0409476045\)
C, \(0,-2.027791918,-2.1696402235,-0.0510121668\)
C, \(0,-0.7959395847,-1.4617029565,-0.0413784487\)
C,0,-0.809280255,-0.0561496061,0.0657868946
C, \(0,-2.0608832031,0.612227532,0.159002544\)
C, \(0,0.4613642142,0.5706470758,0.0416207933\)
C,0,1.6028930089,-0.1948290096,-0.0681189417
C, \(0,1.4884549646,-1.6102222089,-0.124183448\)
N,0,0.3319126437,-2.1921306836,-0.1181736537
C,0,0.8398228204,2.0207236096,0.062036742
C, \(0,2.2198047187,2.0946757971,-0.1036001202\)
C, \(0,2.7833691121,0.7193815246,-0.21009517\)
O, \(0,3.9286633709,0.452506228,-0.3881607863\)
\(\mathrm{N}, 0,2.5858517723,-2.4712322032,-0.2054636149\)
C,0,0.1169558944,3.1879836543,0.2077197252
C,0,2.1701719344,4.4603074142,0.0003971296
C,0,2.9021560872,3.2851321167,-0.1407183057
H,0,-1.9884349942,-3.2393967611,-0.1298676601
H,0,2.6679060502,5.4127279116,-0.0226652746
\(\mathrm{H}, 0,3.9684307408,3.2956587229,-0.2737151244\)
Br,0,-4.8762642375,0.7969624787,0.2712586152
H,0,-4.1388695214,-2.0430988599,0.0349919291
H,0,-2.1097433451,1.6754112913,0.2355615904
H,0,-0.9433040089,3.2032759368,0.351834791
C,0,0.799819019,4.40347594,0.1747010099
Н, \(0,0.2420803824,5.3158029861,0.2884322435\)
C, \(0,3.8463271721,-2.3712370664,0.3672304181\)
C,0,4.4480487085,-3.5451616798,0.1237984074
N,0,3.6130662289,-4.3856791159,-0.5828393802
C,0,2.5263018916,-3.7314433904,-0.7437039519
H,0,4.1838738051,-1.4929958453,0.8628982102
H,0,5.4346584742,-3.8463639267,0.4070483007
H,0,1.6471771256,-4.0780787771,-1.2413246728
\(\mathrm{HF}=-3533.4539629\)
RMSD \(=8.752 \mathrm{e}-009\)
Dipole \(=-1.2295682,2.3341505,0.4290611\)
\(\mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 19 \mathrm{H} 10 \mathrm{Br} 1 \mathrm{~N} 3 \mathrm{O} 1)]\)

\section*{Compound 2e}
```

Charge $=0$ Multiplicity $=1$
C,0,-3.0626403782,-1.008425992,0.0162591648
C,0,-2.6581183911,-2.364521498,-0.0229229471
C,0,-1.338247833,-2.6658074769,-0.0349451329
С, $0,-0.3561846687,-1.6386002319,-0.0077573588$
C,0,-0.7696714208,-0.2901447316,0.0309963593
C,0,-2.1620031837,0.0000096718,0.0412511084
C,0,0.2724980737,0.668841613,0.0376667909
C,0,1.5835278925,0.247226833,0.0207601557
C,0,1.8700296332,-1.1425337172,0.0069073981
$\mathrm{N}, 0,0.9320711151,-2.027910085,-0.0057523078$
C,0,0.2377090453,2.1671259637,0.0067659515
C,0,1.5539088751,2.6151910161,-0.0763764893
C,0,2.478403718,1.445750103,-0.0759987629
O,0,3.6654818851,1.4958202753,-0.1399205755
$\mathrm{N}, 0,3.1863810649,-1.6300331477,0.0004978947$
C,0,-0.7859757041,3.0922079439,0.042965499
C,0,0.8489031335,4.8768421572,-0.0991356006
C,0,1.8836719779,3.9463582773,-0.1310405467
Н, $0,-0.9928347871,-3.6815504709,-0.0657792787$
$\mathrm{H}, 0,1.0667450725,5.9286228365,-0.1409217071$
H,0,2.9130063322,4.24816225,-0.196360594
Br,0,-4.9172849564,-0.6157521928,0.0319012477
H,0,-3.4019011779,-3.137937248,-0.0435850683
H,0,-2.5113629308,1.008186656,0.0675956743
H,0,-1.817585057,2.8162913085,0.1148993267
C, $0,-0.4622376555,4.4479502287,-0.0110787565$
Н, $0,-1.255938307,5.1730253342,0.0168562899$
C,0,4.2420519505,-1.2238180504,0.750874362
C,0,5.2526269077,-2.0940155128,0.522658188
C,0,4.7058304396,-3.0204314185,-0.4029256968
$\mathrm{N}, 0,3.4766240385,-2.7454881575,-0.6945955309$
H,0,4.1904279162,-0.358918317,1.3720309577
H,0,6.2354922438,-2.0769476655,0.9431220396
H,0,5.1850410888,-3.865381478,-0.8556292142
$\mathrm{HF}=-3533.42936975$
HF=-3533.4293698|
RMSD $=9.021 \mathrm{e}-009$
Dipole $=-0.7143412,1.496856,0.5894937$
$\mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 19 \mathrm{H} 10 \mathrm{Br} 1 \mathrm{~N} 3 \mathrm{O} 1)]$

```

\section*{Compound 2c}

Charge \(=0\) Multiplicity \(=1\)
C, \(0,-3.1179834437,-0.052030197,0.156271184\)
C, \(0,-3.2001301068,-1.4608139089,0.0726723508\)
C, \(0,-2.0605306189,-2.1872171477,-0.0308506319\)
C,0,-0.7937955639,-1.5501153482,-0.0559622021
C,0,-0.7205361237,-0.1440473354,0.0279458896
C,0,-1.9285414275,0.5951564492,0.1358116751
C, \(0,0.5847685707,0.4151464226,-0.0039467081\)
C, \(0,1.6651266084,-0.4239048413,-0.1113810184\)
C, \(0,1.4654168576,-1.8204715787,-0.1881939148\)
\(\mathrm{N}, 0,0.2923567785,-2.3495280456,-0.1612262493\)

C, \(0,1.0704333622,1.8315412402,0.0593929446\)
C,0,2.4628644538,1.8026830022,-0.0135204385
C,0,2.9268852078,0.3891845985,-0.1253093003
O,0,4.0493113267,0.0127340352,-0.2062620659
C,0,2.6348890655,-2.7842433534,-0.3083611831
C,0,0.4268405743,3.0475169479,0.167821937
C,0,2.5771555874,4.1655399309,0.1276685183
C,0,3.2294750686,2.9406307775,0.018160917
Н, \(,,-2.0813410153,-3.2584391739,-0.0965366868\)
Н,0,3.1441325395,5.0783109745,0.1555528732
H,0,4.3005009311,2.8746613295,-0.0406044923
\(\mathrm{Br}, 0,-4.724286195,0.9415003414,0.3003536396\)
H,0,-4.1610847731,-1.93793373,0.0920850982
H,0,-1.9141000652,1.660467776,0.201509466
H, \(0,-0.6381982369,3.1383568663,0.2277203808\)
C,0,1.1974783892,4.2096143802,0.2007717082
H,0,0.7015574003,5.1600632723,0.2851580716
F,0,3.4410909959,-2.6709655379,0.7300543931
F,0,3.3316587642,-2.5379421891,-1.401512494
F,0,2.2315461527,-4.0320028793,-0.3654899199
\(\mathrm{HF}=-3645.4038559\)
RMSD \(=5.418 \mathrm{e}-009\)
Dipole=-1.3094064,1.853069,0.1824836
\(\mathrm{PG}=\mathrm{C} 01\) [ \(\mathrm{X}(\mathrm{C} 17 \mathrm{H} 7 \mathrm{Br} 1 \mathrm{~F} 3 \mathrm{~N} 1 \mathrm{O} 1)]\)

\section*{References:}

1 C. C. J. Roothan, Rev. Mod. Phys. 1951, 23, 69-89.

2 R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724-728.

3 Gaussian 03, Revision B.02, J. A. Pople et. al., Gaussian, Inc., Pittsburgh PA, 2003.

4 K. Ruud, T. Helgaker, K. L. Bak, P. Jørgensen, H. J. A. Jensen, J. Chem. Phys. 1993, 99, 38473859.```


[^0]:    1 PDA Mutt $1 / 242 \mathrm{~nm} 4 \mathrm{~nm}$

