Cationic Modified Nucleic Acids for use in DNA Hairpins and Parallel Triplexes

Niels Bomholt,*1 Vyacheslav V. Filichev,² and Erik B. Pedersen¹

¹Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Odense, Denmark ²College of Sciences, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand

Electronic Supplementary Information

pK_a -values of related tertiary amines in H_2O	1
Gel electrophoresis study with ON2 and increasing concentration of NaCl	2
Gel electrophoresis study with ON1 and Mg^{2+} , Mn^{2+} , Ni^{2+} , Cu^{2+} and Zn^{2+}	2
Gel electrophoresis study with ON2 and Mg^{2+} , Mn^{2+} , Ni^{2+} , Cu^{2+} and Zn^{2+}	2
Gel electrophoresis study with ON3 and Mg^{2+} , Mn^{2+} , Ni^{2+} , Cu^{2+} and Zn^{2+}	3
Thermal denaturation study with Cu ²⁺ at pH 5.0 and pH 8.0	4
Thermal denaturation study with increasing ON-concentration	5
Thermal denaturation study with X and Y as bulge insertion in parallel triplex	6
Thermal denaturation study with X and Y as replacement of thymine in parallel triplex	6
NMR spectra of compound 1-6	7
IR spectra of compound 1-6	21

pKa-values of related tertiary amines in H₂O

Amine(s)	Temperature	pK _a ¹	pK_a^2
Benzyldimethylamine	25 °C	8.79^{a}	-
1,2-Bis(dimetylaminomethyl)benzene	35 °C	10.58^{b}	4.97^{b}
1,4-Bis(dimetylaminomethyl)benzene	25 °C	9.65 ^c	-
N-Benzyl-N-methylethanolamine	25 °C	8.41^{d}	-
1,4-Dimethylpiperazine	25 °C	7.84^{e}	3.45 ^e
1-(2-Hydroxyethyl)piperazine	25 °C	8.63 ^e	3.60 ^e

^a J. Armstrong and R. B. Barlow, Br. J. Pharmacol., 1976, **57**, 501-516.

^b J. Hine and W. S. Li, J. Org. Chem., 1975, **40**, 1795-1800.

^cA. De Roocker and P. De Radzitzky, *Bull. Soc. Chim. Belg.*, 1964, **73**, 181-&.

^d W. R. Morgan and D. E. Leyden, J. Am. Chem. Soc., 1970, **92**, 4527-4531.

^e F. Khalili, A. Henni and A. L. L. East, J. Chem. Eng. Data, 2009, 54, 2914-2917.

Gel electrophoresis study with ON2 and increasing concentration of NaCl

			Lane	Α	В	С	D	Ε	F
ON-ref	3'-TGT CAG ACC GGC	100mM NaCl	Α						
D1	3'-TGT CAG ACC GGC 5'-ACA GTC TGG CCG	100mM NaCl	В						
ON2	3'-GCA CGT- XX -ACG TGC	10mM NaCl	С						
ON2	3'-GCA CGT- XX -ACG TGC	100mM NaCl	D						
ON2	3'-GCA CGT- XX -ACG TGC	1000mM NaCl	E						
D1	3'-TGT CAG ACC GGC 5'-ACA GTC TGG CCG	100mM NaCl	Н						

Fig. 1. Nondenaturing 20 % PAGE; 25 μM of ON-ref, D1 and ON2 in TB-buffer, pH 8.0, 4 °C.

Gel electrophoresis study with ON1 and Mg²⁺, Mn²⁺, Ni²⁺, Cu²⁺ and Zn²⁺

			Lane	Α	В	С	D	Ε	F	G	Н	Ι
ON-ref	3'-TGT CAG ACC GGC	10mM MgCl ₂	Α									
D1	3'-TGT CAG ACC GGC	10mM MaCl										
DI	5'-ACA GTC TGG CCG	TOILINI WIGCI ₂	TOHINI WIGCI ₂ B									
ON1	3'-GCA CGT- X -ACG TGC	10mM MgCl ₂	C									1
ON1	3'-GCA CGT- X -ACG TGC	10mM MgCl ₂	D									COLUMN T
ON1	3'-GCA CGT-X-ACG TGC	250nM ZnCl ₂	E									
ON1	3'-GCA CGT- X -ACG TGC	250nM NiCl ₂	F	-								
ON1	3'-GCA CGT- X -ACG TGC	250nM CuSO ₄	G									
ON1	3'-GCA CGT-X-ACG TGC	250nM MnSO ₄	Н									
D1	3'-TGT CAG ACC GGC	10mM MaCl										
DI	5'-ACA GTC TGG CCG	ronnvi MgCl ₂	1									

Fig. 2. Nondenaturing 20 % PAGE; 25 µM of ON-ref, D1 and ON1 in TB-buffer, 100 mM NaCl, pH 8.0, 4 °C.

Gel electrophoresis study with ON2 and Mg²⁺, Mn²⁺, Ni²⁺, Cu²⁺ and Zn²⁺

			Lane	Α	В	С	D	Е	F	G	Н	Ι
ON-ref	3'-TGT CAG ACC GGC 1	10mM MgCl ₂	Α									
D1	3'-TGT CAG ACC GGC	10mM MgCl ₂ B										
DI	5'-ACA GTC TGG CCG											
ON2	3'-GCA CGT-XX-ACG TGC 1	10mM MgCl ₂	C									
ON2	3'-GCA CGT-XX-ACG TGC 1	10mM MgCl ₂	D									
ON2	3'-GCA CGT-XX-ACG TGC 2	250nM ZnCl ₂	E		hand	1						hered
ON2	3'-GCA CGT-XX-ACG TGC 2	250nM NiCl ₂	F									
ON2	3'-GCA CGT-XX-ACG TGC 2	250nM CuSO ₄	G									
ON2	3'-GCA CGT-XX-ACG TGC 2	250nM MnSO ₄	H									
D1	3'-TGT CAG ACC GGC	10M.M.Cl										
DI	5'-ACA GTC TGG CCG	ronnvi wigel ₂	1									

Fig. 3. Nondenaturing 20 % PAGE; 25 µM of ON-ref, D1 and ON2 in TB-buffer, 100 mM NaCl, pH 8.0, 4 °C.

Gel electrophoresis study with ON3 and Mg²⁺, Mn²⁺, Ni²⁺, Cu²⁺ and Zn²⁺

			Lane	Α	В	С	D	Ε	F	G	Н	Ι
ON-ref	3'-TGT CAG ACC GGC	10mM MgCl ₂	Α									
D1	3'-TGT CAG ACC GGC	10mM MaCl										
DI	5'-ACA GTC TGG CCG	TOILINI WIGCI ₂	В									
ON3	3'-GCA CGT-Y-ACG TGC	10mM MgCl ₂	С		-	1						hand
ON3	3'-GCA CGT-Y-ACG TGC	10mM MgCl ₂	D									
ON3	3'-GCA CGT-Y-ACG TGC	250nM ZnCl ₂	Е									
ON3	3'-GCA CGT-Y-ACG TGC	250nM NiCl ₂	F	-								
ON3	3'-GCA CGT-Y-ACG TGC	250nM CuSO ₄	G		1	leases	lennal	lunnal \	/ herea	unnal \	-	
ON3	3'-GCA CGT-Y-ACG TGC	250nM MnSO ₄	Н									
D1	3'-TGT CAG ACC GGC	10mM MaCl										
DI	5'-ACA GTC TGG CCG	TOILINI MgCl ₂	1									

Fig. 4. Nondenaturing 20 % PAGE; 25 µM of ON-ref, D1 and ON3 in TB-buffer, 100 mM NaCl, pH 8.0, 4 °C.

Thermal denaturation study with Cu²⁺ at pH 5.0 and pH 8.0 Melting curves pH 5.0

Fig. 5. Melting curves of thermal denaturation experiments of duplex D1 and hairpin ON1 and ON6 recorded with 5µM of each ON in 10mM Na₂HPO₄/NaH₂PO₄ at pH5.0 and 100mM NaCl and with and without 5µM CuSO4 at 260nm versus temperature, with a heating of 1.0 °C/min.

Melting curves pH 8.0

Fig. 6. Melting curves of thermal denaturation experiments of duplex D1 and hairpin ON1 and ON6 recorded with 5µM of each ON in 10mM Na₂HPO₄/NaH₂PO₄ at pH8.0 and 100mM NaCl and with and without 5µM CuSO4 at 260nm versus temperature, with a heating of 1.0 °C/min.

Thermal denaturation study with increasing ON-concentration

Fig. 7. Melting curves of thermal denaturation experiments of duplex D1 and hairpin ON1-2 and ON6 recorded with 5μ M and 10 μ M of each ON in 10mM Na₂HPO₄/NaH₂PO₄ at pH8.0 and 100mM NaCl at 260nm versus temperature, with a heating of 1.0 °C/min.

Thermal denaturation study with X and Y as bulge insertion in parallel triplex

		5'-GAAGCTCTTTTCTCTTTT 3'-CTTCGAGAAAAGAGAAAA					
Entry	Sequence	pH 5.0 ^a	$\Delta T_{\rm m}$				
ONS1	3'-TCTTTT-CTCTTTT	56.0*	ref.				
ONS2	3'-TCTTTT CTCTTTT L _X J	36.5	-19.5				
ONS3	3'-TCTTTT CTCTTTT L <mark>y</mark> J	27.0	-29.0				
ONS4	3'-TCTTTT CTCTTTT L _C J	43.0	-13.0				

Table 1. a) $C = 1.5 \,\mu\text{M}$ of **ONS1-4** and $1.0 \,\mu\text{M}$ of each strand of dsDNA in 20 mM sodium cacodylate, 100 mM NaCl, 10 mM MgCl₂, pH 5.0; duplex $T_{\rm m} = 54.5^{\circ}\text{C}$; Target regions are underlined for TFO hybridization. *Triplex-duplex melting overlap.

Thermal denaturation study with X and Y as replacement of thymine in parallel triplex

						5'-GAAGCTCTTTTGCTCTTTT 3'-CTTCG <u>AGAAAAC</u> GAGAAAA						
Entry	Sequence					pH 5.0 ^a	$\Delta T_{\rm m}$	pH 6.0 ^a	$\Delta T_{\rm m}$			
ONS1	3'-TCT	TTT	TCT	CTT	ΤT	35.5	ref.	20.5	ref.			
ONS2	3'-TCT	TTT	XCT	CTT	ΤT	31.5	-4.0	15.5	-5.0			
ONS3	3'-TCT	TTT	YCT	CTT	TT	24.5	-11.0	9.0	-11.5			

Table 2. a) $C = 1.5 \,\mu\text{M}$ of **ONS1-3** and 1.0 μM of each strand of dsDNA in 20 mM sodium cacodylate, 100 mM NaCl, 10 mM MgCl₂, pH 5.0 and 6.0; duplex $T_{\rm m} = 60.0^{\circ}\text{C}$ (pH 5.0), 61.0°C (pH 6.0); target regions are underlined for TFO hybridization.

NMR spectra of compound 1-6

IR spectra of compound 1-6

Compound 1

