Electronic Supplementary Information

Dinuclear Zinc Catalyzed Asymmetric Friedel-Crafts Amido-

alkylation of Indoles with Aryl Aldimines

Bei-Lei Wang, Nai-Kai Li, Jin-Xin Zhang, Guo-Gui Liu, Teng Liu, Qi Shen*, and Xing-Wang Wang*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.

Fax: +86-512-65880378
E-mail: wangxw@suda.edu.cn.

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All solvents employed in the reactions were distilled from appropriate drying agent prior to use. Organic solutions were concentrated under reduced pressure on an EYELA N -1001 rotary evaporator. Reactions were monitored by thin-layer chromatography (TLC) on silica gel precoated glass plates ($0.2 \pm 0.03 \mathrm{~mm}$ thickness, GF-254, particle size $0.01-0.04 \mathrm{~mm}$) from Yantai Chemical Industry Research Institute, P. R. China. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm . Flash column chromatography was performed using silica gel (particle size $0.04-0.05 \mathrm{~mm}$) from Yantai Chemical Industry Research Institute, P. R. China.
${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(101 \mathrm{MHz})$ spectra were recorded in DMSO- d_{6} on Varian Inova-400 NMR spectometer. Chemical shifts ($\delta \mathrm{ppm}$) are relative to the resonance of the deuterated solvent as the internal standard (DMSO-d ${ }_{6}, \delta 2.50 \mathrm{ppm}$ for proton NMR, $\delta 39.51 \mathrm{ppm}$ for carbon NMR). ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, q $=$ quartet, $\mathrm{m}=$ multiplet), coupling constants (J) and assignment. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). High-resolution mass spectra (HRMS) for all the compounds were determined on Micromass GCT-TOF mass spertrometer with ESI resource.

High performance liquid chromatography (HPLC) analysis was performed on a Waters 2695 and

Agilent Technologies 1200 Series instrument equipped with a quaternary pump, using a Daicel Chiralcel OD-H Column ($250 \times 4.6 \mathrm{~mm}$). UV absorption was monitored at 210 nm to 254 nm . Optical rotations were measured on an Autopol IV polarimeter, and $[\alpha]_{D}$ values are reported in 10^{-1} $\mathrm{dg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$; concentration (c) is reported in $\mathrm{g} / 100 \mathrm{~mL}$.

Experimental section

General procedure for the preparation of aldimines $3 a-q^{1}$:

N-sulfonyl imines 3a-q described in this paper were prepared by condensation of the corresponding aldehydes with p-toluenesulfonamide according to the reported procedure with minor modification: the aldehyde (25.0 mmol), p-toluenesulfonamide (25.0 mmol), and $\mathrm{Si}(\mathrm{OEt})_{4}$ (27.5 mmol , 1.1 equiv.) were combined into a flask equipped with an oil-water separator and heated at $160^{\circ} \mathrm{C}$ for 10 hours. The produced EtOH was collected in the oil-water separator and released it at regular intervals. After cooling down, the residue of the reaction was directly recrystallized from ethyl acetate and hexanes to provide N -sulfonyl imines 3a-q. It should be noted that, in order to avoid the trace impurities affecting the reaction, the N -sulfonyl aryl aldimines were recrystallized at least for two times before they were utilized as starting materials for asymmetric Friedel-Crafts amidoalkylation.

Procedure for the preparation of aldimine $3 r^{2}$

A mixture of aldehyde (10 mmol), phenylsulfonamide (10 mmol) and sodium benzenesulfinate ($1.82 \mathrm{~g}, 11 \mathrm{mmol}$) in formic acid $(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was stirred for 12 h at rt . The resulting white precipitate was filtered off, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, then pentane (10 mL), and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. Sat. aq NaHCO_{3} or $\mathrm{Na}_{2} \mathrm{CO}_{3}(70 \mathrm{~mL})$ was added and the solution was well stirred for 2 h at rt . The organic phase was decanted, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 35 \mathrm{~mL})$. The combined organic layers was washed by $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, brine (30 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to yield the crude product. Crystallization from ethyl acetate and hexanes gave pure N -sulfonyl imine 3 r.

General procedure and spectroscopic data for dinuclear zinc catalyzed asymmetric

Friedel-Crafts amidoalkylation of indoles with aryl Aldimines:

Under an argon atmosphere, a solution of diethylzinc ($50 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in toluene, 0.05 mmol) was added to a stirred and cooled solution of $\mathbf{L} 4(16 \mathrm{mg}, 0.025 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the addition, the cold bath was removed and the resulting solution was allowed to stir at rt for 30 min . Then a solution of N -sulfonyl imines $\mathbf{3 a}(65 \mathrm{mg}, 0.25 \mathrm{mmol}$) and indole $\mathbf{2 a}$ (146 mg , 1.25 mmol) in 1.0 mL toluene were added. The corresponding mixture was allowed to be stirred for another 2 h at rt . After the reaction was complete (monitored by TLC), $10 \% \mathrm{NaHCO}_{3}(3 \mathrm{~mL}$) was added. The mixture was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The organic layer was washed by $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, brine (5 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated in vacuo and the residue was purified by flash chromatography to afford the desired product 4a.

The reaction procedures for the preparation of $\mathbf{4 b} \mathbf{- v}$ are identical with the above described for the preparation of $\mathbf{4 a}$. In order to demonstrate the reproducibility of the reaction, the crystals of the N -sulfonyl aryl aldimines (3c, 3d and 3p) were used to repeat the reaction under otherwise identical conditions. The results of control experiments showed that the reactions could be well reproduced in terms of yields and enantioselectivities (4c: 95\% yield, 73:27 er vs 98\% yield, 74:26 er; 4d: 98\% yield, 84:16 er vs 98\% yield, 86:14 er; 4p: 88\% yield, 76:24 er vs 90\% yield, 78:22 er).

N-[Indol-3-yl-phenylmethyl]-4-methylbenzenesulfonamide (4a)

Colorless solid; 95\% yield, 92:8 er, [Daicel Chiralcel OD-H, Hexanes/IPA = $75 / 25$, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=210.5 \mathrm{~nm}, \mathrm{t}($ major $)=10.451, \mathrm{t}($ minor $)=$ 19.229]; $[\alpha]_{\mathrm{D}}{ }^{20}=+12.8$ (c 0.5 , Acetone); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ $10.87(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.09$ (m, 5H), $7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=8.9$ Hz, 1H), 2.28 (s, 3H); ${ }^{13}$ C NMR (101 MHz, DMSO- d_{6}): $\delta 141.83,141.73,138.86,136.35,128.93$, 127.87, 127.06, 126.38, 123.67, 121.21, 120.86, 118.88, 118.75, 118.53, 115.70, 111.43, 54.46, 20.90; ESI-MS: m/z [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 399.1143; found: 399.1130.

N-[Indol-3-yl-(4- fluorophenyl)methyl]-4-methylbenzenesulfonamide (4b)

Colorless solid; 97\% yield, 90:10 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=210.5 \mathrm{~nm}, \mathrm{t}$ (major) $=11.224, \mathrm{t}($ minor $\left.)=19.474\right] ;[\alpha]_{\mathrm{D}}{ }^{20}=+11.7(\mathrm{c} 0.5$,

Acetone); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $)$: $\delta 8.49$ (d, $\left.J=8.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$,
 7.29 (dt, $J=8.4,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.13$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, 1H), 5.75 (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta 147.32,144.08,143.21,143.18,141.80,134.45,134.35,131.81,130.77,129.08,126.70,124.29$, 123.99, 120.95, 120.03, 119.82, 116.87, 59.22, 26.27; ESI-MS: m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 417.1047; found: 417.1061.

N-[Indol-3-yl-(4-chlorophenyl)methyl]-4-methylbenzenesulfonamide (4c)
 Colorless solid; 98\% yield, 74:26 er, [Daicel Chiralcel OD-H, Hexanes / IPA $=75 / 25$, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=11.734, \mathrm{t}$ (minor) $=21.264] ;[\alpha]_{\mathrm{D}}{ }^{20}=+5.2$ (c 0.5, Acetone); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO $-\mathrm{d}_{6}$): δ $10.91(\mathrm{~d}, J=25.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), 7.26 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.20 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 1H), $6.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta 143.02,141.53,139.56,137.39,132.26,129.98,129.96,128.79,127.44$, 126.34, 124.76, 122.34, 119.84, 119.63, 116.16, 112.49, 54.86, 21.88; ESI-MS: m/z [M + Na] ${ }^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 433.0793; found: 433.0760.

N-[Indol-3-yl-(4-bromophenyl)methyl]-4-methylbenzenesulfonamide (4d)

$\delta 10.93$ (s, 1H), $8.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=11.5,5.7 \mathrm{~Hz}, 4 \mathrm{H})$, $7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.79(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta 147.41$, 146.31, 143.92, 141.76, 136.09, 134.72, 134.37, 131.82, 130.72, 129.15, 126.72, 125.16, 124.22, 124.02, 120.45, 116.87, 59.31, 26.30; ESI-MS: m/z [M + Na] calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 477.0248; found: 477.0245.

N-[Indol-3-yl-(4-Methoxyphenyl)methyl]-4-methylbenzenesulfonamide (4e)

Colorless solid, 90\% yield, 92:8 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=221.3 \mathrm{~nm}, \mathrm{t}$ (major) $=13.924, \mathrm{t}($ minor $\left.)=27.338\right] ;[\alpha]_{\mathrm{D}}{ }^{20}=+7.5(\mathrm{c} 0.5$,

Acetone); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 10.86(\mathrm{~d}, J=52.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$,
 $7.72(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.04(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$, 6.89 (t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.71$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=$ 8.6 Hz, 1H), 3.68 (s, 3H), $2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta 158.04,141.80,138.93$, 136.46, 133.76, 132.72, 129.37, 128.97, 128.31, 126.45, 123.56, 121.20, 118.52, 116.03, 113.28, 111.46, 55.05, 54.10, 20.93; ESI-MS: m/z [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}$: 429.1249; found: 429.1243.

N-[Indol-3-yl-(4-Methylphenyl)methyl]-4-methylbenzenesulfonamide (4f)

Colorless solid; 98\% yield, 78:22 er, [Daicel Chiralcel OD-H, Hexanes / IPA $=75 / 25$, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ major $)=9.660, \mathrm{t}($ minor $)=$ 18.179]; $[\alpha]_{\mathrm{D}}{ }^{20}=+8.4$ (c 0.5, Acetone); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $10.86(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}$, 1H), 5.70 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (s, 3H), 2.22 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): δ 141.86, 138.89, 138.78, 136.43, 135.75, 128.96, 128.45, 127.07, 126.44, 125.51, 123.66, 121.23, 118.96, 118.55, 115.85, 111.46, 54.34, 20.93, 20.67; ESI-MS: m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ SNa: 413.1300; found: 413.1299.

N-[Indol-3-yl-(4-trifloroMethylphenyl)methyl]-4-methylbenzenesulfonamide (4g)

 Colorless solid; 98\% yield, 94:6 er, [Daicel Chiralcel OD-H, Hexanes / IPA $=75 / 25$, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=11.219, \mathrm{t}$ (minor) $=20.622] ;[\alpha]^{20}{ }_{\mathrm{D}}=+28.2$ (c 1, Acetone) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) $10.95(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 3 \mathrm{H}), 7.42-$ $7.26(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 1H), 2.25 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta 146.01,142.05,138.40,136.43,129.36$, 128.99, 127.93, 126.51, 125.67, 124.85, 124.81, 124.76, 124.72, 123.91, 121.49, 118.83, 118.79, 114.79, 111.61, 109.39, 54.21, 20.95; ESI-MS: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 467.1107; found: 467.1024.

N-[Indol-3-yl-(2-chlorophenyl)methyl]-4-methylbenzenesulfonamide (4h)

Colorless solid; 98\% yield, 92:8 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate:
$1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=210.5 \mathrm{~nm}, \mathrm{t}$ (major) $=8.153$, t (minor) $\left.=20.030\right] ;[\alpha]_{\mathrm{D}}^{20}=+51.2$ (c 0.5 , Acetone);
 ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) : $\delta 8.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}$, 1H), 7.52 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.19-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}$, 1H), $6.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): $\delta 142.20,138.79$, 138.31, 136.40, 131.44, 129.11, 128.84, 128.80, 128.34, 126.98, 126.37, 125.65, 124.18, 121.49, 118.81, 118.50, 114.08, 111.64, 50.63, 20.93; ESI-MS: m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 433.0748; found: 433.0751 .

N-[Indol-3-yl-(2- fluorophenyl)methyl]-4-methylbenzenesulfonamide (4i)

Colorless solid; 96\% yield, 82:18 er, [Daicel Chiralcel OD-H, Hexanes / IPA = $75 / 25$, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=9.792, \mathrm{t}($ minor $)=$ 22.034]; $[\alpha]^{20}{ }_{\mathrm{D}}=+43.2$ (c 0.5, Acetone); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ 10.93 (s, 1H), 8.55 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{t}, J=$ 8.0 Hz, 1H), 6.73(s, 3H), 6.02(d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): δ 142.18, 138.34, 136.39, 129.10, 128.88, 128.84, 128.79, 128.67, 126.37, 125.43, 124.16, 123.75, 121.49, 118.82, 118.40, 114.97, 114.77, 114.44, 114.40, 114.37, 111.67, 111.65, 47.18, 47.16, 20.93; ESI-MS: m/z [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 417.1047; found: 417.1057.

N-[Indol-3-yl-(2-bromophenyl)methyl]-4-methylbenzenesulfonamide (4j)

Colorless solid; 97\% yield, 84:16 er, [Daicel Chiralcel OD-H, Hexanes / IPA = $75 / 25$, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=8.553, \mathrm{t}($ minor $)=$ 22.330]; $[\alpha]^{20}{ }_{\mathrm{D}}=+43.2$ (c 0.5, Acetone); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO $-d_{6}$) δ $10.94(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.09$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 142.30,140.39,138.34,136.48,132.16,129.19,129.03,128.67,127.58,126.47,125.78,124.40$, 122.40, 121.59, 118.89, 118.67, 114.17, 111.72, 53.35, 21.00; ESI-MS: m/z [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 477.0248, 479.0228; found: 477.0243, 479.0225.

N-[Indol-3-yl-(2-Methoxyphenyl)methyl]-4-methylbenzenesulfonamide (4k)

Colorless solid; 98\% yield, 90:10 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate:
$1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=9.967$, $\mathrm{t}($ minor $\left.)=22.403\right] ;[\alpha]^{20}{ }_{\mathrm{D}}=+46.3$ (c 1, Acetone) ${ }^{1}{ }^{1} \mathrm{H}$
 NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta 10.80$ (s, 1H), 8.29 (d, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.45$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.39$ (m, 3H), 7.10 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04$ (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $_{6}$): $\delta 156.00,142.44,139.20,137.01,130.06,129.43,128.55,128.47,126.97,124.18$, $121.87,120.66,119.45,119.17,116.42,112.09,111.07,109.99,55.93,48.01,21.53 ;$ ESI-MS: m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}$:429.1249; found: 429.1253.

N-[Indol-3-yl-(3-methylphenyl)methyl]-4-methylbenzenesulfonamide (4l)

$8.42(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H})$, $7.05(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.14$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta 147.18,146.78,144.18,142.20,141.74,134.24$, 133.16, 133.10, 131.78, 130.87, 129.62, 129.07, 126.59, 124.26, 123.92, 121.08, 116.82, 114.74, 59.89, 26.33, 26.27; ESI-MS: m/z [M + Na] calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 413.1300; found: 413.1299.

N-[Indol-3-yl-(3-chlorophenyl)methyl]-4-methylbenzenesulfonamide (4m)

Colorless solid; 98\% yield, 76:24 er, [Daicel Chiralcel OD-H, Hexanes / IPA $=75 / 25$, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=12.988, \mathrm{t}$ (minor) $=16.128] ;[\alpha]^{20}{ }_{\mathrm{D}}=+10.57$ (c 0.5, Acetone); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d $_{6}$): $\delta 10.93(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 2 \mathrm{H})$, 7.23 (s, 2H), $7.17-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H})$, $5.75(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): $\delta 143.94,142.12,138.48$, 136.40, 132.70, 129.77, 129.02, 126.92, 126.60, 126.42, 125.90, 125.35, 123.80, 121.42, 118.87, 118.72, 115.10, 111.57, 53.99, 20.95; ESI-MS: m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 433.0753; found: 433.0751.

N-[Indol-3-yl-(2,4-Dichlorophenyl)methyl]-4-methylbenzenesulfonamide (4n)

Colorless solid; 98\% yield, 95:5 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate:
$1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=8.139$, t (minor) $\left.=21.301\right] ;[\alpha]_{\mathrm{D}}^{20}=+68.6$ (c 0.5, Acetone);

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 10.98(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{t}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.50 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=13.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta 141.91,137.72,132.37,132.11,130.24,129.34,128.20$, 127.23, 126.41, 125.67, 124.28, 121.61, 118.93, 118.46, 113.42, 111.72, 109.39, 54.92, 20.96; ESI-MS: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 467.0364; found: 467.0367.

N-[Indol-3-yl-(1-Naphthyl)methyl]-4-methylbenzenesulfonamide (4o)

Colorless solid; 96\% yield, 85:15 er, [Daicel Chiralcel OD-H, Hexanes / IPA $=75 / 25$, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=210.5 \mathrm{~nm}, \mathrm{t}$ (major) $=10.563, \mathrm{t}$ (minor) $=21.070] ;[\alpha]^{20}{ }_{\mathrm{D}}=+62.4$ (c 0.5, Acetone); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 10.85(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=14.3,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta 141.97,138.70,137.05136 .35$, 133.24, 130.19, 128.94, 128.56, 127.39, 126.36, 126.09, 125.62, 125.44, 125.14, 124.80, 124.63, 123.12, 121.32, 118.73, 118.54, 114.94, 111.56, 50.66, 20.93. HRMS-FAB: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}: 449.1402$; found: 449.1307.

N-[Indol-3-yl-(2-Naphthyl)methyl]-4-methylbenzenesulfonamide (4p)

Primrose yellow solid; 90\% yield, 78:22 er, [Daicel Chiralcel OD-H, Hexanes $/$ IPA $=75 / 25$, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=213.4 \mathrm{~nm}, \mathrm{t}($ major $)=$ 13.919, t (minor) $=20.976] ;[\alpha]^{20}{ }_{\mathrm{D}}=+14.6\left(\mathrm{c} 0.5\right.$, Acetone) ${ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.54(\mathrm{~m}$, 7H), $7.12-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): δ 141.89, 138.87, 138.64, 136.40, 132.55, 131.99, 128.86, 127.69, 127.56, 127.37, 126.42, 125.98, 125.68, 125.61, 125.50, 125.46, 123.82, 121.29, 118.85, 118.61, 115.44, 111.50, 54.72, 20.74; ESI-MS: m/z [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ SNa: 449.1300; found: 449.1307.

Primrose yellow solid; 85\% yield, 81:19 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25,
 flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=210.5 \mathrm{~nm}, \mathrm{t}($ major $)=10.257, \mathrm{t}($ minor $\left.)=17.196\right]$; $[\alpha]^{20}{ }_{D}=+7.4$ (c 0.215, Acetone); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.91$ (s, $1 \mathrm{H}), 8.62$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $7.12(\mathrm{~d}, ~ J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.75(\mathrm{~m}, 4 \mathrm{H}), 5.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.28 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta 151.16,146.33,146.14,136.27,129.03,128.97$, 126.47, 126.37, 125.15, 125.10, 125.05, 123.74, 121.22, 118.59, 111.45, 109.36, 50.15, 20.95 ; ESI-MS: m/z [M + Na] calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Na}$: 405.0702; found: 405.0714.

N-[5-Methylindol-3-yl-phenylmethyl]-4-methylbenzenesulfonamide (4r)

Colorless solid; 94\% yield, 72:28 er, [Daicel Chiralcel OD-H, Hexanes / IPA $=75 / 25$, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=9.403, \mathrm{t}($ minor $)=$ 28.043]; $[\alpha]^{20}{ }_{D}=+16.57$ (c 1.0, Acetone); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ $10.75(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-$ $7.15(\mathrm{~m}, 6 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}$, 3H), 2.25 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta 142.17,141.99,138.85,134.71,129.10$, 127.94, 127.07, 126.99, 126.52, 125.78, 124.03, 122.88, 118.29, 115.16, 111.19, 104.65, 54.29, 21.29, 21.00; ESI-MS: m/z [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 413.1300; found: 413.1303 .

N-[5-Bromoindol-3-yl-phenylmethyl]-4-methylbenzenesulfonamide (4s)

 $11.10(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 7.24-7.11(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $_{6}$): $\delta 142.08,141.58,139.83,138.58,135.10,129.08,128.03,127.07,126.42,125.68$, 123.77, 121.19, 115.43, 113.56, 113.53, 111.39, 104.65, 54.02, 21.06; ESI-MS: m/z [M + Na] ${ }^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 477.0248, 479.0228; found: 477.0246, 479.0225.

N-[7-Methylindol-3-yl-phenylmethyl]-4-methylbenzenesulfonamide (4t)

Colorless solid; 90\% yield, 85:15 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=24.772$, t (minor) $\left.=29.161\right] ;[\alpha]^{20}{ }_{\mathrm{D}}=+17.63$ (c 1.0, Acetone); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 10.86(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.85-6.75(\mathrm{~m}, 3 \mathrm{H}), 5.72$

(d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39 ($\mathrm{s}, 3 \mathrm{H}$), 2.27 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d $\left._{6}\right): \delta 141.88,138.83,135.89,128.98,127.93,127.11,126.68,126.41$, 125.15, 123.36, 121.73, 120.52, 118.82, 116.58, 116.15, 104.65, 54.59, 20.95, 16.76; ESI-MS: m/z [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 413.1300; found: 413.1302.

N-[7-Methylindol-3-yl-(2-chlorophenyl)methyl]-4-methylbenzenesulfonamide (4u)

Colorless solid; 91\% yield, 87:13 er, [Daicel Chiralcel OD-H, Hexanes / IPA = $75 / 25$, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=9.185, \mathrm{t}$ (minor) $=13.311] ;[\alpha]^{20}{ }_{\mathrm{D}}=+54.6$ (c 0. 5, Acetone); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ $11.19(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.33(\mathrm{~m}, 7 \mathrm{H})$, $6.58(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6} : $\delta 142.59,138.82,137.93,135.10,131.47,129.40,129.00,128.71,128.53,127.47$, 127.16, 126.44, 126.09, 124.07, 120.51, 113.80, 113.55, 111.68, 54.99, 50.31, 21.18; ESI-MS: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 447.0910; found: 447.0113.

N-[Indol-3-yl-phenylmethyl]-benzenesulfonamide (4v)

Colorless solid; 87\% yield, 85:15 er, [Daicel Chiralcel OD-H, Hexanes / IPA = $75 / 25$, flow rate: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=11.234, \mathrm{t}($ minor $)=$ 19.982]; $[\alpha]^{20}{ }_{\mathrm{D}}=+12.5$ (c 0.5, Acetone); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $10.93(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.9 \mathrm{~Hz}$, 1H), 7.38 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.86(\mathrm{~m}$, 4H), 6.07 (s, 1H).; ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6} : δ 147.83, 147.42, 136.65, 135.17, 129.62, 127.08, 126.39, 125.35, 123.92, 121.17, 119.25, 118.97, 118.47, 116.99, 111.65, 56.55; ESI-MS: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$: 385.0987; found: 385.0968.

Table 4 Investigating the effect of the concentration:

${ }^{a}$ The reactions were performed with 5 equiv of $\mathbf{2 a}$, in toluene under N_{2} at the room temperature for two hours ($\mathrm{ZnEt}_{2}, 1.0 \mathrm{M}$ in toluene). ${ }^{b}$ Isolated yields. ${ }^{c}$ The enantiomeric ratio was determined by chiral HPLC analysis of the corresponding products on a chiralcel OD-H column.

References:

1. B. E. Love, P. S. Raje, T. C. II Williams, Synlett, 1994, 493-494.
2. F. Chemla, V. Hebbe, J. -F. Normant, Synthesis, 2000, 1, 75-77.
3. B. M. Trost, V. S. C. Yeh, Org. Lett., 2002, 4, 3513 -3516.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $4 \mathrm{a}-\mathrm{v}$:

${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ 147.32, 144.08, $143.21,143.18,141.80,134.45,134.35,131.81$, $130.77,129.08,126.70,124.29,123.99,120.95$, 120.03, 119.82, 116.87, 59.22, 26.27.

$\stackrel{2}{N}$
i
|

T
-

\longrightarrow

H
H
ल
ल

(

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

 This journal is © The Royal Society of Chemistry 2011

HPLC spectra for 4a-v:


```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
Peak RetTime Type Width Area Height Area
    # [min] [min] [mAU*s] [mAU] &
----- |-------- |---- |-------- | ------------ |--------------------------
    2 20.643 BB 1.1609 2876.57886 37.84190 49.5317
```


Peak Results							
	Name	RT	Area		\% Area	Height $(\mu \mathrm{V})$	
Amount	Units						
$\mathbf{1}$		10.451	19788725	92.41	559737		
2		19.229	1625757	7.59	27046		

Peak Results

	Name	RT	Area	\% Area	Height $(\mu \mathrm{V})$	Amount	Units
1		11.084	15041987	51.64	389399		
2		19.109	14086879	48.36	190528		

Peak Results

	Name	RT	Area	\% Area	Height $(\mu \mathrm{V})$	Amount	Units
1		11.224	38074034	89.86	922904		
2		19.474	4298315	10.14	72808		

Peak Results

	Name	RT	Area	$\%$ Area	Height $(\mu \mathrm{V})$	Amount	Units
1		11.304	26065372	50.36	631986		
2		19.407	25689703	49.64	318917		

| Feak Results | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | RT | Area | \% Area | Height
 $(\mu \mathrm{V})$ | Ammunt | Units |
| 1 | 11.964 | 13944399 | 49.76 | 317495 | | |
| 2 | 21.121 | 14076166 | 50.24 | 159222 | | |

Peak Results

	Name	RT	Area	\%Area	Height $(\mu \mathrm{V})$	Armount	Units
1		11.896	33694463	85.51	761337		
2		20.941	5707367	14.49	76482		

Auto-Scaled Chromatogram

Peak Results

	Name	RT	Area	\% Area	Height $(\mu \dot{V})$	Amount	Units
1		13.924	118306911	92.51	2222470		
2		27.338	9574203	7.49	107641		

Peak RetTime Type \# [min]	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \star \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area f
19.660 MM	0.5658	6.10341 ed	1797.76428	77.5492
218.179 BB	1.0515	1.76696 ed	262.43613	22.4508
Totals :		7.87037 e 4	2060.20041	

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	Height $[\mathrm{mAU}]$	Area
1	11.219	MM	0.6953	3622.36304	86.82523	93.8020
2	20.622	MM	1.1824	239.34805	3.37363	6.1980
Tota	s :			3861.71109	90.19886	

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Peak Results							
	Name	RT	Area	$\%$ Area	Height $(\mu \mathrm{N})$	Amount	Units
1		8.153	64738553	92.34	2185348		
2		20.030	5373989	7.66	94112		

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	Area \%
1	9.729	BB	0.4865	3970.61523	126.38480	81.5723
2	22.034	MM	1.2430	896.98938	12.02678	18.4277

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { * }]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	9.967	MM	0.5786	2.20452 e 4	635.04474	90.0004
2	22.403	MM	1.1948	2449.35645	34.16690	9.9996

Peak Results

	Name	RT	Area	\% Area	Height $(\mu \mathrm{V})$	Amount	Units
1		9.765	41976772	49.44	1255408		
2		14.672	42926468	50.56	773540		

Peak Results

	Name	RT	Area	\% Area	Height $(\mu \mathrm{V})$	Amount	Units
1		9.764	28352839	87.98	853033		
2		14.796	3874288	12.02	83995		

Auto-Scaled Chromatogram

Peak Results

	Name	RT	Area	\% Area	Height $(\mu \mathrm{V})$	Amount	Units
1		10.563	92772188	85.11	1988181		
2		21.070	16225778	14.89	208550		

Auto-Scaled Chromatogram

Peak Results							
Name	RT	Area	\% Area	Height $(\mu \mathrm{V})$	Amount	Units	
1		13.919	80491114	78.45	1428235		
2		20.976	22107315	21.55	263445		

Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Peak Results								
	Name	RT	Area	$\%$ Area	Height $(\mu \mathrm{V})$	Amount	Units	
1		10.257	49134124	80.68	1478139			
2		17.196	11766108	19.32	226520			

