Novel carbohydrates-based bifunctional organocatalysts for the stereoselective

nucleophiles addition to nitroolefins and imines

Alessandra Puglisi, Maurizio Benaglia,* Laura Raimondi, Luigi Lay^{*§}, Laura Poletti Dipartimento di Chimica Organica e Industriale, CISI and [§]ISTM-CNR Universita' degli Studi di Milano via Golgi 19, I-20133 Milano, Italy

Electronic Supporting Information

Synthesis and characterization of bifunctional catalysts 13 and 16. Characterization details of bifunctional catalysts 10, 12, and 14. Copies of ¹H and ¹³C NMR spectra of compounds 3, 7, 10, 11, 12, 13, 14, and 16. ¹H NMR and HPLC chromatograms on chiral stationary phase of products of addition of acetyl acetone to nitrostyrenes and of diethyl malonate to imines.

General. All reactions were carried out in oven-dried glassware with magnetic stirring under nitrogen atmosphere, unless otherwise stated. All commercially available reagents including dry solvents were used as received. Organic extracts were dried over sodium sulfate, filtered, and concentrated under vacuum using a rotatory evaporator. Nonvolatile materials were dried under high vacuum. Reactions were monitored by thin-layer chromatography on pre-coated Merck silica gel 60 F254 plates and visualized either by UV or by staining with a solution of cerium sulfate (1g) and ammonium heptamolybdate tetrahydrate (27 g) in water (469 mL) and concentrated sulfuric acid (31 mL). Flash chromatography was performed on Fluka silica gel 60. Proton NMR spectra were recorded at 300 K (unless otherwise stated) on spectrometers operating at 300, 400 or 500 MHz respectively. Proton chemical shifts are reported in ppm (δ) with the solvent reference relative to tetramethylsilane (TMS) employed as the internal standard (CDCl₃ δ = 7.26 ppm). Carbon chemical shifts are reported in ppm (δ) relative to TMS with the respective solvent resonance as the internal standard (CDCl₃, δ = 77.0 ppm). In ¹³C NMR spectra, signals corresponding to aromatic carbons are omitted. Optical rotations were obtained on a polarimeter at 589 nm using a 5 mL cell with a length of 1 dm. HPLC for e.e. determination was performed under the conditions reported below. High resolution mass spectra (MS) were performed at CIGA (Centro Interdipartimentale Grandi Apparecchiature), with Mass Spectrometer APEX II & Xmass software (Bruker Daltonics). Mass spectra (MS) were performed on a hybrid quadrupole time of flight mass spectrometer equipped with an ESI ion source.

Synthesis and characterization of bifunctional catalysts 13 and 16

N-[2-*N*,*N*-dimethylamino-2-deoxy-β-D-glucopyranosyl], *N*'-(3,5-bis-trifluoromethyl)phenyl urea (13).

Compound **10** (52 mg, 0.089 mmol) was dissolved in dry methanol (10 mL) under inert atmosphere, then a 1M soln of MeONa in MeOH was added at rt until basic pH. When the starting material disappeared (TLC analysis), the reaction was neutralized with IR-120 resin (H^+ form), filtered and concentrated under reduced pressure, obtaining compound **13** as a colourless glass (38 mg, qu).

¹H NMR (400 MHz, CD₃OD) δ 8.59 (s, 1H, NH), 8.06 (s, 2H, Ar), 7.50 (s, 2H, Ar), 5.05 (d, 1H, *J* = 9.6 Hz, H-1), 3.89 (dd, 1H, *J* = 11.7, 1.9 Hz, H-6a), 3.73-3.65 (m, 2H, H-3, H-6b), 3.38-3.30 (m, 2H, H-4, H-5), 2.54 (s, 6H, NMe₂), 2.48 (t, 1H, *J* = 93.9 Hz, H-2), ¹³C NMR (100.6 MHz, CD₃OD) δ 78.7, 77.8, 73.1, 71.4, 67.5, 61.5, 40.8; Anal. Calcd for C₁₇H₂₁F₆N₃O₅ (461.36): C, 44.26; H, 4.59; N, 9.11; Found: C, 44.31; H, 4.50; N, 9.05.

N-[2-N,N-dimethylamino-2-deoxy-3,4,6-tri-O-triethylsilyl- β -D-glucopyanosyl], N'-(3,5-bis-trifluoromethyl)phenyl thiourea (16).

Compound **15** (71 mg, 0.123 mmol), obtained from **3** as described in the general procedure reported in the Experimental Section, and 3,5-bis-trifluoromethylphenyl isothiocianate (22 μ L, 0.123 mmol) were dissolved in dry THF under inert atmosphere, then a catalytic amount of Pd/C was added and the solution was stirred at rt for 2 days. The reaction was filtered over a celite pad and concentrated. Purification of the crude by flash chromatography (eluent Hexane/EtOAc 98:2 + TEA 1%) provided compound **16** (46 mg, 46%, α/β mixture), as a pale yellow oil.

 $\alpha_{\rm D}$ = -17,63 (c 0.5, CHCl₃); ¹H NMR (500 MHz, 300K, CD₃CN) first epimer: § 9.10 (bs, 1H, NH), 8.20 (s, 2H, Ar), 7.75 (s, 1H, Ar), 5.90 (s, 1H, H-1), 3.89 (m, 1H, H-3), 3.85 (dd, 1H, *J* = 9.0, 11.0 Hz, H-6a), 3.80 (m, 1H, H-4), 3.78 (dd, 1H, *J* = 3.0 Hz, H-6b), 3.60 (m, 1H, H-5), 2.77 (m, 1H, H-2), 2.50 (s, 6H, NMe₂), 1.0-0.5 (m, 45H, 3 Et₃Si), ¹³C NMR (125.75 MHz, 300K, CD₃CN) first epimer: § 182.1, 80.3, 79.5, 75.0, 72.1, 70.2, 63.3, 42.1, 6.4, 3.1.

¹H NMR (500 MHz, 300K, CD₃CN) second epimer: δ 9.10 (s, 1H, NH), 8.20 (s, 2H, Ar), 7.76 (s, 1H, Ar), 5.5 (s, 1H, H-1), 3.94 (m 1H, H-3), 3.93 (dd, 1H, *J* = 9.0, 11.0 Hz, H-6a), 3.82 (dd, 1H, *J* = 3.0 Hz, H-6b), 3.41 (m, 1H, H-4), 3.37 (m, 1H, H-5), 2.60 (m, 1H, H-2), 2.60 (s, 6H, NMe₂), 1.0-0.5 (m, 45H, 3 Et₃Si); ¹³C NMR (125.75 MHz, 300K, CD₃CN) second epimer: δ 183.2, 81.5, 77.6, 74.8, 72.8, 68.5, 63.0, 41.5, 6.7, 3.8;

ESI-MS: 820.4 g/mol; Anal. Calcd for $C_{35}H_{63}F_6N_3O_4SSi_3$ (820.20): C, 51.25; H, 7.74; N, 5.12; Found: C, 51.35; H, 7.87; N, 5.06.

Characterization details of bifunctional catalysts 10, 12, and 14

N-[3,4,6-tri-*O*-acetyl-2-*N*,*N*-dimethylamino-2-deoxy-β-D-glucopyranosyl], *N*'-(3,5-bis-trifluoromethyl)phenyl urea (10).

Flash chromatography: Hex/EtOAc 6:4 + TEA 1% (yield 52%); ¹H NMR (400 MHz, CD₃OD) δ 7.97-7.88 (m, 3H, Ar, NH), 7.51 (s, 1H, Ar), 6.09 (d, 1H, *J* =5.6 Hz, NH), 5.44 (dd, 1H, *J* = 9.0, 10.3 Hz, H-3), 5.01 (dd, 1H, *J* =9.1, 10.1 Hz, H-4), 4.94 (dd, 1H, *J* = 4.7, 9.1 Hz, H-1), 4.31-4.21 (m, 2H, H-6a, H-6b), 3.84 (ddd, 1H, *J* = 2.6, 5.2, 7.9 Hz, H-5), 2.89 (t, 1H, *J* = 10.0 Hz, H-2), 2.47 (s, 6H, NMe₂), 2.11 (s, 3H, OAc), 2.09 (s, 6H, 2OAc); ¹³C NMR (100.6 MHz, CD₃OD) δ 170.8, 170.00, 169.9, 154.5, 80.5, 73.7, 70.8, 69.9, 66.1, 62.5, 41.6, 21.1, 20.7; ESI-MS 588.2 g/mol; Anal. Calcd. for C₂₃H₂₇F₆N₃O₈ (587.47): C, 47.02; H, 4.63; N, 7.15; Found: C, 47.12; H, 4.63; N, 7.08.

N-[2-*N*,*N*-dimethylamino-2-deoxy-4,6-*O*-benzylidene-3-*O*-triethylsilyl-β-D-glucopyranosyl], *N*'- (3,5-bis-trifluoromethyl)phenyl urea (12).

Flash chromatography: Hex/EtOAc 8:2 + TEA 1% (yield 61%); $\alpha_D = -33,2$ (c 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (bs, 1H, NH), 7.87 (s, 2H, Ar), 7.52 (s, 1H, Ar), 7.50-7.7.38 (m, 5H, Ph), 6.13 (d, 1H, J = 5.3 Hz, NH), 5.48 (s, 1H, CHPh), 4.97 (dd, 1H, J = 9.4, 5.3 Hz, H-1), 4.37 (dd, 1H, J = 4.7, 10.4 Hz, H-6a), 4.17 (t, 1H, J = 9.0 Hz, H-3), 3.76 (t, 1H, J = 10.1 Hz, H-6b), 3.56 (dt, 1H, J = 9.6, 4.8 Hz, H-5), 3.47 (t, 1H, J = 8.8 Hz, H-4), 2.64 (t, 1H, J = 9.5 Hz, H-2), 2.58 (s, 6H, NMe₂), 0.90 (t, 9H, 3 CH_{3 TES}), 0.60 (q, 6H, 3 CH_{2 TES}); ¹³C NMR (100.6 MHz, CDCl₃) δ 155.3, 102.7,

83.2, 81.2, 71.7, 69.9, 69.0, 68.4, 42.6, 7.3, 5.7; ESI-MS 664.4 g/mol; Anal. Calcd. for $C_{30}H_{39}F_6N_3O_5Si$ (663.72): C, 54.29; H, 5.92; N, 6.33; Found: C, 54.35; H, 6.01; N, 6.38.

N-[2-*N*,*N*-dimethylamino-2-deoxy-3,4,6-tri-*O*-methyl-β-D-glucopyranosyl],*N*'-(3,5-bis-trifluoromethyl)phenyl urea (14).

Flash chromatography: Hex/EtOAc 65:35 + 1% TEA (yield 71%); $\alpha_D = 5.40$ (c 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 2H, Ar), 7.55 (s, 1H, Ar), 4.74 (d, 1H, J = 8.7 Hz, H-1), 3.60, 3.49, 3.38 (3s, 9H, 3 OMe), 3.68-3.29 (m, 5H, H-3, H-4, H-5, H-6a, H-6b), 2.60-2.47 (m, 7H, H-2, NMe₂); ¹³C NMR (100.6 MHz, CDCl₃) δ 114.6, 88.6, 82.2, 77.4, 71.0, 70.5, 60.8, 60.0, 59.6, 43.9; ESI-MS 503.2 g/mol; Anal. Calcd. for C₂₀H₂₇F₆N₃O₅ (503.44): C, 47.71; H, 5.41; N, 8.35; Found: C, 47.65; H, 5.48; N, 8.35.

Products of catalytic addition of acetyl acetone to different nitrostyrenes are known (Jian Wang, Hao Li, Wenhu Duan, Liansuo Zu, and Wei Wang, *Org. Lett.*, **2005**, *7* (21), pp 4713–4716 **the product of addition of diethyl malonate to imine is known (**A. Puglisi , M. Benaglia, R.

Annunziata, D. Rossi, Tetrahedron Asymm., 2008, 19, 2258 and references cited)

3-(-2-nitro-1-(4-methylphenyl)-ethyl)pentane-2,4-dione (20).

¹H NMR (300 MHz, CDCl3): δ 7.05-7.14(dd, J = 7.8 Hz, 20.4 Hz, 4 H),4.59-4.62(t, J = 3.0 Hz, 2 H), 4.34–4.37(d, J = 10.8 Hz, 1 H), 4.16–4.24(m,1 H), 2.29–2.30(d, J = 3.3 Hz, 6 H), 1.94(s, 3 H); ¹³C NMR (75 MHz, CDCl3): δ 201.9, 201.1, 138.4, 132.8, 130.0, 127.8, 78.4, 70.8, 42.4, 30.4, 29.4, 21.1.

ee was determined by HPLC analysis (Chiralcel OD-H, i-PrOH/ Hexane = 10/90, 0.8 mL/min, 210 nm.) Retention time: tminor =23.7 min, tmajor =29.7 min,

3-(-2-nitro-1-(4-methoxylphenyl)-ethyl)pentane-2,4-dione (22).

¹H NMR (300 MHz, CDCl3): δ = 7.10 (d, *J* = 8.5 Hz, 2H; Ph), 6.82 (d, *J* = 8.5 Hz, 2H; Ph), 4.61-4.55 (m, 2H; CH₂), 4.35 (d, *J* = 11.0 Hz, 1H; CH), 4.24-4.20 (m, 1H;CH), 3.76 (s, 3H; OCH₃), 2.30 (s, 3H; CH₃), 1.95 (s, 3H; CH₃); ¹³C NMR (75 MHz, CDCl3): δ = 201.8, 201.1, 159.4, 129.0, 127.5, 114.6, 78.4, 70.8, 55.1, 42.0, 30.3, 29.4; HPLC

ee was determined by HPLC analysis (Chiralcel OD-H, i-PrOH/ Hexane = 10/90, 0.8 mL/min, 210 nm.) Retention time: tminor =44.9 min, tmajor =47.13 min,

3-(-2-nitro-1-(4-chlorophenyl)-ethyl)pentane-2,4-dione (24).

¹H NMR (300 MHz, CDCl3): δ 7.20-7.30(m, 2 H), 7.0-7.16(m, 2 H), 4.60-4.62(t, J = 1.8 Hz, 2 H), 4.30-4.32 (d, J = 10.8 Hz, 1 H), 4.11–4.3(m, 1H), 2.30(s, 3 H), 1.95 (s, 3 H); ¹³C NMR (75 MHz, CDCl3): δ 201.4, 200.6, 134.6., 134.5, 129.6,129.3, 77.9, 70.5, 42.1, 30.5, 29.7. ee was determined by HPLC analysis (Chiralcel OD-H, i-PrOH/ Hexane = 10/90, 0.8 mL/min, 210 nm.) Retention time: tminor =38.78 min, tmajor =43.3 min,

3-(-2-nitro-1-(4-trifluoromethylphenyl)-ethyl)pentane-2,4-dione (**26**). ¹H NMR (300 MHz, CDCl3): δ = 7.60 (d, *J* = 7.5 Hz, 2H; Ph), 7.30 (d, *J*(H,H) = 7.5 Hz, 2H; Ph), 4.65-4.57 (m 2H), 4.38-4.30 (m, 2H), 2.25 (s, 3H; CH3), 1.98 (s, 3H; CH3);. ¹³C NMR (75 MHz, CDCl3): δ 201.2, 200.3, 140.1., 128.5, 126.5, 126.3, 77.6, 70.1, 42.1, 30.5, 29.7. ee was determined by HPLC analysis (Chiralcel OD-H, i-PrOH/ Hexane = 10/90, 0.8 mL/min, 210 nm.) Retention time: tminor =40.52 min, tmajor =46.35 min,

N-Boc derivative 27

¹H-NMR (300 MHz, CDCl₃): δ 7.3 (m, 5H), 6.25 (brs, 1H), 5.4 (brs, 1H), 4.35-4.25 (m, 4H), 4.1 (d, 1H), 3.7 (s, 3H), 1.5 (t, 3H), 1.25 (t, 9H), 1.15 (t, 3H). $[\alpha]^{20}_{\ D}$ = -5.7 (c = 0.1, CHCl₃) (*R*) enantiomer. .HPLC (Daicel Chiralpak AD, hexane:*i*-propanol 90:10, flow rate = 0.8 ml/min, P = 15 bar, λ = 225 nm) t_{magg} = 18.63 min, t_{minor} = 23.36 min.

HPLC chromatograms on chiral stationary phase of products of catalytic addition of acetyl acetone to different nitrostyrenes and of diethyl malonate to imines.

Racemic 3-(-2-nitro-1-phenylethyl)pentane-2,4-dione (18).

Enantiomerically enriched 3-(-2-nitro-1-phenylethyl)pentane-2,4-dione (18).

Compound (27)

CHIRALPAK AD Hex/IPA 9:1 0.8 ml/min P=15 bar

Adduct (24)

Adduct (26)

Adduct (20)

Adduct (22)

