Electronic Supplementary Information

Dinuclear Zinc Catalyzed Asymmetric Friedel-Crafts Amidoalkylation of Indoles with Aryl Aldimines

Bei-Lei Wang, Nai-Kai Li, Jin-Xin Zhang, Guo-Gui Liu, Teng Liu, Qi Shen*, and

Xing-Wang Wang*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China. Fax: +86-512-65880378

E-mail: wangxw@suda.edu.cn.

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All solvents employed in the reactions were distilled from appropriate drying agent prior to use. Organic solutions were concentrated under reduced pressure on an EYELA N-1001 rotary evaporator. Reactions were monitored by thin-layer chromatography (TLC) on silica gel precoated glass plates (0.2±0.03 mm thickness, GF-254, particle size 0.01–0.04 mm) from Yantai Chemical Industry Research Institute, P. R. China. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm. Flash column chromatography was performed using silica gel (particle size 0.04–0.05 mm) from Yantai Chemical Industry Research Institute, P. R. China.

¹H (400 MHz) and ¹³C (101 MHz) spectra were recorded in DMSO-d₆ on Varian Inova-400 NMR spectometer. Chemical shifts (δ ppm) are relative to the resonance of the deuterated solvent as the internal standard (DMSO-d₆, δ 2.50 ppm for proton NMR, δ 39.51 ppm for carbon NMR). ¹H NMR data are reported as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, q = quartet, m = multiplet), coupling constants (J) and assignment. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). High-resolution mass spectra (HRMS) for all the compounds were determined on Micromass GCT-TOF mass spertrometer with ESI resource.

High performance liquid chromatography (HPLC) analysis was performed on a Waters 2695 and

Agilent Technologies 1200 Series instrument equipped with a quaternary pump, using a Daicel Chiralcel OD-H Column (250 x 4.6 mm). UV absorption was monitored at 210 nm to 254 nm. Optical rotations were measured on an Autopol IV polarimeter, and $[\alpha]_D$ values are reported in 10^{-1} dg cm² g⁻¹; concentration (c) is reported in g/100 mL.

Experimental section

General procedure for the preparation of aldimines 3a-q¹:

N-sulfonyl imines **3a-q** described in this paper were prepared by condensation of the corresponding aldehydes with *p*-toluenesulfonamide according to the reported procedure with minor modification: the aldehyde (25.0 mmol), *p*-toluenesulfonamide (25.0 mmol), and Si(OEt)₄ (27.5 mmol, 1.1 equiv.) were combined into a flask equipped with an oil-water separator and heated at 160°C for 10 hours. The produced EtOH was collected in the oil-water separator and released it at regular intervals. After cooling down, the residue of the reaction was directly recrystallized from ethyl acetate and hexanes to provide N-sulfonyl imines **3a-q**. It should be noted that, in order to avoid the trace impurities affecting the reaction, the N-sulfonyl aryl aldimines were recrystallized at least for two times before they were utilized as starting materials for asymmetric Friedel-Crafts amidoalkylation.

Procedure for the preparation of aldimine 3r²

A mixture of aldehyde (10 mmol), phenylsulfonamide (10 mmol) and sodium benzenesulfinate (1.82 g, 11 mmol) in formic acid (15 mL) and H₂O (15 mL) was stirred for 12 h at rt. The resulting white precipitate was filtered off, washed with H₂O (2 x 10 mL), then pentane (10 mL), and dissolved in CH₂Cl₂ (100 mL). Sat. aq NaHCO₃ or Na₂CO₃ (70 mL) was added and the solution was well stirred for 2 h at rt. The organic phase was decanted, and the aqueous phase was extracted with CH₂Cl₂ (2 x 35 mL). The combined organic layers was washed by H₂O (30 mL), brine (30 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to yield the crude product. Crystallization from ethyl acetate and hexanes gave pure N-sulfonyl imine **3r**.

General procedure and spectroscopic data for dinuclear zinc catalyzed asymmetric

Friedel-Crafts amidoalkylation of indoles with aryl Aldimines:

Under an argon atmosphere, a solution of diethylzinc (50 μ L, 1.0 M in toluene, 0.05 mmol) was added to a stirred and cooled solution of L4 (16 mg, 0.025 mmol) in toluene (0.5 mL) at 0°C. After the addition, the cold bath was removed and the resulting solution was allowed to stir at rt for 30 min. Then a solution of N-sulfonyl imines **3a** (65 mg, 0.25 mmol) and indole **2a** (146 mg, 1.25 mmol) in 1.0 mL toluene were added. The corresponding mixture was allowed to be stirred for another 2h at rt. After the reaction was complete (monitored by TLC), 10% NaHCO₃ (3 mL) was added. The mixture was extracted with ethyl acetate (3×10 mL). The organic layer was washed by H₂O (5 mL), brine (5 mL) and dried over anhydrous Na₂SO₄. The solvent was evaporated *in vacuo* and the residue was purified by flash chromatography to afford the desired product **4a**.

The reaction procedures for the preparation of **4b-v** are identical with the above described for the preparation of **4a**. In order to demonstrate the reproducibility of the reaction, the crystals of the N-sulfonyl aryl aldimines (**3c**, **3d** and **3p**) were used to repeat the reaction under otherwise identical conditions. The results of control experiments showed that the reactions could be well reproduced in terms of yields and enantioselectivities (**4c**: 95% yield, 73:27 er *vs* 98% yield, 74:26 er; **4d**: 98% yield, 84:16 er *vs* 98% yield, 86:14 er; **4p**: 88% yield, 76:24 er *vs* 90% yield, 78:22 er).

N-[Indol-3-yl-phenylmethyl]-4-methylbenzenesulfonamide (4a)

Ts._{NH} Colorless solid; 95% yield, 92:8 er, [Daicel Chiralcel OD-H, Hexanes/IPA = 75/25, flow rate: 1.0 mL·min⁻¹, $\lambda = 210.5$ nm, t (major) = 10.451, t (minor) = 19.229]; $[\alpha]_D^{20} = +12.8$ (c 0.5, Acetone); ¹H NMR (400 MHz, DMSO-d₆): δ

10.87 (s, 1H) , 8.49 (d, J = 8.8 Hz, 1H), 7.50 (d, J = 8.1 Hz, 2H), 7.33 – 7.24 (m, 4H), 7.20 – 7.09 (m, 5H), 7.04 (t, J = 7.6 Hz, 1H), 6.88 (t, J = 7.5 Hz, 1H), 6.78 (d, J = 2.1 Hz, 1H), 5.74 (d, J = 8.9 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 141.83, 141.73, 138.86, 136.35, 128.93, 127.87, 127.06, 126.38, 123.67, 121.21, 120.86, 118.88, 118.75, 118.53, 115.70, 111.43, 54.46, 20.90; ESI–MS: m/z [M + Na]⁺ calcd for C₂₂H₂₀N₂O₂SNa: 399.1143; found: 399.1130.

N-[Indol-3-yl-(4- fluorophenyl)methyl]-4-methylbenzenesulfonamide (4b)

Colorless solid; 97% yield, 90:10 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, λ = 210.5 nm, t (major) = 11.224, t (minor) = 19.474]; [α] $_{D}^{20}$ = +11.7 (c 0.5, Acetone); ¹H NMR (400 MHz, DMSO-d₆): δ 8.49 (d, J = 8.9 Hz, 1H), 7.49 (d, J = 8.2 Hz, 2H),

Ts NH
NH
NH
NH
Ts NH
Ts NH
Ts NH
Ts NH
Ts NH
Ts NH
T 29 (dt,
$$J = 8.4, 7.1$$
 Hz, 4H), 7.13 (d, $J = 8.1$ Hz, 2H), 7.05 (t, $J = 7.5$ Hz,
1H), 6.97 (t, $J = 8.8$ Hz, 2H), 6.90 (t, $J = 7.5$ Hz, 1H), 6.76 (d, $J = 1.7$ Hz,
1H), 5.75 (d, $J = 8.9$ Hz, 1H), 2.28 (s, 3H); ¹³C NMR (101 MHz, DMSO-d_6):

δ 147.32, 144.08, 143.21, 143.18, 141.80, 134.45, 134.35, 131.81, 130.77, 129.08, 126.70, 124.29, 123.99, 120.95, 120.03, 119.82, 116.87, 59.22, 26.27; ESI–MS: m/z [M + Na]⁺ calcd for C₂₂H₁₉FN₂O₂SNa: 417.1047; found: 417.1061.

N-[Indol-3-yl-(4-chlorophenyl)methyl]-4-methylbenzenesulfonamide (4c)

Ts NH Colorless solid; 98% yield, 74:26 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 11.734, t (minor) = 21.264]; [α]_D²⁰ = +5.2 (c 0.5, Acetone); ¹H NMR (400 MHz, DMSO-d₆): δ

10.91 (d, J = 25.7 Hz, 1H), 8.50 (t, J = 8.0 Hz, 1H), 7.48 (d, J = 7.8 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.2 Hz, 2H), 7.13 (d, J = 4.0 Hz, 2H), 6.94 (t, J = 7.3 Hz, 1H), 6.90 (t, J = 7.5 Hz, 1H), 6.77 (s, 1H), 5.73 (d, J = 8.7 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 143.02, 141.53, 139.56, 137.39, 132.26, 129.98, 129.96, 128.79, 127.44, 126.34, 124.76, 122.34, 119.84, 119.63, 116.16, 112.49, 54.86, 21.88; ESI–MS: m/z [M + Na]⁺ calcd for C₂₂H₁₉ClN₂O₂SNa: 433.0793; found: 433.0760.

N-[Indol-3-yl-(4-bromophenyl)methyl]-4-methylbenzenesulfonamide (4d)

Colorless solid; 98% yield, 86:14 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, $\lambda = 210.5$ nm, t (major) = 11.896, t (minor) = 20.941]; $[\alpha]_D^{20} = +10.8$ (c 0.5, Acetone); ¹H NMR (400 MHz, DMSO-d₆):

δ 10.93 (s, 1H), 8.51 (d, J = 8.7 Hz, 1H), 7.49 (d, J = 7.9 Hz, 2H), 7.32 (dd, J = 11.5, 5.7 Hz, 4H), 7.20 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 7.7 Hz, 2H), 7.06 (t, J = 7.5 Hz, 1H), 6.91 (t, J = 7.4 Hz, 1H), 6.79 (s, 1H), 5.73 (d, J = 8.7 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 147.41, 146.31, 143.92, 141.76, 136.09, 134.72, 134.37, 131.82, 130.72, 129.15, 126.72, 125.16, 124.22, 124.02, 120.45, 116.87, 59.31, 26.30; ESI–MS: m/z [M + Na]⁺ calcd for C₂₂H₁₉BrN₂O₂SNa: 477.0248; found: 477.0245.

N-[Indol-3-yl-(4-Methoxyphenyl)methyl]-4-methylbenzenesulfonamide (4e)

Colorless solid, 90% yield, 92:8 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, λ = 221.3 nm, t (major) = 13.924, t (minor) = 27.338]; [α] $_{D}^{20}$ = +7.5 (c 0.5, Acetone); ¹H NMR (400 MHz, DMSO-d₆): δ 10.86 (d, J = 52.5 Hz, 1H), 8.41 (t, J = 8.0 Hz, 1H),

8.6 Hz, 1H), 3.68 (s, 3H), 2.28 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 158.04, 141.80, 138.93, 136.46, 133.76, 132.72, 129.37, 128.97, 128.31, 126.45, 123.56, 121.20, 118.52, 116.03, 113.28, 111.46, 55.05, 54.10, 20.93; ESI–MS: m/z [M + Na]⁺ calcd for C₂₃H₂₂N₂O₃SNa: 429.1249; found: 429.1243.

N-[Indol-3-yl-(4-Methylphenyl)methyl]-4-methylbenzenesulfonamide (4f)

Colorless solid; 98% yield, 78:22 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, $\lambda = 210$ nm, t (major) = 9.660, t (minor) = 18.179]; $[\alpha]_{D}^{20} = +8.4$ (c 0.5, Acetone); ¹H NMR (400 MHz, DMSO-d₆) δ

10.86 (s, 1H), 8.42 (d, J = 8.7 Hz, 1H), 7.50 (d, J = 7.8 Hz, 2H), 7.34 – 7.26 (m, 2H), 7.13 (d, J = 4.6 Hz, 4H), 7.04 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 7.6 Hz, 2H), 6.87 (t, J = 7.4 Hz, 1H), 6.82 (s, 1H), 5.70 (d, J = 8.7 Hz, 1H), 2.28 (s, 3H), 2.22 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 141.86, 138.89, 138.78, 136.43, 135.75, 128.96, 128.45, 127.07, 126.44, 125.51, 123.66, 121.23, 118.96, 118.55, 115.85, 111.46, 54.34, 20.93, 20.67; ESI–MS: m/z [M + Na]⁺ calcd for C₂₃H₂₂N₂O₂SNa: 413.1300; found: 413.1299.

N-[Indol-3-yl-(4-trifloroMethylphenyl)methyl]-4-methylbenzenesulfonamide (4g)

`NH

Colorless solid; 98% yield, 94:6 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 11.219, t (minor) = 20.622]; $[\alpha]^{20}_{D} = +28.2$ (c 1, Acetone);¹H NMR (400 MHz,

DMSO-d₆) δ 10.95 (s, 1H), 8.58 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 6.6 Hz, 1H), 7.47 (s, 3H), 7.42 – 7.26 (m, 4H), 7.09 (d, *J* = 6.3 Hz, 2H), 6.93 (t, *J* = 6.5 Hz, 1H), 6.78 (s, 1H), 5.83 (d, *J* = 8.3 Hz, 1H), 2.25 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 146.01, 142.05, 138.40, 136.43, 129.36, 128.99, 127.93, 126.51, 125.67, 124.85, 124.81, 124.76, 124.72, 123.91, 121.49, 118.83, 118.79, 114.79, 111.61, 109.39, 54.21, 20.95; ESI–MS: m/z [M + Na]⁺ calcd for C₂₃H₁₉F₃N₂O₂SNa: 467.1107; found: 467.1024.

N-[Indol-3-yl-(2-chlorophenyl)methyl]-4-methylbenzenesulfonamide (4h)

Colorless solid; 98% yield, 92:8 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate:

1.0 mL·min⁻¹, $\lambda = 210.5$ nm, t (major) = 8.153, t (minor) =20.030]; $[\alpha]^{20}{}_{D} = +51.2$ (c 0.5, Acetone); ^{Ts}NH Cl H NMR (400 MHz, DMSO-d₆): δ 8.58 (d, J = 8.6 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.52 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.2 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.19 – 7.16 (m, 4H), 7.08 (t, J = 7.6 Hz, 1H), 6.93 (t, J = 7.5 Hz, 1H), 6.55 (s, 1H), 6.17 (d, J = 8.6 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 142.20, 138.79, 138.31, 136.40, 131.44, 129.11, 128.84, 128.80, 128.34, 126.98, 126.37, 125.65, 124.18, 121.49, 118.81, 118.50, 114.08, 111.64, 50.63, 20.93; ESI–MS: m/z [M + Na]⁺ calcd for

C₂₂H₁₉ClN₂O₂SNa: 433.0748; found: 433.0751.

N-[Indol-3-yl-(2- fluorophenyl)methyl]-4-methylbenzenesulfonamide (4i)

Colorless solid; 96% yield, 82:18 er, [Daicel Chiralcel OD-H, Hexanes / IPA = f_{4i} T5 / 25, flow rate: 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 9.792, t (minor) = 22.034]; $[\alpha]^{20}_{D} = +43.2$ (c 0.5, Acetone); ¹H NMR (400 MHz, DMSO-d₆) δ 10.93 (s, 1H), 8.55 (d, J = 7.5 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 4.0 Hz, 1H), 7.31 (t, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 7.07 (t, J = 8.0 Hz, 1H), 7.02 – 6.96 (m, 3H), 6.94 (t, J = 8.0 Hz, 1H), 6.73(s, 3H), 6.02(d, J = 8.0 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 142.18, 138.34, 136.39, 129.10, 128.88, 128.84, 128.79, 128.67, 126.37, 125.43, 124.16, 123.75, 121.49, 118.82, 118.40, 114.97, 114.77, 114.44, 114.40, 114.37, 111.67, 111.65, 47.18, 47.16, 20.93; ESI-MS: m/z [M + Na]⁺ calcd for C₂₂H₁₉FN₂O₂SNa: 417.1047; found: 417.1057.

N-[Indol-3-yl-(2-bromophenyl)methyl]-4-methylbenzenesulfonamide (4j)

Colorless solid; 97% yield, 84:16 er, [Daicel Chiralcel OD-H, Hexanes / IPA = J_{4j} 75 / 25, flow rate: 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 8.553, t (minor) = 22.330]; $[\alpha]^{20}_{D} = +43.2$ (c 0.5, Acetone); ¹H NMR (400 MHz, DMSO-d₆) δ 10.94 (s, 1H), 8.59 (d, J = 8.5 Hz, 1H), 7.57 (d, J = 7.7 Hz, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 7.9 Hz, 1H), 7.34 (t, J = 8.0 Hz, 2H), 7.24-7.16 (m, 3H), 7.09 (t, J = 7.5 Hz, 2H), 6.95 (t, J =7.4 Hz, 1H), 6.50 (s, 1H), 6.16 (d, J = 8.4 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 142.30, 140.39, 138.34, 136.48, 132.16, 129.19, 129.03, 128.67, 127.58, 126.47, 125.78, 124.40, 122.40, 121.59, 118.89, 118.67, 114.17, 111.72, 53.35, 21.00; ESI–MS: m/z [M + Na]⁺ calcd for C₂₂H₁₉BrN₂O₂SNa: 477.0248, 479.0228; found: 477.0243, 479.0225.

N-[Indol-3-yl-(2-Methoxyphenyl)methyl]-4-methylbenzenesulfonamide (4k)

Colorless solid; 98% yield, 90:10 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate:

1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 9.967, t (minor) = 22.403]; $[\alpha]^{20}_{D} = +46.3$ (c 1, Acetone); ¹H Ts NH OME NMR (400 MHz, DMSO-d₆): δ 10.80 (s, 1H), 8.29 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.28 – 7.39 (m, 3H), 7.10 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 1H), 6.91 (t, J = 8.0 Hz, 1H), 6.75 (dd, J = 12.0, 8.0 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 6.16 (d, J = 12.0 Hz, 1H), 3.63 (s, 3H), 2.27 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 156.00, 142.44, 139.20, 137.01, 130.06, 129.43, 128.55, 128.47, 126.97, 124.18, 121.87, 120.66, 119.45, 119.17, 116.42, 112.09, 111.07, 109.99, 55.93, 48.01, 21.53; ESI–MS: m/z

 $[M + Na]^+$ calcd for $C_{23}H_{22}N_2O_3SNa:429.1249$; found: 429.1253.

N-[Indol-3-yl-(3-methylphenyl)methyl]-4-methylbenzenesulfonamide (41)

Colorless solid; 92% yield, 88:12 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, $\lambda = 242.8$ nm, t (major) = 9.764, t (minor) = 14.796]; $[\alpha]^{20}{}_{D} = +10.4$ (c 0.5, Acetone); ¹H NMR (400 MHz, DMSO-d₆): δ 8.42 (d, J = 12.0 Hz, 1H), 7.48 (d, J = 7.9 Hz, 2H), 7.38 – 7.25 (m, 2H), 7.12 (d, J = 7.9 Hz, 3H), 7.05 (d, J = 4.7 Hz, 2H), 6.91 (m, 3H), 6.80 (s, 1H), 5.69 (d, J = 12.0 Hz, 1H), 2.28 (s, 3H), 2.14 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 147.18, 146.78, 144.18, 142.20, 141.74, 134.24, 133.16, 133.10, 131.78, 130.87, 129.62, 129.07, 126.59, 124.26, 123.92, 121.08, 116.82, 114.74, 59.89, 26.33, 26.27; ESI–MS: m/z [M + Na]⁺ calcd for C₂₃H₂₂N₂O₂SNa: 413.1300; found: 413.1299.

N-[Indol-3-yl-(3-chlorophenyl)methyl]-4-methylbenzenesulfonamide (4m)

Ts NH NH Colorless solid; 98% yield, 76:24 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 12.988, t (minor) = 16.128]; [α]²⁰_D = +10.57 (c 0.5, Acetone); ¹H NMR (400 MHz,

DMSO-d₆): δ 10.93 (s, 1H), 8.52 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 7.8 Hz, 2H), 7.37 – 7.30 (m, 2H), 7.23 (s, 2H), 7.17 – 7.12 (m, 4H), 7.06 (t, J = 7.2 Hz, 1H), 6.91 (t, J = 7.2 Hz, 1H), 6.78 (s, 1H), 5.75 (d, J = 8.0 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 143.94, 142.12, 138.48, 136.40, 132.70, 129.77, 129.02, 126.92, 126.60, 126.42, 125.90, 125.35, 123.80, 121.42, 118.87, 118.72, 115.10, 111.57, 53.99, 20.95; ESI–MS: m/z [M + Na]⁺ calcd for C₂₂H₁₉ClN₂O₂SNa: 433.0753; found: 433.0751.

N-[Indol-3-yl-(2,4-Dichlorophenyl)methyl]-4-methylbenzenesulfonamide (4n)

Colorless solid; 98% yield, 95:5 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate:

1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 8.139, t (minor) = 21.301]; $[\alpha]^{20}_{D} = +68.6$ (c 0.5, Acetone); ^{Ts} NH Cl ^IH NMR (400 MHz, DMSO-d₆) δ 10.98 (d, J = 9.4 Hz, 1H), 8.59 (t, J = 8.3Hz, 1H), 7.50 (d, J = 5.0 Hz, 1H), 7.33 (d, J = 8.2 Hz, 1H), 7.29 (d, J = 7.9Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.19 (d, J = 7.9 Hz, 2H), 7.08 (t, J = 7.5Hz, 1H), 6.93 (dd, J = 13.2, 5.8 Hz, 1H), 6.56 (d, J = 8.0 Hz, 1H), 6.08 (d, J = 8.4 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 141.91, 137.72, 132.37, 132.11, 130.24, 129.34, 128.20, 127.23, 126.41, 125.67, 124.28, 121.61, 118.93, 118.46, 113.42, 111.72, 109.39, 54.92, 20.96;

ESI-MS: $m/z [M + Na]^+$ calcd for $C_{22}H_{18}Cl_2N_2O_2SNa$: 467.0364; found: 467.0367.

N-[Indol-3-yl-(1-Naphthyl)methyl]-4-methylbenzenesulfonamide (40)

Colorless solid; 96% yield, 85:15 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, λ = 210.5 nm, t (major) = 10.563, t (minor) = 21.070]; [α]²⁰_D = +62.4 (c 0.5, Acetone); ¹H NMR (400 MHz, DMSO-d₆): δ 10.85 (s, 1H), 8.59 (d, *J* = 7.8 Hz, 1H), 7.95 (d, *J* = 7.9 Hz, 1H), 7.89 (d, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.62 (d, *J* = 6.7 Hz, 1H), 7.50 – 7.36 (m, 5H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.07 (dd, *J* = 14.3, 7.7 Hz, 3H), 6.88 (t, *J* = 7.0 Hz, 1H), 6.60 (s, 1H), 6.53 (d, *J* = 8.0 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 141.97, 138.70, 137.05 136.35, 133.24, 130.19, 128.94, 128.56, 127.39, 126.36, 126.09, 125.62, 125.44, 125.14, 124.80, 124.63, 123.12, 121.32, 118.73, 118.54, 114.94, 111.56, 50.66, 20.93. HRMS–FAB: m/z [M + Na]⁺ calcd for C₂₆H₂₂N₂O₂SNa:449.1402; found: 449.1307.

N-[Indol-3-yl-(2-Naphthyl)methyl]-4-methylbenzenesulfonamide (4p)

Primrose yellow solid; 90% yield, 78:22 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, λ = 213.4 nm, t (major) = 13.919, t (minor) = 20.976]; [α]²⁰_D = +14.6 (c 0.5, Acetone) ¹H NMR (400 MHz, DMSO-d₆) δ 10.92 (s, 1H), 8.54 (d, *J* = 8.0 Hz, 1H), 7.90 – 7.64 (m, 4H), 7.28 – 7.54 (m, 7H), 7.12 – 6.96 (m, 3H), 6.88 (d, *J* = 7.6 Hz, 2H), 5.89 (d, *J* = 8.4 Hz, 1H), 2.11 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 141.89, 138.87, 138.64, 136.40, 132.55, 131.99, 128.86, 127.69, 127.56, 127.37, 126.42, 125.98, 125.68, 125.61, 125.50, 125.46, 123.82, 121.29, 118.85, 118.61, 115.44, 111.50, 54.72, 20.74; ESI–MS: m/z [M + Na]⁺ calcd for C₂₆H₂₂N₂O₂SNa: 449.1300; found: 449.1307.

N-[Indol-3-yl-(2-Thiophenyl)methyl]-4-methylbenzenesulfonamide (4q)

Primrose yellow solid; 85% yield, 81:19 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25,

Ts NH flow rate: 1.0 mL·min⁻¹,
$$\lambda = 210.5$$
 nm, t (major) = 10.257, t (minor) = 17.196];
[α]²⁰_D = +7.4 (c 0.215, Acetone); ¹H NMR (400 MHz, DMSO-d₆) δ10.91 (s, 1H), 8.62 (d, J = 8.4 Hz, 1H), 7.53 (d, J = 7.7 Hz, 2H), 7.31 (t, J = 7.2 Hz, 3H),

7.12 (d, J = 7.7 Hz, 2H), 7.04 (t, J = 7.2 Hz, 1H), 6.89 – 6.75 (m, 4H), 5.99 (d, J = 8.4 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 151.16, 146.33, 146.14, 136.27, 129.03, 128.97, 126.47, 126.37, 125.15, 125.10, 125.05, 123.74, 121.22, 118.59, 111.45, 109.36, 50.15, 20.95; ESI–MS: m/z [M + Na]⁺ calcd for C₂₀H₁₈N₂O₂S₂Na: 405.0702; found: 405.0714.

N-[5-Methylindol-3-yl-phenylmethyl]-4-methylbenzenesulfonamide (4r)

Colorless solid; 94% yield, 72:28 er, [Daicel Chiralcel OD-H, Hexanes / IPA $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ = 75 / 25, flow rate: 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 9.403, t (minor) = 28.043]; $[\alpha]^{20}_{D} = +16.57$ (c 1.0, Acetone); ¹H NMR (400 MHz, DMSO-d₆): δ 10.75 (s, 1H), 8.43 (d, J = 8.1 Hz, 1H), 7.55 (d, J = 7.5 Hz, 2H), 7.29 (d, J = 6.4 Hz, 2H), 7.24 – 7.15 (m, 6H), 6.92 (s, 1H), 6.86 (d, J = 7.8 Hz, 1H), 6.67 (s, 1H), 5.68 (d, J = 8.0 Hz, 1H), 2.30 (s, 3H), 2.25 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 142.17, 141.99, 138.85, 134.71, 129.10, 127.94, 127.07, 126.99, 126.52, 125.78, 124.03, 122.88, 118.29, 115.16, 111.19, 104.65, 54.29, 21.29, 21.00; ESI–MS: m/z [M + Na]⁺ calcd for C₂₃H₂₂N₂O₂SNa: 413.1300; found: 413.1303.

N-[5-Bromoindol-3-yl-phenylmethyl]-4-methylbenzenesulfonamide (4s)

Colorless solid; 98% yield, 70:30 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 7.780, t (minor) = 21.050]; $[\alpha]^{20}_{D} = +17.37$ (c 1.0, Acetone); ¹H NMR (400 MHz, DMSO-d₆) δ

11.10 (s, 1H), 8.52 (d, J = 8.4 Hz, 1H), 7.52 (d, J = 7.6 Hz, 2H), 7.37 (s, 1H), 7.28 (t, J = 7.4 Hz, 3H), 7.24 – 7.11 (m, 5H), 6.81 (s, 1H), 5.71 (d, J = 8.4 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 142.08, 141.58, 139.83, 138.58, 135.10, 129.08, 128.03, 127.07, 126.42, 125.68, 123.77, 121.19, 115.43, 113.56, 113.53, 111.39, 104.65, 54.02, 21.06; ESI–MS: m/z [M + Na]⁺ calcd for C₂₂H₁₉BrN₂O₂SNa: 477.0248, 479.0228; found: 477.0246, 479.0225.

N-[7-Methylindol-3-yl-phenylmethyl]-4-methylbenzenesulfonamide (4t)

Colorless solid; 90% yield, 85:15 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 24.772, t (minor) =29.161]; [α]²⁰_D = +17.63 (c 1.0, Acetone); ¹H NMR (400 MHz, DMSO-d₆) δ 10.86 (s, 1H), 8.48 (d, *J* = 8.7 Hz, 1H), 7.50 (d, *J* = 7.8 Hz, 2H), 7.26 (d, J = 6.8 Hz, 2H), 7.20 – 7.14 (m, 2H), 7.12 (d, J = 7.8 Hz, 3H), 6.85 – 6.75 (m, 3H), 5.72 Ts NH (d, J = 8.7 Hz, 1H), 2.39 (s, 3H), 2.27 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 141.88, 138.83, 135.89, 128.98, 127.93, 127.11, 126.68, 126.41, 125.15, 123.36, 121.73, 120.52, 118.82, 116.58, 116.15, 104.65, 54.59, 20.95,

16.76; ESI–MS: m/z $[M + Na]^+$ calcd for $C_{23}H_{22}N_2O_2SNa$: 413.1300; found: 413.1302.

N-[7-Methylindol-3-yl-(2-chlorophenyl)methyl]-4-methylbenzenesulfonamide (4u)

^{Ts}_{NH Cl} Colorless solid; 91% yield, 87:13 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 9.185, t (minor) =13.311]; $[\alpha]^{20}_{D} = +54.6$ (c 0. 5, Acetone); ¹H NMR (400 MHz, DMSO-d₆) δ

11.19 (s, 1H), 8.64 (d, J = 6.4 Hz, 1H), 7.65 (s, 1H), 7.58 (d, J = 6.0 Hz, 2H), 7.15-7.33 (m, 7H), 6.58 (s, 1H), 6.05 (d, J = 6.3 Hz, 1H), 5.76 (s, 1H), 3.42 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 142.59, 138.82, 137.93, 135.10, 131.47, 129.40, 129.00, 128.71, 128.53, 127.47, 127.16, 126.44, 126.09, 124.07, 120.51, 113.80, 113.55, 111.68, 54.99, 50.31, 21.18; ESI–MS: m/z [M + Na]⁺ calcd for C₂₃H₂₁ClN₂O₂SNa: 447.0910; found: 447.0113.

N-[Indol-3-yl-phenylmethyl]-benzenesulfonamide (4v)

Bs NH Colorless solid; 87% yield, 85:15 er, [Daicel Chiralcel OD-H, Hexanes / IPA = 75 / 25, flow rate: 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 11.234, t (minor) = 19.982]; $[\alpha]^{20}_{D} = +12.5$ (c 0.5, Acetone); ¹H NMR (400 MHz, DMSO-d₆) δ

10.93 (s, 1H), 8.18 (s, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 7.5 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 7.38 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 7.06 (t, J = 7.4 Hz, 2H), 6.93 – 6.86 (m, 4H), 6.07 (s, 1H).; ¹³C NMR (101 MHz, DMSO-d₆): δ 147.83, 147.42, 136.65, 135.17, 129.62, 127.08, 126.39, 125.35, 123.92, 121.17, 119.25, 118.97, 118.47, 116.99, 111.65, 56.55; ESI–MS: m/z [M + Na]⁺ calcd for C₂₁H₁₈N₂O₂SNa: 385.0987; found: 385.0968.

	→ + H 2a	N ^{-Ts} II <u>ZnEt₂/L</u> Ph toluer 3a	<u>-4 (10mol%)</u> ne, rt, 2h	Ts NH Ph H 4a
-	Entry ^a	Toluene (mL)	Yield (%) ^b	er (%) ^c
_	1	0.5	91	79:21
	2	1	93	76:24
	3	1.5	94	92:8
	4	2	94	80:20

Table 4 Investigating the effect of the concentration:

^{*a*}The reactions were performed with 5 equiv of 2a, in toluene under N₂ at the room temperature for two hours (ZnEt₂, 1.0 M in toluene). ^{*b*}Isolated yields. ^{*c*}The enantiomeric ratio was determined by chiral HPLC analysis of the corresponding products on a chiralcel OD-H column.

References:

- 1. B. E. Love, P. S. Raje, T. C. II Williams, Synlett, 1994, 493-494.
- 2. F. Chemla, V. Hebbe, J. -F. Normant, Synthesis, 2000, 1, 75-77.
- 3. B. M. Trost, V. S. C. Yeh, Org. Lett., 2002, 4, 3513-3516.

¹H and ¹³C NMR spectra for 4a-v:

HPLC spectra for 4a-v:

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1 11.097 BB 2 20.643 BB	0.5673	2930.96729 2876.57886	80.02396 37.84190	50.4683 49.5317	

			Peak	Result	ts		
	Name	RT	Area	% Area	Height (µV)	Amount	Units
1		10.451	19788725	92.41	559737		
2		19.229	1625757	7.59	27046		

48.36

190528

2

19.109

14086879

			Peak	Result	s		
	Name	RT	Area	% Area	Height (µV)	Amount	Units
1		11.224	38074034	89.86	922904		
2		19.474	4298315	10.14	72808		

35

	Name	RT	Area	% Area	Height (µV)	Amount	Units	
1		11.304	26065372	50.36	631986			
2		19.407	25689703	49.64	318917			

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area
	[]		[
1 11.734 BB	0.6388	6392.87451	155.12595	73.9909
2 21.264 BB	1.2775	2247.21143	27.32549	26.0091
Cotals :		8640.08594	182.45144	

	Name	RT	Area	% Area	Height (µV)	Amount	Units
1		11.964	13944399	49.76	317495		
2		21.121	14076166	50.24	159222		

			Peak	Result	S		
	Name	RT	Area	% Area	Height (µV)	Amount	Units
1		11.896	33694463	85.51	761337		
2		20.941	5707367	14.49	76482		

Signal 1: DAD1 C, Sig=210,8 Ref=360,100 Height Area Area Peak RetTime Type Width # [min] [min] [mAU*s] [mAU] 8 -------------1.1457 1.62095e5 2357.93604 48.9904 1 15.418 MM 2.3469 1.68776e5 1198.58911 51.0096 29.238 MM 2 3.30871e5 3556.52515 Totals :

			Peak	Result	ts		
	Name	RT	Area	% Area	Height (µV)	Amount	Units
1		13.924	118306911	92.51	2222470		
2		27.338	9574203	7.49	107641		

Totals : 2.60697e4 568.93207	ale ·	2.60697e4	4 568.93207
------------------------------	-------	-----------	-------------

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 9.660 MM	0.5658	6.10341e4	1797.76428	77.5492
2 18.179 BB	1.0515	1.76696e4	262.43613	22.4508
Totals .		7.87037e4	2060.20041	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime # [min]	Type	Width [min]	Area [mAU*s]	Height (mAU)	Area %
1 11.219	MM	0.6953	3622.36304	86.82523	93.8020
2 20,622	MM	1.1824	239.34805	3.37363	6.1980
Totals :			3861.71109	90,19886	

Peak RetTime # [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 9.729	BB	0.4865	3970.61523	126.38480	81.5723
2 22.034	MM	1.2430	896.98938	12.02678	18.4277

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	8.720	BB	0.4613	1808.43274	60.74955	50.1153
2	22.824	BB	1.3826	1800.11157	20.37676	49.8847

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	Ş
1	8.553	BB	0.4492	2069.39648	71.17509	83.9280
2	22.330	MM	1.1672	396.28342	5.65869	16.0720

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	do
1	10.169	VB	0.5379	3471.28052	99.78627	49.6501
2	22.452	BB	1.3159	3520.20972	40.82874	50.3499

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	QQ	
1	9.967	MM	0.5786	2.20452e4	635.04474	90.0004	
2	22.403	MM	1.1948	2449.35645	34.16690	9.9996	

Auto-Scaled Chromatogram

			Peak	Resul	ts		
	Name	RT	Area	% Area	Height (µV)	Amount	Units
1		9.765	41976772	49.44	1255408		
2		14.672	42926468	50.56	773540		

			Peak	Result	S		
	Name	RT	Area	% Area	Height (µV)	Amount	Units
1		9.764	28352839	87.98	853033		
2		14.796	3874288	12.02	83995		

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.988	VB	0.7142	5.97189e4	1289.75598	76.2638
2	16.128	BB	0.9671	1.85868e4	296.62292	23.7362

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	80
1	8.136	MM	0.5693	7.99204e4	2339.57178	47.3223
2	21.041	MM	1.4121	8.89648e4	1050.02124	52.6777

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.139	BB	0.4333	6647.92041	236.96684	95.7639
2	21.301	MM	1.3463	294.06607	3.64047	4.2361

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	Ş
1	9.277	BB	0.5781	5697.80859	150.34492	49.7973
2	17.552	BB	1.1855	5744.19922	74.67046	50.2027

	Peak Results										
	Name	RT	Area	% Area	Height (µV)	Amount	Units				
1		10.563	92772188	85.11	1988181						
2		21.070	16225778	14.89	208550						

Auto-Scaled Chromatogram

Signal 1: DAD1 A,	Sig=254,	4 Ref=360,	100	
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area ۴
1 11.380 VB	0.5722	1.91938e4	518.06628	50.6625
2 19.583 BB	1.0889	1.86918e4	265.64218	49.3375
Totals :		3.78856e4	783.70847	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	9.678	MM	0.6869	2013.15381	48.84984	50.9974
2	29.038	MM	2.5164	1934.41003	12.81183	49.0026

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	9.403	BB	0.5827	1.75613e4	460.68817	72.1197
2	28.043	BB	1.9176	6788.93701	49.95131	27.8803

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	7.849	MM	0.5206	4901.72900	156.93617	51.8431
2	21.123	BB	1.5261	4553.19629	42.90331	48.1569

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	7.780	BB	0.4783	1.38951e4	447.40002	70.4390
2	21.050	BB	1.5339	5831.36230	55.22432	29.5610

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	25.072	MF	1.5960	6524.73584	68.13607	50.1371
2	29.052	FM	2.0044	6489.05225	53.95677	49.8629

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	24.772	BB	1.4253	1.92860e4	206.18800	84.7856
2	29.161	BB	1.6099	3460.77954	31.35092	15.2144

Area
qip
49.4492
50.5508

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	dp
1	9.185	VV	0.5045	2.83035e4	863.39056	87.3961
2	13.311	BB	0.8236	4081.80273	76.85224	12.6039

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	11.375	VB	0.5606	5124.65332	142.14076	50.1822
2	20.103	BB	1.1108	5087.43115	70.93317	49.8178

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	Qio
1	11.234	MM	0.6028	4.13249e4	1142.60632	85.0680
2	19.982	MM	1.0500	7253.77637	115.13707	14.9320