SI: Part - A

Supporting Information

Soluble Polymer Supported Divergent Synthesis of Tetracyclic Benzene-Fused Pyrazino/Diazepino Indoles: An Advanced Synthetic Approach to Bioactive Scaffolds

Po-Tsung Lin, Deepak B. Salunke, Li-Hsun Chen and Chung-Ming Sun*

Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300-10, Taiwan

E-mail: cmsun@mail.nctu.edu.tw

Contents

Stepwise ¹ H NMR Monitoring on a PEG Support	SI 2 – SI 3
Analytical Data for Compounds 2b - 2f	SI 4 – SI 6
Analytical Data for Compounds 3b - 3d	SI 6 – SI 7
Analytical Data for Compounds 4b – 4k	SI 8 – SI 12
X-ray crystallographic data (2a)	SI 13 – SI 21
X-ray crystallographic data (4k)	SI 22 – SI 28

SI: Part - A

Stepwise ¹H NMR Monitoring on a PEG Support

SI Figure 1. The stepwise proton NMR monitoring towards the synthesis of 2e from 8.

SI Figure 2. The stepwise proton NMR monitoring towards the synthesis of 4c from 7.

X-ray crystallographic data (2a)

SI Table 1. Crystal data and structure refinement for 2a.

Empirical formula	$C_{38}H_{36}N_4O_4$		
Formula weight	612.71		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P1c1		
Unit cell dimensions	a = 10.1275(4) Å	$\alpha = 90^{\circ}$	
	b = 19.1023(7) Å	$\beta = 106.1820(10)^{\circ}$	
	c = 8.0831(3) Å	$\gamma = 90^{\circ}$	
Volume	1501.79(10) Å ³		
Z	2		
Density (calculated)	1.355 Mg/m ³		
Absorption coefficient	0.089 mm ⁻¹		
F(000)	648		
Crystal size	0.25 x 0.25 x 0.15 mm ³		
Theta range for data collection	2.09 to 26.41°		
Index ranges	-12<=h<=11, -23<=k<=23,	-6<=l<=10	
Reflections collected	13111		
Independent reflections	4539 [R(int) = 0.0173]		
Completeness to theta = 26.41°	99.3%		
Absorption correction	Semi-empirical from equiva	alents	
Max. and min. transmission	0.7454 and 0.7180		
Refinement method	Full-matrix least-squares of	n F ²	
Data / restraints / parameters	4539 / 2 / 421		
Goodness-of-fit on F ²	1.150		
Final R indices [I>2sigma(I)]	R1 = 0.0318, wR2 = 0.0912	2	
R indices (all data)	R1 = 0.0344, wR2 = 0.1044		
Absolute structure parameter	-0.2(8)		
Largest diff. peak and hole	0.431 and -0.467 e.Å ⁻³		

	х	У	Z	U(eq)
C(1)	3878(2)	980(1)	-2073(3)	17(1)
C(2)	2690(2)	952(1)	-1312(3)	15(1)
C(3)	1499(2)	582(1)	-1807(3)	18(1)
C(4)	697(2)	757(1)	-673(3)	18(1)
C(5)	-622(2)	567(1)	-622(3)	21(1)
C(6)	-1180(2)	874(1)	574(3)	24(1)
C(7)	-435(2)	1373(1)	1726(3)	23(1)
C(8)	879(2)	1566(1)	1724(3)	19(1)
C(9)	1453(2)	1253(1)	530(3)	15(1)
C(10)	3815(2)	1798(1)	913(2)	15(1)
C(11)	4021(2)	2096(1)	2540(3)	17(1)
C(12)	5115(2)	2547(1)	3208(3)	18(1)
C(13)	6057(2)	2680(1)	2270(3)	16(1)
C(14)	5892(2)	2363(1)	681(3)	16(1)
C(15)	4762(2)	1936(1)	-39(2)	15(1)
C(16)	4933(2)	406(1)	-1298(3)	23(1)
C(17)	3378(2)	900(1)	-4024(3)	21(1)
C(18)	7253(2)	3151(1)	2916(3)	16(1)
C(19)	8347(2)	3962(1)	5038(3)	20(1)
C(20)	1376(2)	4075(1)	11691(2)	15(1)
C(21)	2566(2)	4110(1)	10919(2)	15(1)
C(22)	3751(2)	4481(1)	11436(2)	16(1)
C(23)	4566(2)	4296(1)	10304(3)	16(1)
C(24)	5870(2)	4510(1)	10229(3)	19(1)
C(25)	6380(2)	4250(1)	8939(3)	18(1)
C(26)	5600(2)	3790(1)	7701(3)	18(1)
C(27)	4307(2)	3567(1)	7742(3)	17(1)
C(28)	3807(2)	3812(1)	9085(3)	14(1)
C(29)	1476(2)	3232(1)	8753(2)	14(1)
C(30)	1565(2)	2704(1)	7600(2)	16(1)
C(31)	442(2)	2284(1)	6865(3)	15(1)
C(32)	-776(2)	2370(1)	7322(2)	15(1)

SI Table 2. Atomic coordinates (x10⁴) and equivalent isotropic displacement parameters ($Å^2x10^3$) for **2a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2011

SI: Part - A

C(33)	-848(2)	2879(1)	8531(3)	15(1)
C(34)	253(2)	3319(1)	9237(2)	15(1)
C(35)	1713(2)	3550(1)	13186(3)	23(1)
C(36)	1099(2)	4797(1)	12337(3)	21(1)
C(37)	-1987(2)	1918(1)	6609(3)	16(1)
C(38)	-2892(2)	1004(1)	4675(3)	23(1)
N(1)	4505(2)	1678(1)	-1709(2)	17(1)
N(2)	2702(2)	1355(1)	136(2)	15(1)
N(3)	136(2)	3863(1)	10335(2)	16(1)
N(4)	2574(2)	3690(1)	9505(2)	14(1)
O(1)	8171(2)	3224(1)	2243(2)	23(1)
O(2)	7219(1)	3495(1)	4355(2)	20(1)
O(3)	-3033(1)	1929(1)	7046(2)	21(1)
O(4)	-1792(1)	1487(1)	5384(2)	20(1)

ń						
	C(1)-N(1)	1.471(2)	C(15)-N(1)	1.392(2)	C(27)-C(28)	1.400(3)
	C(1)-C(2)	1.497(3)	C(16)-H(16A)	0.9800	C(27)-H(27)	0.9500
	C(1)-C(17)	1.523(3)	C(16)-H(16B)	0.9800	C(28)-N(4)	1.402(2)
	C(1)-C(16)	1.538(3)	C(16)-H(16C)	0.9800	C(29)-C(30)	1.393(3)
	C(2)-C(3)	1.359(3)	C(17)-H(17A)	0.9800	C(29)-C(34)	1.409(3)
	C(2)-N(2)	1.398(3)	C(17)-H(17B)	0.9800	C(29)-N(4)	1.411(2)
	C(3)-C(4)	1.425(3)	C(17)-H(17C)	0.9800	C(30)-C(31)	1.383(3)
	C(3)-H(3)	0.9500	C(18)-O(1)	1.208(2)	C(30)-H(30)	0.9500
	C(4)-C(5)	1.397(3)	C(18)-O(2)	1.345(2)	C(31)-C(32)	1.393(3)
	C(4)-C(9)	1.419(3)	C(19)-O(2)	1.433(2)	C(31)-H(31)	0.9500
	C(5)-C(6)	1.379(3)	C(19)-H(19A)	0.9800	C(32)-C(33)	1.395(3)
	C(5)-H(5)	0.9500	C(19)-H(19B)	0.9800	C(32)-C(37)	1.479(2)
	C(6)-C(7)	1.398(3)	C(19)-H(19C)	0.9800	C(33)-C(34)	1.386(3)
	C(6)-H(6)	0.9500	C(20)-N(3)	1.474(2)	C(33)-H(33)	0.9500
	C(7)-C(8)	1.382(3)	C(20)-C(21)	1.505(3)	C(34)-N(3)	1.394(2)
	C(7)-H(7)	0.9500	C(20)-C(36)	1.528(3)	C(35)-H(35A)	0.9800
	C(8)-C(9)	1.393(3)	C(20)-C(35)	1.534(3)	C(35)-H(35B)	0.9800
	C(8)-H(8)	0.9500	C(21)-C(22)	1.356(3)	C(35)-H(35C)	0.9800
	C(9)-N(2)	1.402(2)	C(21)-N(4)	1.398(2)	C(36)-H(36A)	0.9800
	C(10)-C(11)	1.394(3)	C(22)-C(23)	1.437(3)	C(36)-H(36B)	0.9800
	C(10)-N(2)	1.409(2)	C(22)-H(22)	0.9500	C(36)-H(36C)	0.9800
	C(10)-C(15)	1.412(3)	C(23)-C(24)	1.401(3)	C(37)-O(3)	1.207(2)
	C(11)-C(12)	1.389(3)	C(23)-C(28)	1.412(3)	C(37)-O(4)	1.344(2)
	C(11)-H(11)	0.9500	C(24)-C(25)	1.378(3)	C(38)-O(4)	1.437(2)
	C(12)-C(13)	1.397(3)	C(24)-H(24)	0.9500	C(38)-H(38A)	0.9800
	C(12)-H(12)	0.9500	C(25)-C(26)	1.400(3)	C(38)-H(38B)	0.9800
	C(13)-C(14)	1.387(3)	C(25)-H(25)	0.9500	C(38)-H(38C)	0.9800
	C(13)-C(18)	1.483(3)	C(26)-C(27)	1.386(3)	N(1)-H(1)	0.8800
	C(14)-C(15)	1.394(3)	C(26)-H(26)	0.9500	N(3)-H(3A)	0.8800
	C(14)-H(14)	0.9500				

SI Table 3. Bond lengths [Å] for 2a (Symmetry transformations used to generate equivalent atoms).

N(1)-C(1)-C(2)	107.57(15)	C(12)-C(11)-H(11)	119.6
N(1)-C(1)-C(17)	107.38(16)	C(10)-C(11)-H(11)	119.6
C(2)-C(1)-C(17)	110.41(16)	C(11)-C(12)-C(13)	119.53(18)
N(1)-C(1)-C(16)	110.64(16)	C(11)-C(12)-H(12)	120.2
C(2)-C(1)-C(16)	110.69(15)	C(13)-C(12)-H(12)	120.2
C(17)-C(1)-C(16)	110.07(16)	C(14)-C(13)-C(12)	119.96(17)
C(3)-C(2)-N(2)	109.47(17)	C(14)-C(13)-C(18)	117.79(17)
C(3)-C(2)-C(1)	130.25(18)	C(12)-C(13)-C(18)	122.25(18)
N(2)-C(2)-C(1)	120.28(16)	C(13)-C(14)-C(15)	120.97(18)
C(2)-C(3)-C(4)	107.83(18)	C(13)-C(14)-H(14)	119.5
C(2)-C(3)-H(3)	126.1	C(15)-C(14)-H(14)	119.5
C(4)-C(3)-H(3)	126.1	N(1)-C(15)-C(14)	121.45(17)
C(5)-C(4)-C(9)	119.45(19)	N(1)-C(15)-C(10)	119.42(16)
C(5)-C(4)-C(3)	132.82(19)	C(14)-C(15)-C(10)	119.01(17)
C(9)-C(4)-C(3)	107.62(17)	C(1)-C(16)-H(16A)	109.5
C(6)-C(5)-C(4)	119.46(19)	C(1)-C(16)-H(16B)	109.5
C(6)-C(5)-H(5)	120.3	H(16A)-C(16)-H(16B)	109.5
C(4)-C(5)-H(5)	120.3	C(1)-C(16)-H(16C)	109.5
C(5)-C(6)-C(7)	120.46(19)	H(16A)-C(16)-H(16C)	109.5
C(5)-C(6)-H(6)	119.8	H(16B)-C(16)-H(16C)	109.5
C(7)-C(6)-H(6)	119.8	C(1)-C(17)-H(17A)	109.5
C(8)-C(7)-C(6)	121.5(2)	C(1)-C(17)-H(17B)	109.5
C(8)-C(7)-H(7)	119.3	H(17A)-C(17)-H(17B)	109.5
C(6)-C(7)-H(7)	119.3	C(1)-C(17)-H(17C)	109.5
C(7)-C(8)-C(9)	118.32(19)	H(17A)-C(17)-H(17C)	109.5
C(7)-C(8)-H(8)	120.8	H(17B)-C(17)-H(17C)	109.5
C(9)-C(8)-H(8)	120.8	O(1)-C(18)-O(2)	122.82(17)
C(8)-C(9)-N(2)	132.49(18)	O(1)-C(18)-C(13)	124.52(18)
C(8)-C(9)-C(4)	120.79(17)	O(2)-C(18)-C(13)	112.66(16)
N(2)-C(9)-C(4)	106.59(17)	O(2)-C(19)-H(19A)	109.5
C(11)-C(10)-N(2)	123.79(17)	O(2)-C(19)-H(19B)	109.5
C(11)-C(10)-C(15)	119.52(16)	H(19A)-C(19)-H(19B)	109.5
N(2)-C(10)-C(15)	116.69(17)	O(2)-C(19)-H(19C)	109.5
C(12)-C(11)-C(10)	120.89(18)	H(19A)-C(19)-H(19C)	109.5

SI Table 4. Bond angles [°] for 2a (Symmetry transformations used to generate equivalent atoms).

Continued...

Continued...

SI: Part - A

C(1)-N(1)-H(1)	121.0	C(20)-N(3)-H(3A)	120.9
C(2)-N(2)-C(9)	108.44(15)	C(21)-N(4)-C(28)	108.12(15)
C(2)-N(2)-C(10)	121.54(16)	C(21)-N(4)-C(29)	121.61(16)
C(9)-N(2)-C(10)	129.96(16)	C(28)-N(4)-C(29)	130.26(16)
C(34)-N(3)-C(20)	118.16(15)	C(18)-O(2)-C(19)	115.29(15)
C(34)-N(3)-H(3A)	120.9	C(37)-O(4)-C(38)	115.47(16)

SI Table 5. Anisotropic displacement parameters (Å²x 10³) for **2a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11}+...+2hka^*b^*U^{12}]$.

	U ¹¹	U ²²	U ³³	U23	U13	U12
C(1)	16(1)	17(1)	19(1)	0(1)	6(1)	0(1)
C(2)	16(1)	13(1)	16(1)	2(1)	5(1)	3(1)
C(3)	18(1)	18(1)	18(1)	0(1)	5(1)	0(1)
C(4)	16(1)	18(1)	18(1)	3(1)	4(1)	-1(1)
C(5)	16(1)	24(1)	22(1)	2(1)	3(1)	-5(1)
C(6)	14(1)	32(1)	25(1)	4(1)	6(1)	-5(1)
C(7)	17(1)	31(1)	22(1)	2(1)	8(1)	1(1)
C(8)	17(1)	21(1)	21(1)	0(1)	6(1)	-2(1)
C(9)	12(1)	16(1)	17(1)	6(1)	3(1)	0(1)
C(10)	12(1)	14(1)	18(1)	3(1)	2(1)	1(1)
C(11)	13(1)	22(1)	17(1)	3(1)	7(1)	0(1)
C(12)	18(1)	20(1)	14(1)	-1(1)	5(1)	1(1)
C(13)	14(1)	16(1)	17(1)	3(1)	4(1)	1(1)
C(14)	14(1)	17(1)	18(1)	2(1)	6(1)	0(1)
C(15)	17(1)	15(1)	15(1)	2(1)	5(1)	3(1)
C(16)	21(1)	20(1)	29(1)	4(1)	10(1)	4(1)
C(17)	22(1)	24(1)	20(1)	-3(1)	10(1)	-3(1)
C(18)	15(1)	16(1)	17(1)	4(1)	4(1)	2(1)
C(19)	19(1)	19(1)	22(1)	-3(1)	5(1)	-4(1)
C(20)	15(1)	19(1)	11(1)	-2(1)	3(1)	0(1)
C(21)	17(1)	14(1)	13(1)	0(1)	3(1)	2(1)
C(22)	16(1)	17(1)	16(1)	-2(1)	4(1)	-1(1)
C(23)	15(1)	15(1)	16(1)	2(1)	3(1)	0(1)
C(24)	17(1)	18(1)	21(1)	1(1)	4(1)	-2(1)

C(25)	13(1)	19(1)	21(1)	3(1)	4(1)	-1(1)	
C(26)	18(1)	19(1)	19(1)	1(1)	9(1)	1(1)	
C(27)	18(1)	18(1)	14(1)	0(1)	3(1)	-1(1)	
C(28)	13(1)	14(1)	16(1)	3(1)	5(1)	1(1)	
C(29)	13(1)	14(1)	13(1)	3(1)	2(1)	0(1)	
C(30)	14(1)	17(1)	18(1)	2(1)	5(1)	2(1)	
C(31)	17(1)	14(1)	15(1)	0(1)	5(1)	2(1)	
C(32)	14(1)	16(1)	14(1)	3(1)	2(1)	0(1)	
C(33)	14(1)	17(1)	17(1)	2(1)	6(1)	0(1)	
C(34)	15(1)	16(1)	12(1)	1(1)	4(1)	2(1)	
C(35)	21(1)	29(1)	21(1)	6(1)	8(1)	1(1)	
C(36)	20(1)	22(1)	23(1)	-8(1)	7(1)	0(1)	
C(37)	16(1)	17(1)	16(1)	2(1)	4(1)	1(1)	
C(38)	19(1)	20(1)	29(1)	-6(1)	4(1)	-6(1)	
N(1)	20(1)	16(1)	15(1)	1(1)	8(1)	-3(1)	
N(2)	13(1)	17(1)	15(1)	1(1)	5(1)	0(1)	
N(3)	13(1)	18(1)	16(1)	-5(1)	4(1)	1(1)	
N(4)	14(1)	15(1)	14(1)	0(1)	5(1)	0(1)	
O(1)	19(1)	28(1)	23(1)	-3(1)	8(1)	-5(1)	
O(2)	16(1)	23(1)	20(1)	-5(1)	6(1)	-5(1)	
O(3)	15(1)	28(1)	22(1)	-5(1)	8(1)	-5(1)	
O(4)	16(1)	20(1)	23(1)	-8(1)	6(1)	-5(1)	

SI Table 6. Hydrogen coordinates (x10⁴) and isotropic displacement parameters ($Å^2x10^3$) for 2a.

0				
	x	У	Z	U(eq)
H(3)	1247	262	-2743	22
H(5)	-1132	228	-1405	26
H(6)	-2076	745	616	29
H(7)	-843	1584	2529	27
H(8)	1378	1904	2518	23
H(11)	3405	1988	3200	20
H(12)	5223	2763	4296	21
H(14)	6560	2439	74	19
H(16A)	5729	453	-1754	34
H(16B)	4510	-55	-1603	34
H(16C)	5231	455	-41	34

SI: Part - A

H(17A)	2689	1261	-4503	32
H(17B)	2967	436	-4312	32
H(17C)	4157	953	-4511	32
H(19A)	9212	3700	5297	30
H(19B)	8246	4178	6096	30
H(19C)	8353	4327	4189	30
H(22)	3996	4802	12368	20
H(24)	6396	4830	11054	22
H(25)	7271	4385	8891	21
H(26)	5966	3626	6810	21
H(27)	3779	3259	6888	20
H(30)	2404	2632	7316	19
H(31)	502	1937	6048	18
H(33)	-1667	2925	8877	18
H(35A)	921	3505	13650	35
H(35B)	2510	3717	14094	35
H(35C)	1925	3094	12770	35
H(36A)	979	5139	11402	32
H(36B)	1879	4936	13303	32
H(36C)	263	4779	12719	32
H(38A)	-3027	701	5592	35
H(38B)	-2660	717	3790	35
H(38C)	-3740	1265	4157	35
H(1)	4711	1925	-2522	20
H(3A)	-656	4075	10223	19

X-ray crystallographic data (4k)

SI Table 7. Crystal data and structure refinement for 4k.

Empirical formula	$C_{23}H_{19}N_3O_4$		
Formula weight	401.41		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P 1		
Unit cell dimensions	a = 6.7967(2) Å	$\alpha = 69.5460(10)^{\circ}$	
	b = 12.1325(3) Å	$\beta = 81.7740(10)^{\circ}$	
	c = 12.4682(3) Å	$\gamma = 85.6650(10)^{\circ}$	
Volume	953.04(4) Å ³		
Z	2		
Density (calculated)	1.399 Mg/m ³		
Absorption coefficient	0.098 mm ⁻¹		
F(000)	420		
Crystal size	0.15 x 0.12 x 0.10 mm ³		
Theta range for data collection	1.76 to 26.43°		
Index ranges	-8<=h<=8, -14<=k<=15, -1	3<=l<=15	
Reflections collected	15954		
Independent reflections	3916 [R(int) = 0.0219]		
Completeness to theta = 26.43°	99.6 %		
Absorption correction	Semi-empirical from equiva	alents	
Max. and min. transmission	0.7454 and 0.7211		
Refinement method	Full-matrix least-squares o	n F ²	
Data / restraints / parameters	3916 / 0 / 272		
Goodness-of-fit on F ²	1.055		
Final R indices [I>2sigma(I)]	R1 = 0.0440, wR2 = 0.137	6	
R indices (all data)	R1 = 0.0547, wR2 = 0.1587		
Largest diff. peak and hole	0.503 and -0.622 e.Å ⁻³		

	x	V	z	U(ea)
C(1)	2217(2)	6877(1)	2358(1)	34(1)
C(2)	1895(2)	5583(1)	2681(1)	34(1)
C(3)	167(3)	5107(2)	3393(2)	44(1)
C(4)	-290(3)	3938(2)	3693(2)	52(1)
C(5)	988(3)	3199(2)	3276(2)	47(1)
C(6)	2728(3)	3636(1)	2587(1)	37(1)
C(7)	4332(3)	3017(2)	2043(2)	45(1)
C(8)	5965(3)	3918(2)	1539(2)	42(1)
C(9)	6097(2)	6073(1)	1090(1)	32(1)
C(10)	8127(2)	6000(2)	701(2)	39(1)
C(11)	9219(2)	6986(2)	83(2)	40(1)
C(12)	8330(2)	8101(2)	-152(1)	36(1)
C(13)	6347(2)	8191(1)	278(1)	34(1)
C(14)	5203(2)	7216(1)	882(1)	31(1)
C(15)	3191(2)	4822(1)	2286(1)	33(1)
C(16)	3264(2)	7179(1)	3217(1)	34(1)
C(17)	4826(3)	6496(2)	3748(2)	43(1)
C(18)	5744(3)	6802(2)	4524(2)	49(1)
C(19)	5109(3)	7788(2)	4801(2)	46(1)
C(20)	3562(3)	8451(2)	4273(2)	42(1)
C(21)	2645(3)	8180(1)	3481(1)	39(1)
C(22)	9400(3)	9190(2)	-849(1)	38(1)
C(23)	12409(3)	9970(2)	-1962(2)	56(1)
N(1)	3160(2)	7389(1)	1162(1)	34(1)
N(2)	5042(2)	5044(1)	1598(1)	36(1)
N(3)	2809(3)	9476(2)	4586(2)	64(1)
O(1)	3048(3)	9488(2)	5531(2)	90(1)
O(2)	2003(4)	10267(2)	3886(2)	112(1)
O(3)	8687(2)	10171(1)	-1034(1)	51(1)
O(4)	11255(2)	8968(1)	-1257(1)	50(1)

SI Table 8. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for **4k**. U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

C(1)-N(1)	1.470(2)	C(12)-C(13)	1.388(2)
C(1)-C(2)	1.503(2)	C(12)-C(22)	1.480(2)
C(1)-C(16)	1.523(2)	C(13)-C(14)	1.386(2)
C(1)-H(1)	1.0000	C(13)-H(13)	0.9500
C(2)-C(15)	1.393(2)	C(14)-N(1)	1.400(2)
C(2)-C(3)	1.395(2)	C(15)-N(2)	1.404(2)
C(3)-C(4)	1.382(3)	C(16)-C(21)	1.388(2)
C(3)-H(3)	0.9500	C(16)-C(17)	1.391(2)
C(4)-C(5)	1.381(3)	C(17)-C(18)	1.387(2)
C(4)-H(4)	0.9500	C(17)-H(17)	0.9500
C(5)-C(6)	1.379(3)	C(18)-C(19)	1.380(3)
C(5)-H(5)	0.9500	C(18)-H(18)	0.9500
C(6)-C(15)	1.403(2)	C(19)-C(20)	1.374(3)
C(6)-C(7)	1.494(2)	C(19)-H(19)	0.9500
C(7)-C(8)	1.525(3)	C(20)-C(21)	1.380(2)
C(7)-H(7A)	0.9900	C(20)-N(3)	1.464(2)
C(7)-H(7B)	0.9900	C(21)-H(21)	0.9500
C(8)-N(2)	1.481(2)	C(22)-O(3)	1.208(2)
C(8)-H(8A)	0.9900	C(22)-O(4)	1.334(2)
C(8)-H(8B)	0.9900	C(23)-O(4)	1.437(2)
C(9)-N(2)	1.389(2)	C(23)-H(23A)	0.9800
C(9)-C(10)	1.402(2)	C(23)-H(23B)	0.9800
C(9)-C(14)	1.423(2)	C(23)-H(23C)	0.9800
C(10)-C(11)	1.380(2)	N(1)-H(1A)	0.8800
C(10)-H(10)	0.9500	N(3)-O(2)	1.207(3)
C(11)-C(12)	1.389(2)	N(3)-O(1)	1.216(3)
C(11)-H(11)	0.9500		

SI Table 9. Bond lengths [Å] for 4k (Symmetry transformations used to generate equivalent atoms).

N(1)-C(1)-C(2)	111.64(12)	N(2)-C(9)-C(14)	123.34(14)
N(1)-C(1)-C(16)	112.97(13)	C(10)-C(9)-C(14)	117.59(14)
C(2)-C(1)-C(16)	113.63(13)	C(11)-C(10)-C(9)	122.10(15)
N(1)-C(1)-H(1)	106.0	C(11)-C(10)-H(10)	119.0
C(2)-C(1)-H(1)	106.0	C(9)-C(10)-H(10)	119.0
C(16)-C(1)-H(1)	106.0	C(10)-C(11)-C(12)	120.26(15)
C(15)-C(2)-C(3)	117.20(16)	C(10)-C(11)-H(11)	119.9
C(15)-C(2)-C(1)	124.10(14)	C(12)-C(11)-H(11)	119.9
C(3)-C(2)-C(1)	118.67(15)	C(13)-C(12)-C(11)	118.31(15)
C(4)-C(3)-C(2)	122.51(18)	C(13)-C(12)-C(22)	118.89(15)
C(4)-C(3)-H(3)	118.7	C(11)-C(12)-C(22)	122.80(15)
C(2)-C(3)-H(3)	118.7	C(14)-C(13)-C(12)	122.72(15)
C(5)-C(4)-C(3)	119.72(17)	C(14)-C(13)-H(13)	118.6
C(5)-C(4)-H(4)	120.1	C(12)-C(13)-H(13)	118.6
C(3)-C(4)-H(4)	120.1	C(13)-C(14)-N(1)	118.61(14)
C(6)-C(5)-C(4)	119.27(17)	C(13)-C(14)-C(9)	118.91(14)
C(6)-C(5)-H(5)	120.4	N(1)-C(14)-C(9)	122.14(14)
C(4)-C(5)-H(5)	120.4	C(2)-C(15)-C(6)	120.36(15)
C(5)-C(6)-C(15)	120.91(16)	C(2)-C(15)-N(2)	129.59(14)
C(5)-C(6)-C(7)	129.20(16)	C(6)-C(15)-N(2)	110.05(14)
C(15)-C(6)-C(7)	109.88(15)	C(21)-C(16)-C(17)	118.28(15)
C(6)-C(7)-C(8)	103.81(14)	C(21)-C(16)-C(1)	118.82(14)
C(6)-C(7)-H(7A)	111.0	C(17)-C(16)-C(1)	122.90(14)
C(8)-C(7)-H(7A)	111.0	C(18)-C(17)-C(16)	121.18(17)
C(6)-C(7)-H(7B)	111.0	C(18)-C(17)-H(17)	119.4
C(8)-C(7)-H(7B)	111.0	C(16)-C(17)-H(17)	119.4
H(7A)-C(7)-H(7B)	109.0	C(19)-C(18)-C(17)	120.56(17)
N(2)-C(8)-C(7)	105.64(14)	C(19)-C(18)-H(18)	119.7
N(2)-C(8)-H(8A)	110.6	C(17)-C(18)-H(18)	119.7
C(7)-C(8)-H(8A)	110.6	C(20)-C(19)-C(18)	117.65(16)
N(2)-C(8)-H(8B)	110.6	C(20)-C(19)-H(19)	121.2
C(7)-C(8)-H(8B)	110.6	C(18)-C(19)-H(19)	121.2
H(8A)-C(8)-H(8B)	108.7	C(19)-C(20)-C(21)	123.03(16)
N(2)-C(9)-C(10)	118.98(14)	C(19)-C(20)-N(3)	118.68(17)

SI Table 10. Bond angles [°] for 4k (Symmetry transformations used to generate equivalent atoms).

Continued...

SI: Part - A

C(21)-C(20)-N(3)	118.27(17)	H(23B)-C(23)-H(23C)	109.5
C(20)-C(21)-C(16)	119.28(16)	C(14)-N(1)-C(1)	120.35(12)
C(20)-C(21)-H(21)	120.4	C(14)-N(1)-H(1A)	119.8
C(16)-C(21)-H(21)	120.4	C(1)-N(1)-H(1A)	119.8
O(3)-C(22)-O(4)	123.36(16)	C(9)-N(2)-C(15)	130.98(13)
O(3)-C(22)-C(12)	124.24(16)	C(9)-N(2)-C(8)	119.68(13)
O(4)-C(22)-C(12)	112.39(14)	C(15)-N(2)-C(8)	109.11(13)
O(4)-C(23)-H(23A)	109.5	O(2)-N(3)-O(1)	123.7(2)
O(4)-C(23)-H(23B)	109.5	O(2)-N(3)-C(20)	117.98(19)
H(23A)-C(23)-H(23B)	109.5	O(1)-N(3)-C(20)	118.3(2)
O(4)-C(23)-H(23C)	109.5	C(22)-O(4)-C(23)	116.67(15)
H(23A)-C(23)-H(23C)	109.5		

	U ¹¹	U ²²	U33	U ²³	_U 13	U ¹²	
C(1)	31(1)	36(1)	35(1)	-16(1)	-4(1)	5(1)	
C(2)	34(1)	36(1)	34(1)	-14(1)	-6(1)	1(1)	
C(3)	38(1)	48(1)	46(1)	-17(1)	1(1)	0(1)	
C(4)	44(1)	50(1)	54(1)	-11(1)	4(1)	-9(1)	
C(5)	52(1)	38(1)	50(1)	-11(1)	-6(1)	-10(1)	
C(6)	47(1)	34(1)	34(1)	-12(1)	-9(1)	-2(1)	
C(7)	62(1)	34(1)	41(1)	-18(1)	-3(1)	-3(1)	
C(8)	47(1)	34(1)	49(1)	-20(1)	-5(1)	7(1)	
C(9)	34(1)	33(1)	31(1)	-14(1)	-5(1)	2(1)	
C(10)	37(1)	33(1)	48(1)	-16(1)	-4(1)	6(1)	
C(11)	33(1)	42(1)	47(1)	-18(1)	-2(1)	2(1)	
C(12)	37(1)	37(1)	35(1)	-15(1)	-6(1)	0(1)	
C(13)	40(1)	31(1)	34(1)	-15(1)	-8(1)	5(1)	
C(14)	33(1)	34(1)	28(1)	-14(1)	-6(1)	4(1)	
C(15)	36(1)	35(1)	28(1)	-12(1)	-7(1)	-1(1)	
C(16)	36(1)	33(1)	31(1)	-12(1)	0(1)	0(1)	
C(17)	44(1)	46(1)	45(1)	-23(1)	-10(1)	11(1)	
C(18)	47(1)	60(1)	47(1)	-25(1)	-14(1)	9(1)	
C(19)	51(1)	52(1)	41(1)	-22(1)	-6(1)	-7(1)	
C(20)	55(1)	33(1)	42(1)	-17(1)	0(1)	-6(1)	
C(21)	46(1)	30(1)	39(1)	-11(1)	-5(1)	3(1)	
C(22)	42(1)	38(1)	34(1)	-14(1)	-7(1)	-2(1)	
C(23)	56(1)	53(1)	54(1)	-16(1)	10(1)	-16(1)	
N(1)	32(1)	38(1)	32(1)	-10(1)	-8(1)	8(1)	
N(2)	39(1)	30(1)	40(1)	-16(1)	0(1)	3(1)	
N(3)	80(1)	47(1)	77(1)	-38(1)	-9(1)	0(1)	
O(1)	108(2)	102(2)	97(1)	-79(1)	-15(1)	7(1)	
O(2)	178(2)	53(1)	126(2)	-49(1)	-57(2)	42(1)	
O(3)	56(1)	35(1)	55(1)	-10(1)	-4(1)	0(1)	
O(4)	45(1)	43(1)	54(1)	-14(1)	7(1)	-6(1)	

Table 11. Anisotropic displacement parameters ($Å^2x10^3$) for **4k**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11}+...+2hka^{*b^*}U^{12}]$.

	х	У	Z	U(eq)	
H(1)	861	7256	2381	40	
H(3)	-731	5606	3683	53	
H(4)	-1478	3645	4183	62	
H(5)	673	2399	3463	57	
H(7A)	3854	2802	1431	53	
H(7B)	4814	2296	2625	53	
H(8A)	7103	3685	1995	51	
H(8B)	6445	3990	730	51	
H(10)	8771	5246	869	47	
H(11)	10584	6903	-183	48	
H(13)	5750	8952	152	41	
H(17)	5271	5808	3576	51	
H(18)	6821	6329	4868	59	
H(19)	5720	8000	5338	55	
H(21)	1601	8674	3121	47	
H(23A)	11914	10313	-2713	84	
H(23B)	13807	9722	-2073	84	
H(23C)	12295	10559	-1580	84	
H(1A)	2438	7807	618	41	

SI Table 12. Hydrogen coordinates (x10⁴) and isotropic displacement parameters ($Å^2x10^3$) for **4k**.

Supporting Information

Soluble Polymer Supported Divergent Synthesis of Tetracyclic Benzene-Fused Pyrazino/Diazepino

Indoles: An Advanced Synthetic Approach to Bioactive Scaffolds

Po-Tsung Lin, Deepak B. Salunke, Li-Hsun Chen and Chung-Ming Sun*

Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300-10, Taiwan

E-mail: cmsun@mail.nctu.edu.tw

Contents

¹ H NMR, ¹³ C NMR, LRMS, HRMS and IR Spectra of 2a – 2f	SI 3 – SI 32
¹ H NMR, ¹³ C NMR, LRMS, HRMS and IR Spectra of 3a – 3d	SI 33 – SI 52
¹ H NMR, ¹³ C NMR, LRMS, HRMS and IR Spectra of 4a – 4k	SI 53 – SI 107
¹ H NMR, ¹³ C NMR, LRMS, HRMS and IR Spectra of 5	SI 108 – SI 112

HPLC and ¹H NMR Spectrum (300 MHz) of compound **2a** in CDCI₃

 ^{13}C NMR Spectrum (75 MHz) of compound 2a in CDCl_3

SI: Part-B

Low Resolution Mass Spectrum (LRMS) of compound 2a

SI: Part-B

SI 5

High Resolution Mass Spectrum (HRMS) of compound 2a

IR Spectrum of compound 2a (Neat)

Low Resolution Mass Spectrum (LRMS) of compound 2b

SI 10

High Resolution Mass Spectrum (HRMS) of compound 2b

IR Spectrum of compound 2b (Neat)

HPLC and ¹H NMR Spectrum (300 MHz) of compound **2c** in CDCI₃

 ^{13}C NMR Spectrum (75 MHz) of compound 2c in CDCl_3

Low Resolution Mass Spectrum (LRMS) of compound 2c

SI: Part-B

High Resolution Mass Spectrum (HRMS) of compound 2c

IR Spectrum of compound 2c (Neat)

HPLC and ¹H NMR Spectrum (300 MHz) of compound 2d in CDCl₃

SI: Part-B

 ^{13}C NMR Spectrum (75 MHz) of compound 2d in CDCl_3

Low Resolution Mass Spectrum (LRMS) of compound 2d

High Resolution Mass Spectrum (HRMS) of compound 2d

IR Spectrum of compound 2d (Neat)

HPLC and ¹H NMR Spectrum (300 MHz) of compound **2e** in CDCI₃

 ^{13}C NMR Spectrum (75 MHz) of compound 2e in CDCl_3

Low Resolution Mass Spectrum (LRMS) of compound 2e

SI 25

High Resolution Mass Spectrum (HRMS) of compound 2e

IR Spectrum of compound 2e (Neat)

SI 27

HPLC and ¹H NMR Spectrum (300 MHz) of compound **2f** in CDCI₃

 13 C NMR Spectrum (75 MHz) of compound **2f** in CDCI₃

Low Resolution Mass Spectrum (LRMS) of compound 2f

High Resolution Mass Spectrum (HRMS) of compound 2f

IR Spectrum of compound 2f (Neat)

 ^{13}C NMR Spectrum (75 MHz) of compound **3a** in CDCl_3

Low Resolution Mass Spectrum (LRMS) of compound 3a

High Resolution Mass Spectrum (HRMS) of compound 3a

IR Spectrum of compound 3a (Neat)

SI: Part-B

 ^{13}C NMR Spectrum (75 MHz) of compound 3b in CDCl_3

Low Resolution Mass Spectrum (LRMS) of compound 3b

High Resolution Mass Spectrum (HRMS) of compound 3b

IR Spectrum of compound 3b (Neat)

HPLC and ¹H NMR Spectrum (300 MHz) of compound 3c in CDCI₃

 ^{13}C NMR Spectrum (75 MHz) of compound 3c in CDCl_3

Low Resolution Mass Spectrum (LRMS) of compound 3c

High Resolution Mass Spectrum (HRMS) of compound 3c

IR Spectrum of compound 3c (Neat)

 $^{13}\text{C},$ DEPT NMR Spectrum (75 MHz) of compound **3d** in CDCl_3

Low Resolution Mass Spectrum (LRMS) of compound 3d

High Resolution Mass Spectrum (HRMS) of compound 3d

IR Spectrum of compound 3d (Neat)

HPLC and ¹H NMR Spectrum (300 MHz) of compound 4a in CDCI₃

 ^{13}C NMR Spectrum (75 MHz) of compound 4a in CDCl_3

High Resolution Mass Spectrum (HRMS) of compound 4a

IR Spectrum of compound 4a (Neat)

 ^{13}C NMR Spectrum (75 MHz) of compound 4b in CDCl_3

Low Resolution Mass Spectrum (LRMS) of compound 4b

High Resolution Mass Spectrum (HRMS) of compound 4b

IR Spectrum of compound **4b** (Neat)

HPLC and ¹H NMR Spectrum (300 MHz) of compound 4c in CDCI₃

 ^{13}C NMR Spectrum (75 MHz) of compound 4c in CDCl_3

Low Resolution Mass Spectrum (LRMS) of compound 4c

High Resolution Mass Spectrum (HRMS) of compound 4c

IR Spectrum of compound 4c (Neat)

Low Resolution Mass Spectrum (LRMS) of compound 4d

High Resolution Mass Spectrum (HRMS) of compound 4d

IR Spectrum of compound 4d (Neat)

HPLC and ¹H NMR Spectrum (300 MHz) of compound **4e** in CDCI₃

 ^{13}C NMR Spectrum (75 MHz) of compound **4e** in CDCl_3

BJ107 ESI+ a.i. (M+H)) Ο 309 1.6e+07 1.4e+07 C₁₉H₂₀N₂O₂ Exact Mass: 308.1525 Mol. Wt.: 308.3743 1.2e+07 1.0e+07 8.0e+06 6.0e+06 4.0e+06 2.0e+06 0. 170 220 270 320 m/z

Low Resolution Mass Spectrum (LRMS) of compound 4e

High Resolution Mass Spectrum (HRMS) of compound 4e

IR Spectrum of compound 4e (Neat)

HPLC and ¹H NMR Spectrum (300 MHz) of compound 4f in CDCl₃

 $^{\rm 13}\text{C},$ DEPT NMR Spectrum (75 MHz) of compound 4f in CDCl_3

Low Resolution Mass Spectrum (LRMS) of compound 4f

High Resolution Mass Spectrum (HRMS) of compound 4f

IR Spectrum of compound 4f (Neat)

 ^{13}C NMR Spectrum (75 MHz) of compound **4g** in CDCl_3

BJJ-112 ESI+ a.i. 8.0e+06 н 363 7.0e+06 C₂₁H₁₈N₂O₂S Exact Mass: 362.1089 Mol. Wt.: 362.4448 6.0e+06 5.0e+06 4.0e+06 3.0e+06 2.0e+06 265 1.0e+06 0. 250 300 350 m/z

Low Resolution Mass Spectrum (LRMS) of compound 4g

High Resolution Mass Spectrum (HRMS) of compound 4g

IR Spectrum of compound 4g (Neat)

HPLC and ¹H NMR Spectrum (300 MHz) of compound **4h** in CDCl₃

Low Resolution Mass Spectrum (LRMS) of compound 4h

High Resolution Mass Spectrum (HRMS) of compound 4h

IR Spectrum of compound 4h (Neat)

HPLC and ¹H NMR Spectrum (300 MHz) of compound **4i** in CDCI₃

¹³C NMR Spectrum (75 MHz) of compound **4i** in CDCl₃

SI 94

Low Resolution Mass Spectrum (LRMS) of compound 4i

High Resolution Mass Spectrum (HRMS) of compound 4i

IR Spectrum of compound 4i (Neat)

HPLC and ¹H NMR Spectrum (300 MHz) of compound 4j in CDCI₃

¹³C NMR Spectrum (75 MHz) of compound **4j** in CDCl₃

SI 99

Low Resolution Mass Spectrum (LRMS) of compound 4j

High Resolution Mass Spectrum (HRMS) of compound 4j

IR Spectrum of compound 4j (Neat)

HPLC and ¹H NMR Spectrum (300 MHz) of compound 4k in CDCl₃

12

 ^{13}C NMR Spectrum (75 MHz) of compound 4k in CDCl_3

Low Resolution Mass Spectrum (LRMS) of compound 4k

SI 105

High Resolution Mass Spectrum (HRMS) of compound 4k

IR Spectrum of compound 4k (Neat)

HPLC and ¹H NMR Spectrum (300 MHz) of compound **5** in CDCI₃

Low Resolution Mass Spectrum (LRMS) of compound 5

High Resolution Mass Spectrum (HRMS) of compound 5

IR Spectrum of compound 5 (Neat)