Supporting Information

for

New Strategy to Construct Spiro/Fused/Bridged Carbocyclic Scaffolds Based on the Design of Novel 6-C Synthon Precursor

Jia Liu, Xi Wang, Chang-Liang Sun, Bi-Jie Li, Zhang-jie shi and Min Wang*

Table	Page
General	S2
Synthesis of Substrates 3	S3
Synthesis and analytical data of compound 5, 7, 9	S4
Procedure for Equation 4 and Synthesis and analytical data of compound 11	S9
Procedure for Equation 5 and Synthesis and analytical data of compound 13	S9
Procedure for Equation 6 and Synthesis and analytical data of compound 14	
Procedure for Equation 7 and Synthesis and analytical data of compound 16, 17	
Procedure for Equation 8 and Synthesis and analytical data of compound 18	
X-ray Crystal Structure of compound 11 and 17	S12-S13
¹ H and ¹³ C NMR spectral data	S14-S35

I. General

All the reactions were carried out under a nitrogen atmosphere using standard Schlenk techniques. $Pd(OAc)_2$ (99.99% pure) was purchased from Alfa, DPPF (99% pure) was purchased from Zilai and DBU (99% pure) was purchased from Alfa. CH_2Cl_2 was distilled over CaH_2 . ¹H NMR (300 MHz) and ¹³C NMR (50 MHz) was recored on Varian Inc spectrometers or ¹³C NMR (60 MHz) was registered on Jeol spectrometers with CDCl₃ as solvent and tetramethylsilane (TMS) as internal standard. Chemical shifts are reported in ppm by assigning TMS resonance in the ¹H spectrum as 0.00 ppm and CDCl₃ resonance in the ¹³C spectrum as 77.0 ppm. All coupling constants (*J* values) are reported in Hertz (Hz). Column chromatography was performed on silica gel 200-300 mesh. IR, GC, MS, and HRMS were performed by the State-authorized Analytical Center in Peking University. The following compounds were prepared according to known literature procedures: citations after punctuation **3**¹, **8a**², **8b**³.

II. Synthesis of Substrates

Experimental Procedure of synthesis of 2,3-dimethylenebutane-1,4-diyl diacetate (3): To an three-neck flask (250 mL) equipped with a magnetic stir bar was added 2.12 g (2.5 mmol, 5 mol %) of 1,3-dimesityl-4,5-dihydroimidazol-2-ylidenetricyclohexylphos-phine benzylidene ruthenium dichloride (Grubbs II catalyst)⁴ under ethylene balloon. A solution of 8.5 g of but-2-yne-1,4-diyl diacetate (50 mmol) in 200 mL of DCM was added to the flask. The mixture was stirred at room temperature for 12 hours. The reaction mixture was purified by silica gel column chromatography with ether/ petroleum ether = 1/4 to afford compound **3** as white solid (8.11 g, 82% yield). Spectra were identical to those reported in ref 1.

Dimethyl 3,4-dimethylenecyclopentane-1,1-dicarboxylate ¹**H NMR (CDCl₃, 300 MHz)**: δ 5.34 (bs, 2H), 5.31 (bs, 2H), 4.78 (s, 4H), 2.10 (s, 6H). ¹³**C NMR (CDCl₃, 50 MHz)**: δ 170.5, 139.3, 115.8, 64.9, 20.9. **MS** (C₁₀H₁₄O₄): 198 (M⁺). HRMS (EI): Anal. Calcd. (M⁺) 198.08, Found: 198.1. **IR** (cm⁻¹): v 1742, 1405, 1318, 1260, 1178

III. Synthesis and analytical data of product 5, 7, 9

Dimethyl 3,4-dimethylenecyclopentane-1,1-dicarboxylate

Following the general procedure, starting from 32 mg (0.24 mmol) of dimethyl malonate **4a**, product **5a** was obtained using ether/petroleum ether (1:4) as the eluant. yield: 33.4 mg, 79% yield. colorless oil. ¹H NMR (CDCl₃, **300** MHz): δ 5.40 (s, 2H), 4.96 (s, 2H), 3.73 (s, 6H), 3.04 (s, 4H). ¹³C NMR (CDCl₃, **50** MHz): δ 171.6, 144.4, 105.6, 57.6, 52.8, 41.2. MS (C₁₁H₁₄O₄): 210 (M⁺). HRMS (ESI): Anal. Calcd. (M+Na⁺) 233.07843, Found: 233.07831. IR (cm⁻¹): v 1735, 1435, 1288, 1247, 1178.

Ethyl 1-acetyl-3,4-dimethylenecyclopentanecarboxylate (5b)

Following the general procedure, starting from 32 mg (0.24 mmol) of Ethyl acetoacetate **4b**, product **5b** was obtained using ether/petroleum ether (1:4) as the eluant. yield: 35.4 mg, 85% yield, colorless oil. ¹H NMR (CDCl₃, 300 MHz): δ 5.39 (s, 2H), 4.96 (s, 2H), 4.24-4.16 (m, 2H), 3.04-2.91 (m, 4H), 2.19 (s, 3H), 1.26 (t, 3H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 50 MHz): δ 203.2, 171.9, 144.6, 105.6, 64.0, 61.7, 39.9, 26.3, 14.0. MS (C₁₂H₁₆O₃): 208 (M⁺). HRMS (ESI): Anal. Calcd. (M+Na⁺) 231.09917, Found: 231.09911. **IR** (cm⁻¹): v 1713, 1357, 1235, 1180, 1151.

1,1'-(3,4-Dimethylenecyclopentane-1,1-diyl)diethanone (5c)

Following the general procedure, starting from 24 mg (0.24 mmol) of pentane-2,4-dione **4c**, product **5c** was obtained using ether/petroleum ether (1:4) as the eluant. yield: 29.2 mg, 82% yield, colorless oil. ¹H NMR (CDCl₃, 300 MHz): δ 5.39 (s, 2H), 4.98 (s, 2H), 2.97 (s, 4H), 2.14 (s, 6H). ¹³C NMR (CDCl₃, 50 MHz): δ 205.0, 144.4, 105.9, 71.7, 38.8, 26.6. MS (C₁₁H₁₄O₂): 178 (M⁺). HRMS (ESI): Anal. Calcd. (M+H⁺) 179.10666, Found: 179.10634. **IR** (cm⁻¹): v 1718, 1699, 1421, 1356, 1210.

Ethyl 1-cyano-3,4-dimethylenecyclopentanecarboxylate (5d)

Following the general procedure, starting from 27 mg (0.24 mmol) of ethyl cyanoacetate **4d**. product **5d** was obtained using ether/petroleum ether (1:4) as the eluant. yield: 34.8 mg, 91% yield, colorless oil. ¹H NMR (CDCl₃, 300 MHz): δ 5.52 (s, 2H), 5.07 (s, 2H), 4.32-4.25 (m, 2H), 3.15-3.00 (m, 4H), 1.33 (t, 3H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 50 MHz): δ 168.0, 142.1, 119.5, 107.3, 63.1, 45.5, 43.3, 13.9. MS (C₁₁H₁₃NO₂): 191 (M⁺). HRMS (ESI): Anal. Calcd. (M+Na⁺) 214.08385, Found: 214.08361. IR (cm⁻¹): v 1743, 1239, 1069, 1023, 907.

Ethyl 3,4-dimethylene-1-nitrocyclopentanecarboxylate (5e)

Following the general procedure, starting from 32 mg (0.24 mmol) of ethyl nitroacetate **4e**, product **5e** was obtained using ether/petroleum ether (1:4) as the eluant. yield: 21.5 mg, 51% yield, pale yellow oil. ¹**H NMR** (CDCl₃, 300 MHz): δ 5.48 (s, 2H), 5.05 (s, 2H), 4.32-4.25 (m, 2H), 3.48 (d, 2H, J = 8.7 Hz), 3.26 (d, 2H, J = 8.7 Hz), 1.29 (t, 3H, J = 7.2 Hz). ¹³**C NMR** (CDCl₃, 50 MHz): δ 166.3, 141.8, 107.2, 96.7, 63.2, 42.5, 13.8. **MS** (C₁₀H₁₃NO₄): 234 (M⁺). HRMS (ESI): Anal. Calcd. (M+Na⁺) 234.07368, Found: 234.07362. **IR** (cm⁻¹): v 1749, 1554, 1414, 1369, 1240.

(3,4-Dimethylenecyclopentane-1,1-diyl)bis(phenylmethanone) (5f)

Following the general procedure, starting from 54 mg (0.24)mmol) of 1,3-diphenylpropane-1,3-dione 4f, product 5f was obtained using ether/petroleum ether (1:4) as the eluant. yield: 54.4 mg, 90% yield, white solid; mp: 73-74 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.86 (d, 4H, J = 3.9 Hz), 7.42 (t, 2H, J = 7.5 Hz), 7.31 (t, 4H, J = 7.5 Hz), 5.42 (s, 2H), 4.96 (s, 2H), 3.40 (s, 4H). ¹³C NMR (CDCl₃, 50 MHz): δ 197.6, 144.9, 135.5, 133.2, 129.2, 128.6, 105.5, 67.4, 41.9. MS (C₂₁H₁₈O₂): 302 (M⁺). HRMS (ESI): Anal. Calcd. (M+H⁺) 303.13796, Found: 303.13820. **IR** (cm⁻¹): v 1725, 1682, 1427, 1325, 1210.

Ethyl 3,4-dimethylene-1-(4-nitrobenzoyl)cyclopentanecarboxylate (5g)

Following the general procedure, starting from 50 mg (0.24 mmol) of ethyl 4-nitrophenylacetate **4g**, product **5g** was obtained using ether/petroleum ether (1:4) as the eluant. yield: 55.4 mg, 88% yield, pale yellow sticky oil. ¹H NMR (CDCl₃, 300 MHz): δ 8.30 (d, 2H, *J* = 4.5 Hz), 8.04 (d, 2H,

J = 4.5 Hz), 5.4 (s, 2H), 4.99 (s, 2H), 4.17-4.10 (m, 2H), 3.20 (s, 4H), 1.06 (t, 3H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 50 MHz): δ 193.7, 172.5, 150.1, 144.0, 139.7, 129.6, 123.7, 105.9, 62.1, 61.4, 41.2, 13.8. MS (C₁₇H₁₇NO₅): 315 (M⁺). HRMS (ESI): Anal. Calcd. (M+Na⁺) 338.09989, Found: 338.10013. IR (cm⁻¹): v 1738,1693, 1521, 1349, 1280, 1203.

Methyl 3,4-dimethylene-1-(phenylsulfonyl)cyclopentanecarboxylate (5h)

Following the general procedure, starting from 51 mg (0.24 mmol) of methyl phenylsulfonylacetate **4h**, product **5h** was obtained using ether/petroleum ether (1:4) as the eluant. yield: 41.5 mg, 71% yield, colorless oil. ¹H NMR (CDCl₃, 300 MHz): δ 7.85-7.82 (m, 2H), 7.72-7.67 (m, 1H), 7.59-7.54 (m, 2H), 5.39 (s, 2H), 4.96 (s, 2H), 3.66(s, 3H), 3.27 (d, 2H, *J* = 8.3 Hz), 3.15 (d, 2H, *J* = 8.3 Hz). ¹³C NMR (CDCl₃, 50 MHz): δ 168.0, 142.8, 134.3, 129.8, 128.9, 128.8, 106.4, 76.0, 53.3, 38.9. MS (C₁₅H₁₆O₄S): 292 (M⁺). HRMS (ESI): Anal. Calcd. (M+Na⁺) 315.06615, Found: 315.06527. **IR** (cm⁻¹): v 1742,1680, 1540, 1470, 1280.

1,1-Biphenylsulfonyl-3,4-dimethylenecyclopentane (5i):

Following the general procedure, starting from 71 mg (0.24 mmol) of bis(phenylsulfonyl)methane **4i**, product **5i** was obtained using ether/petroleum ether (1:4) as the eluant. yield: 48.6 mg, 65% yield, white solid, 123-124 °C. ¹H NMR (CDCl₃, 300 MHz): δ 8.03-8.01 (m, 4H), 7.74-7.69 (m, 2H), 7.59-7.54 (m, 4H), 5.29 (s, 2H), 4.84 (s, 2H), 3.40 (s, 4H). ¹³C NMR (CDCl₃, 50 MHz): δ 142.5, 136.6, 134.7, 131.1, 128.7, 106.3, 90.2, 38.4. MS (C₁₉H₁₈O₄S₂): 374 (M⁺). HRMS (ESI): Anal. Calcd. (M+H⁺) 375.15909, Found: 375.15869. **IR** (cm⁻¹): v 1740, 1603, 1374, 1224, 1028.

2,3-Dimethylenespiro[4.5]decane-6,10-dione (7a)

Following the general procedure, starting from 27 mg (0.24 mmol) of 1,3-Cyclohexanedione **6a**, product **5a** was obtained using ether/petroleum ether (1:2) as the eluant. yield: 33.1 mg, 87% yield, colorless oil. ¹H NMR (CDCl₃, 300 MHz): δ 5.39 (s, 2H), 4.94 (s, 2H), 2.93 (t, 4H, *J* =1.8 Hz), 2.71 (t, 4H, *J* = 6.6 Hz), 2.03-1.94 (m, 2H). ¹³C NMR (CDCl₃, 50 MHz): δ 207.3, 144.6, 105,5, 69.8, 39.7, 37.8, 17.9. **MS** (C₁₂H₁₄O₂): 190 (M⁺). HRMS (ESI): Anal. Calcd. (M+H⁺) 191.10666, Found: 191.10626. **IR** (cm⁻¹): v 1727, 1695, 1423, 866, 713.

7,8-Dimethylenespiro[4.4]nonane-1,4-dione (7b)

Following the general procedure, starting from 20 mg (0.24 mmol) of 1,3-Cyclopentanedione **6b**, product 7**b** was obtained using ether/petroleum ether (1:2) as the eluant. yield: 24.7 mg, 70% yield, white solid, mp: 83-84 °C. ¹**H NMR** (CDCl₃, 300 MHz): δ 5.46 (s, 2H), 4.97 (s, 2H), 2.82 (s, 4H), 2.70 (t, 4H, *J* = 1.8 Hz). ¹³**C NMR** (CDCl₃, 50 MHz): δ 214.2, 144.3, 106.0, 59.8, 40.5, 35.0. **MS** (C₁₁H₁₂O₂): 176 (M⁺). HRMS (ESI): Anal. Calcd. (M+H⁺) 177.09101, Found: 177.09059. **IR** (cm⁻¹): v 1720, 1420, 1297, 1205, 937.

8,8-Dimethyl-2,3-dimethylenespiro[4.5]decane-6,10-dione (7c)

Following the general procedure, starting from 34 mg (0.24 mmol) of dimedone **6c**, product **7c** was obtained using ether/petroleum ether (1:3) as the eluant. yield: 31.0 mg, 71% yield, white solid, mp: 103-104 °C. ¹H NMR (CDCl₃, 300 MHz): δ 5.38 (s, 2H), 4.93 (s, 2H), 2.91 (s, 4H), 2.63 (s, 4H), 1.01 (s, 6H). ¹³C NMR (CDCl₃, 50 MHz): δ 207.0, 144.6, 105.4, 68.5, 51.6, 39.6, 30.7, 28.4. **MS** (C₁₄H₁₈O₂): 218 (M⁺). HRMS (ESI): Anal. Calcd. (M+H⁺) 219.13796, Found: 219.13773. **IR** (cm⁻¹): v 1720, 1696, 1422, 1327, 1239.

3,4-Dimethylenespiro[cyclopentane-1,2'-indene]-1',3'-dione (7d)

Following the general procedure, starting from 34 mg (0.24 mmol) of 35 mg (0.24 mmol) of 1,3-indanedione **6d**, product **7d** was obtained using ether/petroleum ether (1:3) as the eluant. yield: 43.0 mg, 96% yield, white solid, mp: 70-71 °C. ¹H NMR (CDCl₃, 300 MHz): δ 8.00-7.98 (m, 2H), 7.88-7.85 (m, 2H), 5.53 (s, 2H), 5.01 (s, 2H), 2.83 (s, 4H). ¹³C NMR (CDCl₃, 50 MHz): δ 202.6, 145.2, 141.2, 135.8, 123.5, 105.6, 56.8, 40.7. MS (C₁₅H₁₂O₂): 224 (M⁺). HRMS (ESI): Anal. Calcd. (M+H⁺) 225.09101, Found: 225.09088. **IR** (cm⁻¹): v 1739, 1701, 1593, 1333, 1232.

Dimethyl 8,9- benzo-3,4-dimethylene-11-oxobicyclo[4.3.1]undecane-1,6-dicarboxylate (9a)

Following the general procedure, starting from 66 mg (0.24 mmol) of dimethyl 3-oxo-1,2,4,5-tetrahydrobenzo[*d*]cycloheptene-2,4-dicarboxylate **8a**, product **7d** was obtained using ether/petroleum ether (1:4) as the eluant. yield: 65.2 mg, 92% yield, white solid, mp: 94-95 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.27-7.20 (m, 4H), 5.58 (s, 2H), 5.04 (s, 2H), 3.73 (s, 6H), 3.22 (dd, 4H, J_1 = 23.4 Hz, J_2 = 14.7 Hz), 2.90 (d, 2H, J = 7.5 Hz), 2.55 (d, 2H, J = 7.5 Hz). ¹³C NMR (CDCl₃, 50 MHz): δ 206.0, 172.6, 142.2, 137.0, 131.1, 127.3, 115.7, 63.5, 52.2, 38.4, 37.4. MS (C₂₁H₂₂O₃): 354 (M⁺). HRMS (ESI): Anal. Calcd. (M+H⁺) 355.15400, Found: 355.15369. IR (cm⁻¹): v 1735, 1696, 1433, 1268, 1237, 1202, 1180.

Dimethyl 3,4-dimethylene-11-oxobicyclo[4.4.1]decane-1,6-dicarboxylate (9b)

Following the general procedure, starting from dimethyl cyclohexanone-2,6-dicaboxylate **8b**, product 9d was obtained using ether/petroleum ether (1:4) as the eluant. yield: 44.4 mg, 76% yield, colorless oil. ¹H NMR (CDCl₃, 300 MHz): δ 5.48 (s, 2H), 5.11 (s, 2H), 3.74 (s, 6H), 2.92 (s, 4H), 2.55-2.45 (m, 2H), 2.26-2.17 (m, 1H), 2.12-2.01 (m, 2H), 1.97-1.83 (m, 1H). ¹³C NMR (CDCl₃, 60 MHz): δ 206.2, 172.8, 142.1, 114.4, 61.1, 52.3, 37.5, 34.8, 17.1. **MS** (C₁₆H₂₀O₅): 292 (M⁺). HRMS (ESI): Anal. Calcd. (M+Na⁺) 315.12029, Found: 315.11968. **IR** (cm⁻¹): v 1735, 1706, 1458, 1431, 1277, 1214, 1139.

Synthesis of compound 11 (Eq 4).

A solution of dimethyl 8,9- benzo-3,4-dimethylene-11-oxobicyclo[4.3.1] undecane-1,6-dicarboxylate **9a** (65 mg, 0.184 mmol), N-phenylmaleimide **10** (34.6 mg, 0.2 mol) in acetone (5.0 mL) was stirred for 12 hours at RT. After removing the solvent under vacuum, the residue was purified by silica gel column chromatography with EtOAc/ petroleum ether = 1/4 to afford compound **11** as a white solid (79.7 mg, 84% yield, dr > 20: 1), mp: 273-274 . ¹H NMR (CDCl₃, 300 MHz): δ 7.41- 7.33 (m, 3H), 7.30- 7.27 (m, 2H), 7.20- 7.16 (m, 2H), 7.10- 7.02 (m, 2H), 3.81 (s, 6H), 3.48 (s, 1H), 3.43 (s, 1H), 3.16- 3.14(m, 2H), 3.06 (s, 1H), 3.00 (s, 1H), 2.67-2.49 (m, 6H), 2.22 (s, 1H), 2.18 (s, 1H). ¹³C NMR (CDCl₃, 60 MHz): δ 206.6, 178.9, 172.7, 135.9, 134.0, 131.8, 131.7, 128.9, 128.3, 128.0, 126.1, 63.2, 52.4, 39.7,

39.3, 35.8, 31.5. **MS** (C₃₁H₂₉NO₇): 527 (M⁺). HRMS (ESI): Anal. Calcd. (M+H⁺) 528.20168, Found: 528.20046. **IR** (cm⁻¹): v 2923, 2852, 1738, 1708, 1476, 1285.

Synthesis of compound 13 (Eq 5).

To an oven dried Schlenk tube was added 2,3-dimethylenebutane-1,4-diyl diacetate 3 (39.6 mg, 0.20 mmol), dimethyl malonate 4a (0.24 mmol), Pd(OAc)₂ (1.12 mg, 0.005 mmol), DPPF (5.54 mg, 0.01 mmol), DBU (76 mg, 0.50 mmol). The tube was evacuated and refilled with N₂, and this process was repeated 3 times. Then 2.5 mL of CH_2Cl_2 was added into the tube by syringe. The mixture was stirred at room temperature for 24 hours. After removing the solvent under vacuum, the solvent of DMAD 12 (170.4 mg, 1.2 mmol) in ether (5 mL) was add to the reaction mixture. After refluxing for 4 hours, the solvent was removed under vacuum. the residue was purified by silica gel column chromatography with EtOAc/ petroleum ether = 1/1 to afford compound 13 as a 74% white solid (51.9)mg, vield), mp: 117-118 . Tetramethyl 1H-indene-2,2,5,6(3H,4H,7H)-tetracarboxylate ¹H NMR (CDCl₃, 300 MHz): δ 3.78 (s, 6H), 3.75 (s, 6H), 2.99 (s, 4H), 2.98 (s, 4H). ¹³C NMR (CDCl₃, 60 MHz): δ 172.4, 166.3, 132.8, 127.8, 57.6, 52.8, 52.1, 42.7, 28.3. MS (C₁₇H₂₀O₈): 352 (M⁺). HRMS (ESI): Anal. Calcd. (M+H⁺) 353.12309, Found: 353.12280. IR (cm⁻¹): v 1730, 1647, 1434, 1317, 1255, 1202, 1152.

Synthesis of compound 14 (Eq 6).

To an oven dried Schlenk tube was added 2,3-dimethylenebutane-1,4-diyl diacetate **3** (39.6 mg, 0.20 mmol), nucleophile (0.24 mmol), Pd(OAc)₂ (1.12 mg, 0.005 mmol), dppf (5.54 mg, 0.01 mmol), DBU (76 mg, 0.50 mmol). The tube was evacuated and refilled with N₂, and this process was repeated 3 times. Then 2.5 mL of CH₂Cl₂ was added into the tube by syringe. The mixture was stirred at room temperature for 24 hours. After removing the solvent under vacuum, the solvent of DMAD **12** (170.4 mg, 1.2 mmol) in ether (5 mL) was add to the reaction mixture. The mixture was refluxed for 4 hours. After removing the solvent under vacuum, the residue was purified by silica gel column chromatography with EtOAc/ petroleum ether = 1/1 to afford compound **14** as a white solid (59.4 mg, 69% yield), mp: 122-123 . ¹H NMR (CDCl₃, 300 MHz): δ 3.77 (s, 6H), 3.75 (s, 6H), 3.53-3.43 (m, 2H), 3.04-2.95 (m, 4H), 2.53-2.47 (m, 2H), 2.42-2.37 (m, 2H), 2.02-1.97 (m, 2H), 1.86-1.80 (m, 2H). ¹³C NMR (CDCl₃, 60 MHz): δ 205., 172.8, 168.1, 132.4, 128.7, 61.0, 52.4, 52.0, 35.3, 34.1, 33.4, 16.7. **MS** (C₂₂H₂₆O₉): 434 (M⁺). HRMS (ESI): Anal. Calcd. (M+Na⁺) 457.14690, Found: 457.14691. **IR** (cm⁻¹): v 1734, 1434, 1286, 1249, 1071.

Synthesis of compounds 16 and 17 (Eq 7).

To an oven dried Schlenk tube was added 2,3-dimethylenebutane-1,4-diyl diacetate **3** (99 mg, 0.50 mmol), dimethyl acetone -1,3-dicarboxylate **15** (0.2 mmol), Pd(OAc)₂ (2.24 mg, 0.01 mmol), DPPF (11.8 mg, 0.02 mmol), DBU (182.4 mg, 1.2 mmol). The tube was evacuated and refilled with N₂, and this process was repeated 3 times. Then 5 mL of CH₂Cl₂ was added into the tube by syringe. The mixture was stirred at room temperature for 24 hours. The reaction mixture was purified by silica gel column chromatography with ether/ petroleum ether = 1/4 to afford compound **16** as colorless oil (51.1 mg, 74% yield). **Dimethyl 3,4,8,9-tetramethylene-11-oxobicyclo[4.4.1]undecane-1,6-dicarboxylate** ¹**H NMR** (CDCl₃, 300 MHz): δ 5.45 (s, 4H), 5.00 (s, 4H), 3.72 (s, 6H), 2.82 (d, 8H, *J* = 1.7 Hz). ¹³**C NMR** (CDCl₃, 60 MHz): δ 206.8, 172.7, 143.9, 115.8, 63.3, 52.3, 37.8. **MS** (C₁₉H₂₂O₅): 330 (M⁺). HRMS (ESI): Anal. Calcd. (M+Na⁺) 353.13594, Found: 353.13586. **IR** (cm⁻¹): v 1735, 1696, 1432, 1269, 1209.

A solution of 16 (66 mg, 0.2 mmol), DMAD 12 (71 mg, 0.5 mol) in $CH_2Cl_2/e ther = 1/1$ (5.0 mL) was stirred for 12 hours in reflux. After removing the solvent under vacuum, the residue was purified by silica gel column chromatography with EtOAc/ petroleum ether = 2:1 to afford compound 17 as a white solid (105.6 86% yield), 253-254 mg, mp: Dimethyl 3,4,8,9-tetramethylene-11-oxobicyclo[4.4.1]undecane-1,6-dicarboxylate ¹H NMR (CDCl₃, 300 MHz): δ 3.79 (s, 12H), 3.76 (s, 6H), 3.40-3.30 (m, 4H), 3.03-2.92 (m, 4H), 2.58 (s, 8H). ¹³C NMR (CDCl₃, 50 MHz): δ 205.6, 172.7, 167.8, 132.2, 128.0, 62.5, 52.5, 52.3, 35.5, 34.8. **MS** (C₃₁H₃₄O₁₃): 614 (M⁺). HRMS (ESI): Anal. Calcd. (M+Na⁺) 637.18818, Found: 637.18916. **IR** (cm⁻¹): v 2952, 1734, 1696, 1434, 1271, 1235, 1066.

Synthesis of compound 18 (Eq 8).

Compound **18** was obtained from CH₂Cl₂ by slow solvent evaporation with using compound sample obtained by irradiation of **11** in the solid state with k > 290 nm (Pyrex filter). Compound 18 is a white solid (yield > 95%), mp: 261-262 **.**¹H NMR (CDCl₃, 300 MHz): δ 7.33-7.23 (m, 5H), 7.16-6.99 (m, 4H), 3.77 (s, 6H), 3.44 (s, 1H), 3.39 (s, 1H), 3.11- 3.05 (m, 2H), 3.02 (s, 1H), 3.00 (s, 1H), 2.62-2.45 (m, 6H), 2.19 (s, 1H), 2.14 (s, 1H). ¹³C NMR (CDCl₃, 60 MHz): δ 179.2, 173.0, 136.1, 134.3, 132.0, 131.6, 129.1, 128.6, 128.3, 126.3, 63.3, 52.5, 39.8, 39.4, 35.9, 31.4. **MS** (C₃₀H₂₉NO₆): 499 (M⁺). HRMS (ESI): Anal. Calcd. (M⁺) 499.19894, Found: 499.20023. **IR** (cm⁻¹): v 2904, 1710, 1699, 1480, 1206.

References

- 1. Atsushi K.; Norikazu S.; Miwako M. Tetrahedron, 1999, 55,8155.
- 2. Shuntaro Mataka. J. Org. Chem. 1989, 54, 5237.
- 3. Blicke, F. F.; McCarty, F. J. J. Org. Chem. 1959, 24, 1069.
- 4. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.

IV. X-ray Crystal Structure of 11 and 17

Experimental Details

A colorless Toluene and Hexane solution of **11** was prepared. Crystals suitable for X-ray analysis were obtained by slow evaporation of solvent at room temperature. A colorless prism crystal of C_{31} H₂₈ NO₇ having approximate dimensions of 0.19 x 0.18 x 0.10 mm was mounted on a glass fiber. All measurements were made on a Rigaku RAXIS RAPID imaging plate area detector with graphite monochromated Mo-K α radiation.

A colorless CH_2Cl_2 and Hexane solution of **17** was prepared. Crystals suitable for X-ray analysis were obtained by slow evaporation of solvent at room temperature. A colorless prism crystal of C_{31} H_{28} NO₇ having approximate dimensions of 0.40 x 0.40 x 0.30 mm was mounted on a glass fiber. All measurements were made on a Rigaku RAXIS RAPID imaging plate area detector with graphite monochromated Mo-K α radiation.

	11	17
formula	C ₃₁ H ₂₉ NO ₇ , C ₇ H ₈	C ₃₁ H ₃₄ O ₁₃
fw	618.68	614.58
cryst syst	triclinic	Monoclinic
space group	P-1	P2(1)/n
<i>a</i> (Å)	9.851(2)	12.624(3)
<i>b</i> (Å)	11.303(2)	10.895(2)
<i>c</i> (Å)	15.868(3)	21.852(4)
α (deg)	82.36(3)	90.00
β (deg)	76.88(3)	104.90(3)
$\gamma(\text{deg})$	64.54(3)	90.00
$V(\text{\AA}^3)$	1552.4(5)	2904.7(10)
Ζ	2	4
$D_{\text{calcd}} (\text{g cm}^{-3})$	1.324	1.405
$\mu (mm^{-1})$	0.091	0.110
<i>F</i> (000)	645	1296
cryst size (mm)	0.19×0.18× 0.10	0.40×0.40×0.30
max. 2θ (deg)	50.0	55.0
no. of reflns collected	5470	6634
no. of indep reflns/ $R_{\rm int}$	4872/ 0.0457	2441/0.0903
no. of params	417	404
goodness-of-fit on F ²	1.211	0.990
R1, wR2 ($I > 2\sigma(I)$)	0.0775, 0.1767	0.0649, 0.0734
R1, wR2 (all data)	0.0883, 0.1831	0.1659, 0.0734

Crystal Data

Figure 1. X-ray crystallographic of compound 11

Figure 2. X-ray crystallographic of compound 17

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

S26

S33

150

200

. J.,

50

PPM

ò

