Conjugate Reduction and Reductive Aldol Cyclization of α, β-Unsaturated Thioesters Catalyzed by (BDP)CuH

Ninglin Li, ${ }^{a}$ Jun Ou, ${ }^{a}$ Michel Miesch, ${ }^{b}$ Pauline Chiu*, ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
${ }^{\mathrm{b}}$ Université de Strasbourg, Institut de Chimie, UMR 7177, Laboratoire de Chimie Organique Synthétique, 1 rue Blaise Pascal, BP 296/R8, 67008 Strasbourg, France

Table of Contents

General Experimental. S2
Synthesis of Unsaturated Thioesters 1a-q S2
1, 4-Reduction of unsaturated thioesters using (BDP)CuH (Synthesis of 2a-p) S10
Reductive aldol reactions (Synthesis of 4a-c) S16
References S18
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds S19

General Experimental

Preparative: All reactions were performed in oven-dried round-bottomed flasks under a positive pressure of dry argon. Reactions were monitored by thin layer chromatography (TLC) using E. Merck silica gel plates, Kieselgel $60 \mathrm{~F}_{254}$ with 0.2 mm thickness. Components were visualized by illumination with short-wavelength ultra-violet light and/or staining. Flash column chromatography was performed with E. Merck silica gel 60 (230-400 mesh ASTM). Solvents and chemicals were purified according to standard procedures. Dichloromethane (DCM), tetrahydrofuran (THF) and toluene were distilled from CaH_{2} under argon.

Analytical: All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$ unless otherwise specified, with tetramethylsilane (TMS) as an internal standard at ambient temperature on a Bruker DPX 300, 400, 500 or 600 MHz Fourier Transform Spectrometer operating at 300 MHz , $400 \mathrm{MHz}, 500 \mathrm{MHz}$ or 600 MHz for ${ }^{1} \mathrm{H}$ and at $75 \mathrm{MHz}, 100 \mathrm{MHz}, 125 \mathrm{MHz}$ or 150 MHz respectively for ${ }^{13} \mathrm{C}$. All the spectra were calibrated at $\delta 7.26 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ and $\delta 77.03 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$. Spectral features were designated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ mutiplet and $\mathrm{br}=$ broad. $\quad \mathrm{IR}$ absorption spectra were recorded as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CCl_{4} on a BioRad Fourier Transform 165 Spectrophotometer from $4000 \mathrm{~cm}^{-1}$ to $400 \mathrm{~cm}^{-1}$. Mass Spectra were recorded on a Finnigan MAT 95 mass spectrometer or API QSTAR PULSAR LC/MS/TOF System for both low resolution and high resolution, with accurate mass reported for the molecular ion $\left(\mathrm{M}^{+}\right)$ or next largest fragment thereof. Melting points were measured on Zeiss Asiolab Microscope using Linkam TC92 temperature controller.

Typical procedure A for the synthesis of unsaturated thioesters

S-ethyl 2-(triphenylphosphoranylidene)ethanethioate (R1) was synthesized according to the literature procedure. ${ }^{1}$

To a solution of 3-phenylpropanal ($0.1459 \mathrm{~g}, 1.087 \mathrm{mmol}$) in HPLC grade $\mathrm{CHCl}_{3}(9 \mathrm{~mL})$ was added $\mathbf{R 1}(8.1222 \mathrm{~g}, 2.3315 \mathrm{mmol})$. The reaction mixture was stirred at room temperature overnight. The reaction mixture was concentrated in vacuo and the residue was purified by flash chromatography (5% EtOAc in hexane) to afford $\mathbf{1 a}(0.2186 \mathrm{~g}, 98 \%)$ as a pale yellow oil. 1a: R_{f}
(5\% EtOAc in hexane): 0.35 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H})$, $6.90(\mathrm{dt}, J=15.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.8$, $143.8,140.5,129.0,128.4$ (2C), 128.2 (2C), 126.1, 34.2, 33.7, 22.9, $14.7 \mathrm{ppm} . \quad$ The characterization corresponded to that of $\mathbf{1 a}$ documented in the literature. ${ }^{2}$

Typical procedure B for synthesis of unsaturated thioesters

EDCI ($1.6318 \mathrm{~g}, 8.5122 \mathrm{mmol}$) and DMAP ($69.5 \mathrm{mg}, 0.568 \mathrm{mmol}$) were added to a solution of (E)-5-phenylpent-2-enoic acid $(0.9997 \mathrm{~g}, 5.673 \mathrm{mmol})$ in DCM $(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Butanethiol $(0.795 \mathrm{~mL}, 7.38 \mathrm{mmol})$ was added after 15 minutes. The resulting mixture was allowed to slowly warm to room temperature overnight. The mixture was washed with a saturated aqueous solution of NaHCO_{3}, then $\mathrm{H}_{2} \mathrm{O}$. The organics were dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash chromatography ($5 \% \mathrm{EtOAc}$ in hexane) to afford $\mathbf{1 b}(1.1332 \mathrm{~g}, 80 \%)$ as a pale yellow oil. $\mathbf{1 b}$: $\mathrm{R}_{f}\left(5 \% \mathrm{EtOAc}\right.$ in hexane): 0.36; $\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 3065, 3028, 2960, 2932, $1668(\mathrm{C}=\mathrm{O}), 1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.26(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.16 (m, 3H), $6.92(\mathrm{dt}, J=15.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dt}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.81-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.2,143.9,140.7,129.2,128.5$ (2C), 128.4 (2C), 126.2, 34.4, 33.9, 31.7, 28.4, 22.0, 13.6 ppm; LRMS (EI, 20 eV): m/z 248 ($\mathrm{M}^{+}, 1$), 159 (100), 91 (76), 77 (24); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{OS}\left(\mathrm{M}^{+}\right), 248.1229$ found 248.1230.

1c

According to the typical procedure $\mathrm{B}, \mathrm{EDCI}(0.83 \mathrm{~g}, 4.3 \mathrm{mmol})$ and DMAP $(40 \mathrm{mg}, 0.33 \mathrm{mmol})$ were treated with $(E)-5$-phenylpent-2-enoic acid $(0.50 \mathrm{~g}$, $2.8 \mathrm{mmol})$ in $\mathrm{DCM}(10.0 \mathrm{~mL})$ and dodecanethiol $(0.87 \mathrm{~g}, 4.3 \mathrm{mmol})$. After workup, the residue was purified by flash chromatography ($5 \% \mathrm{EtOAc}$ in hexane) to afford $\mathbf{1 c}$ $(1.0 \mathrm{~g}, 97 \%)$ as a pale yellow oil. 1c: $\mathrm{R}_{f}\left(5 \% \mathrm{EtOAc}\right.$ in hexane): 0.69; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2928,2856$, $1666(\mathrm{C}=\mathrm{O}), 1632,1455,1035 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18$ (m, 3H), $6.94(\mathrm{dt}, J=15.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{td}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.80$ ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.54-2.52 (m, 2H), 1.63-1.59 (m, 3H), 1.40-1.29 (m, 18H), 0.92-0.87 (t, $J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): δ 190.1, 143.8, 140.7, 129.2, 128.5, 128.44, 128.4,
128.3, 126.2, $34.3,33.9,31.9,29.6,29.6,29.5,29.4,29.1,28.9,28.7,22.7,14.1$ ppm. LRMS (EI, 20 $\mathrm{eV}): \mathrm{m} / \mathrm{z} 360.2\left(\mathrm{M}^{+}, 1.29\right), 90.1$ (39), 159.1 (100); LRMS (EI, 20 eV$): \mathrm{m} / \mathrm{z} 360.2$ (M+, 1.29), 90.1 (39), 159.1 (100); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{OS}\left(\mathrm{M}^{+}\right) 360.2481$, found 360.2478.

Typical procedure C for synthesis of unsaturated thioesters

Oxalyl chloride ($2.2 \mathrm{~mL}, 26 \mathrm{mmol}$) in 10 mL THF and six drops of DMF was added to a solution of (E)-5-phenylpent-2-enoic acid ($2.9981 \mathrm{~g}, 17.014 \mathrm{mmol}$) in 120 mL THF. The resulting mixture was stirred for 1 hour and then concentrated under reduced pressure. The residue was dissolved in 150 mL PhMe. Then ${ }^{t}$ BuSH ($2.0 \mathrm{~mL}, 17 \mathrm{mmol}$) and zinc dust ($1.13 \mathrm{mg}, 17.0 \mathrm{mmol}$) were added. After stirring for 1 hour, the mixture was washed with saturated aqueous solution of NaHCO_{3}, and the aqueous layer was extracted by $50 \% \mathrm{EtOAc}$ in hexane. The extracts were dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash chromatography (3% EtOAc in hexane) to afford $\mathbf{1 d}\left(2.9921 \mathrm{~g}, 71 \%\right.$) as a pale yellow oil. $\mathbf{1 d}: \mathrm{R}_{f}$ (5% EtOAc in hexane): $0.44 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H})$, $6.86(\mathrm{dt}, J=6.8,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dt}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 2 \mathrm{H})$, $1.51(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.7,142.8,140.8,129.8,128.5$ (2C), 128.3 (2C), 126.2, 47.9, 34.4, 33.8, 30.0 ppm; LRMS (EI, 20 eV): m/z 248 (${ }^{+}$, 1), 191 (9), 159 (100), 131 (11); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{OS}\left(\mathrm{M}^{+}\right)$248.1235, found 248.1232 ppm . The characterization corresponded to that of $\mathbf{1 d}$ documented in the literature. ${ }^{3}$

1 e

According to Typical procedure C, oxalyl chloride ($360 \mu \mathrm{~L}, 4.26 \mathrm{mmol}$) in 2 mL THF and two drops of DMF was added to a solution of (E)-5-phenylpent-2-enoic acid ($492.0 \mathrm{mg}, 2.792 \mathrm{mmol}$) in 18 mL THF. The resulting mixture was stirred for 1 hour and then concentrated under reduced pressure. Then PhSH ($290 \mu \mathrm{~L}, 2.84 \mathrm{mmol}$) and zinc ($185.9 \mathrm{mg}, 2.843 \mathrm{mmol}$) was added and stirred for 1 hour. After workup, the residue was purified by flash chromatography (3% EtOAc in hexane) to afford $\mathbf{1 e}$ $(566.7 \mathrm{mg}, 76 \%)$ as a pale yellow oil. $\mathbf{1 e}: \mathrm{R}_{f}\left(5 \%\right.$ EtOAc in hexane): $0.41 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.42-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{dt}, J=15.5,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.19(\mathrm{dt}, J=15.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (100 MHz ,
CDCl_{3}): $\delta 187.9,145.5,140.6,134.6$ (2C), 129.36, 129.2 (2C), 128.6 (2C), 128.4 (2C), 128.3, 127.6, $126.3,34.3,34.0 \mathrm{ppm}$. The characterization corresponded to that of \mathbf{e} documented in the literature. ${ }^{4}$

DMSO ($1.0 \mathrm{~mL}, 14 \mathrm{mmol}$) in 10 mL DCM was added to a solution of oxalyl chloride ($600 \mu \mathrm{~L}$, 7.09 mmol) in 10 mL DCM at $-78^{\circ} \mathrm{C}$. After stirring for 15 minutes, 4-penten-1-ol ($498.0 \mathrm{mg}, 5.782$ mmol) was added over in 9 mL DCM. NEt_{3} was added after 15 minutes. The resulting mixture was allowed to slowly warm to room temperature after 1 hour and stirred at room temperature for another 1 hour.

Wittig reagent R1 ($1.715 \mathrm{~g}, 4.706 \mathrm{mmol}$) was then added and the mixture was allowed to stir overnight. The mixture was quenched with water, and extracted with $50 \% \mathrm{EtOAc} /$ hexane. The extracts were dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash chromatography (2% EtOAc in hexane) to afford $\mathbf{1 f}(0.6120 \mathrm{~g}, 77 \%)$. $\mathbf{1 f}: \quad \mathrm{R}_{f}$ (3\% EtOAc in hexane): 0.31; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3051,2974,2931,2874,1668(\mathrm{C}=\mathrm{O}), 1450 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.88(\mathrm{dt}, J=15.5,6.5,1 \mathrm{H}), 6.11(\mathrm{dt}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.74(\mathrm{~m}$, $1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{q}, ~ J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.1,144.2,137.0,129.1,115.7,32.0,31.4,23.1,14.8 \mathrm{ppm} ;$ LRMS (ESI): m/z 171 ([M $\left.{ }^{+}+\mathrm{H}\right]^{+}$, 23), 155 (21), 129 (100); HRMS (ESI): calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{OS}$ $\left(\left[\mathrm{M}^{+}+\mathrm{H}\right]^{+}\right), 171.0843$, found 171.0846.

1g

According to the typical procedure $\mathrm{B}, \operatorname{EDCI}(7.1931 \mathrm{~g}, 37.450 \mathrm{mmol})$ and DMAP ($452.0 \mathrm{mg}, 3.121 \mathrm{mmol}$) were treated with (E)-2-methylhex-2-enoic acid $(3.9931 \mathrm{~g}, 31.155 \mathrm{mmol})$ in DCM $(310 \mathrm{~mL})$ and butanethiol $(4.0 \mathrm{~mL}, 37$ $\mathrm{mmol})$. After workup, the residue was purified by flash chromatography (3% EtOAc in hexane) to afford $\mathbf{1 g}\left(4.8693 \mathrm{~g}, 78 \%\right.$) as a pale yellow oil. $\mathrm{R}_{f}(5 \% \mathrm{EtOAc}$ in hexane) : 0.39; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3035,2963,2933,2874,1650(\mathrm{C}=\mathrm{O}), 1621,1465,1382,1205 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.74-6.70(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=0.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.0,140.6,136.2,31.7,30.7,28.6,22.1,21.8$, 13.9, 13.6, 12.4 ppm ; LRMS (EI, 20 eV): m/z 200 ($\mathrm{M}^{+}, 3$), 136 (46), 111 (100); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{OS}\left(\mathrm{M}^{+}\right), 200.1229$ found 200.1228.

1h

According to the typical procedure B, EDCI ($4.6155 \mathrm{~g}, 24.077 \mathrm{mmol}$) and DMAP $(0.2110 \mathrm{mg}, 1.727 \mathrm{mmol})$ were treated with cyclohex-1-enecarboxylic acid (1.9983 $\mathrm{g}, 15.839 \mathrm{mmol})$ in $\mathrm{DCM}(150 \mathrm{~mL})$ and ethanethiol ($1.4 \mathrm{~mL}, 19 \mathrm{mmol}$). After workup, the residue was purified by flash chromatography ($5 \% \mathrm{EtOAc}$ in hexane) to afford $\mathbf{1 h}(2.3117 \mathrm{~g}, 86 \%)$ as a pale yellow oil. $\mathbf{1 h}$: $\mathrm{Rf}(5 \% \mathrm{EtOAc}$ in hexane $): 0.78$; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 3057, 2933, 2862, 1654 ($\mathrm{C}=\mathrm{O}$), 1641 ($\mathrm{C}=\mathrm{C}$), 1450, $1258 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 6.98-6.95 (m, 1H), $2.91(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.60(\mathrm{~m}$, $4 \mathrm{H}), 1.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 193.2, 138.6, 138.0, 25.8, 24.1, 22.9, 22.0, 21.6, 14.9 ppm ; LRMS (EI, 20 eV): m/z 170 ($\mathrm{M}^{+}, 2$), 109 (100), 81 (36), 89 (8); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{OS}\left(\mathrm{M}^{+}\right)$170.0760, found 170.0758.

$1 i$

According to the typical procedure B, EDCI ($5.5698 \mathrm{~g}, 23.779 \mathrm{mmol}$) and DMAP ($0.1986 \mathrm{mg}, 1.585 \mathrm{mmol}$) were treated with cyclohex-1-enecarboxylic acid ($1.9996 \mathrm{~g}, 15.850 \mathrm{mmol}$) in DCM (160 mL) and butanethiol ($2.0 \mathrm{~mL}, 19 \mathrm{mmol}$). After workup, the residue was purified by flash chromatography (2\% EtOAc in hexane) to afford $\mathbf{1 i}(2.6289 \mathrm{~g}, 84 \%)$ as a pale yellow oil. $\mathbf{1 i}: \quad \mathrm{R}_{f}(5 \%$ EtOAc in hexane): 0.78 ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3064,2984,2933,1733(\mathrm{C}=\mathrm{O}), 1447,1374,1247 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 6.99-6.96 (m, 1H), 2.90 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 6 \mathrm{H})$, 1.43-1.37 (m, 2 H), $0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.2,138.6$, 138.0, 31.8, 28.2, 25.8, 24.1, 22.1, 22.0, 21.6, 13.7 ppm; LRMS (EI, 20 eV): m/z 198 (M+, 5), 109 (100), 89 (40), 81 (36); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{OS}\left(\mathrm{M}^{\dagger}\right), 198.1073$ found 198.1079.

1 j

According to the typical procedure $\mathrm{B}, \mathrm{EDCI}(5.4882 \mathrm{~g}, 28.629 \mathrm{mmol})$ and DMAP $\quad(0.3120 \mathrm{mg}, \quad 2.554 \mathrm{mmol})$ were treated with (E)-3,7-dimethylocta-2,6-dienoic acid (4.001 g, 23.78 mmol) in DCM $(230 \mathrm{~mL})$ and ethanethiol $(2.1 \mathrm{~mL}, 29 \mathrm{mmol})$. After workup, the residue was purified by flash chromatography (3% EtOAc in hexane) to afford $\mathbf{1 j}\left(4.025 \mathrm{~g}, 80 \%\right.$) as a pale yellow oil. $\mathbf{1 j}$: R_{f} (5% EtOAc in hexane): 0.41 ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 3025, 2992, 2922, 2851, $1668(\mathrm{C}=\mathrm{O}), 1623(\mathrm{C}=\mathrm{C}), 1447$, $1378,1258 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.15-5.11(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{q}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.62-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.9,157.2,132.3,123.6,123.5,34.4,26.8,25.7$, 25.2, 23.2, 17.7, 15.0 ppm; LRMS (EI, 20 eV): m/z 212 ($\mathrm{M}^{+}, 9$), 151 (100), 123(90), 109 (94);

HRMS (EI, 20 eV): calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{OS}\left(\mathrm{M}^{+}\right)$212.1229, found 212.1217.

1k

According to the typical procedure B, EDCI ($1.0579 \mathrm{~g}, 5.518 \mathrm{mmol}$) and DMAP ($70 \mathrm{mg}, 0.57 \mathrm{mmol}$) were treated with cinnamic acid ($0.7482 \mathrm{~g}, 5.050$ $\mathrm{mmol})$ in DCM (25 mL) and ethanethiol ($450 \mu \mathrm{~L}, 6.08 \mathrm{mmol}$). After workup, the residue was purified by flash chromatography ($5 \% \mathrm{EtOAc}$ in hexane) to afford $\mathbf{1 k}(0.8532 \mathrm{~g}, 88 \%)$ as a pale yellow oil. $\mathbf{1 k}$: $\mathrm{R}_{f}\left(5 \%\right.$ EtOAc in hexane): $0.38 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3): $\delta 7.60$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.55-7.51$ (m, 2H), 7.40-7.37 (m, 3H), 6.71 (d, $J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $189.8,140.1,134.1,130.4,128.8$ (2C), 128.3 (2C), 125.1, $23.3,14.8 \mathrm{ppm}$. The characterization corresponded to that of $\mathbf{1 k}$ documented in the literature. ${ }^{3}$

According to the typical procedure B, EDCI ($5.4862 \mathrm{~g}, 28.476 \mathrm{mmol}$) and DMAP (285.6 mg, 2.190 mmol were treated with (E)-3-(2-chlorophenyl)acrylic acid ($4.0001 \mathrm{~g}, 21.905 \mathrm{mmol}$) in DCM (210 mL) and ethanethiol ($2.0 \mathrm{~mL}, 26 \mathrm{mmol}$). After workup, the residue was purified by flash chromatography (3% EtOAc in hexane) to afford $\mathbf{1 1}(4.1467 \mathrm{~g}, 84 \%$) as a pale yellow oil. 11: $\mathrm{R}_{f}\left(10 \% \mathrm{EtOAc}\right.$ in hexane): 0.39 ; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3055,2992,2911,1733(\mathrm{C}=\mathrm{O}), 1664(\mathrm{C}=\mathrm{C})$, 1616, 1464, 1371, $1247 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.02(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.61$ (m, 1H), 7.43-7.41 (m, 1H), 7.34-7.27 (m, 2H), 6.69 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{PPM} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.8,136.2,135.5,132.6,131.2$, 130.3, 127.7, 127.6, 127.1, 23.5, 14.8; LRMS (EI, 20 eV): m/z 226 ($\mathrm{M}^{+}, 18$), 191 (14), 165 (100), 76 (15); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{OClS}\left(\mathrm{M}^{+}\right)$226.0214, found 226.0206.

According to the typical procedure B, EDCI ($5.2507 \mathrm{~g}, 27.390 \mathrm{mmol}$) and DMAP ($296.5 \mathrm{mg}, 2.427 \mathrm{mmol}$) were treated with (E)-3-(3-nitrophenyl)acrylic acid ($4.0003 \mathrm{~g}, 20.709 \mathrm{mmol}$) in DCM (200 mL) and ethanethiol ($2 \mathrm{~mL}, 25$ mmol). After workup, the residue was purified by flash chromatography (EtOAc: DCM: hexane $=5: 1: 94)$ to afford $\mathbf{1 m}(3.7841 \mathrm{~g}, 77 \%)$ as a pale yellow solid. $\mathbf{1 m}$: R_{f} ($10 \% \mathrm{EtOAc}$ in hexane): 0.39 ; mp: $77-79{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3046,2986$, 2938, 2878, 1661 (unsaturated $\mathrm{C}=\mathrm{O}$), 1621, 1523, $1348 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.38-8.37 (m, 1H), 8.24-8.21 (m, 1H), 7.83 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56$ $(\mathrm{m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.4,148.8,137.1,136.1,133.9,130.0,127.8,124.7,122.6,23.7,14.7 \mathrm{ppm}$; LRMS (EI, 20 eV): m/z $237\left(\mathrm{M}^{+}, 4\right), 176$ (100), 130 (14); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{NS}$ $\left(\mathrm{M}^{+}\right)$237.0454, found 237.0453.

According to the typical procedure $\mathrm{B}, \mathrm{EDCI}(5.1917 \mathrm{~g}, 26.921 \mathrm{mmol})$ and DMAP ($286.5 \mathrm{mg}, 2.071 \mathrm{mmol}$) were treated with (E)-3-(4-nitrophenyl)acrylic acid (3.9993 g, 20.704 mmol) in DCM (200 mL) and ethanethiol ($2 \mathrm{~mL}, 25 \mathrm{mmol}$). After workup, the residue was purified by flash chromatography (6% EtOAc in hexane) to afford $1 \mathrm{n}(4.182 \mathrm{~g}, 85 \%$) as a pale yellow solid. 1n: R_{f} (10\% EtOAc in hexane): 0.38; mp: 106-108; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 3080, 2974, 2993, 2934, 1662 (unsaturated $\mathrm{C}=\mathrm{O}$), 1622, 1523, 1457, $1347 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.26-8.23 (m, 2H), 7.70-7.67 (m, 2H), 7.61 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (q, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 189.4,148.6,140.5$, 137.0, 128.9 (2C), 128.8 (2C), 124.2, 23.7, 14.7 ppm; LRMS (EI, 20 eV): m/z 237 (${ }^{+}$, 2), 176 (86), 130 (39), 77 (100); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{NS}\left(\mathrm{M}^{+}\right)$237.0454, found 237.0453.

According to the typical procedure B, EDCI ($2.5933 \mathrm{~g}, 13.470 \mathrm{mmol}$) and DMAP ($162.3 \mathrm{mg}, 1.122 \mathrm{mmol}$) were treated with (E)-3-(3-methoxyphenyl)acrylic acid ($1.9996 \mathrm{~g}, 11.222 \mathrm{mmol}$) in DCM (25 mL) and ethanethiol (970 $\mu \mathrm{L}$, 13.4 mmol). After workup, the residue was purified by flash chromatography (3% EtOAc in hexane) to afford $\mathbf{1 0}\left(1.8644 \mathrm{~g}, 75 \%\right.$) as a pale yellow oil. 10: R_{f} (5% EtOAc in hexane): 0.41 ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3056,2970,2934,2839,1664(\mathrm{C}=\mathrm{O}), 1612,1581$, $1486,1455,1292,1244 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}$, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.7,159.8,141.8,129.5,120.7,114.1,111.7,55.2,45.5$, 31.5, 23.4, 14.8 ppm ; LRMS (EI, 20 eV): m/z 222 ($\mathrm{M}^{+}, 15$), 161 (100), 133 (43), 77 (13); HRMS (EI, $20 \mathrm{eV})$: calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right)$222.0709, found 222.0712.

S1

1p

Thioester $\mathbf{1 p}$ was prepared according to typical procedure for the preparation of $\mathbf{1 a}$, using aldehyde $\mathbf{S 1}^{5}(2.7243 \mathrm{~g}, 12.040 \mathrm{mmol})$, $\mathbf{R 1}(6.582 \mathrm{~g}, 18.06 \mathrm{mmol})$ in HPLC grade $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ to afford $\mathbf{1 p}(3.1051 \mathrm{~g}, 83 \%)$ as a pale yellow oil. $\mathbf{1 p}: \mathrm{R} f(20 \% \mathrm{EtOAc}$ in hexane $)$: 0.53 ; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 3054, 2945, 2870, 1711 (saturated $\mathrm{C}=\mathrm{O}$), 1668 (unsaturated $\mathrm{C}=\mathrm{O}$), 1631 ($\mathrm{C}=\mathrm{C}$), 1452, 1311, 1253, $1191 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.57(\mathrm{dt}, J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dt}, J=15.5,1.5 \mathrm{~Hz}$, 1 H), 3.96-3.91 (m, 2H), 2.65 (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.26-2.16 (m, 3H), 1.96-1.94 (m, 1H), 1.84-1.69 $(\mathrm{m}, 3 \mathrm{H}), 1.49-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.00-0.97(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $207.4,189.8,171.5,143.9,128.8,61.3,60.2,40.9,36.3,32.8,27.4,27.0,22.9,22.5,14.7,14.0 \mathrm{ppm} ;$ LRMS (EI, 20 eV): m/z 312 ($\mathrm{M}^{+}, 3$), 251 (77), 205 (100), 170 (79); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) 312.1395$, found 312.1399.

To a solution of ethyl 1-allyl-2-oxocyclohexanecarboxylate ${ }^{6}$ ($3.16 \mathrm{~g}, 15 \mathrm{mmol}$) in THF (22 mL) and $\mathrm{H}_{2} \mathrm{O}(4.5 \mathrm{~mL})$ was added $\mathrm{OsO}_{4}(0.038 \mathrm{~g}, 0.15 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH}(0.5 \mathrm{~mL})$. When the solution turned black, NMO $(4.02 \mathrm{~g}, 30.1 \mathrm{mmol})$ was added in portions to the reaction mixture. The black color faded and stirring was continued overnight at RT. The crude mixture was filtered through celite. The filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous MgSO_{4} and concentrated in vacuo.

The residue was dissolved in $\mathrm{DCM}(15 \mathrm{~mL})$. To this was added $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ and $\mathrm{NaIO}_{4}(7.07 \mathrm{~g}$, 33.1 mmol). The reaction mixture was stirred overnight at room tempearture. The mixture was filtered through celite. The filtrate was extracted with DCM ($3 \times 3 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography (20% EtOAc in hexane) to afford $\mathbf{S 2}(2.6 \mathrm{~g}, 82 \%$) as a pale yellow oil. \quad S2: $\mathrm{R}_{\mathrm{f}}\left(20 \%\right.$ EtOAc in hexane): 0.29 ; IR $\left(\mathrm{CCl}_{4}\right): 2942,2869,1805,1736,1718,1447,1370, .1315,1205$, 1161, 1131, 1094, 1031, $956 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.66$ (t, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.21-4.12 $(\mathrm{m}, 2 \mathrm{H}), 2.78-2.59(\mathrm{~m}, 3 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.22(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.0,199.1,171.3,61.9,59.1,47.8,40.5,36.8$, 27.0, 22.0, 14.0 ppm ; HRMS (EI, 20 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$212.1049, found: 212.1049.

Typical procedure for 1, 4- reduction of unsaturated thioesters using (BDP) CuH

A solution of $3(39.4 \mathrm{mg}, 0.200 \mathrm{mmol})$ and BDP ($89.1 \mathrm{mg}, 0.199 \mathrm{mmol}$) in 1.0 mL PhMe was stirred at room temperature for 5 minutes. PMHS ($360 \mu \mathrm{~L}, 6.01 \mathrm{mmol}$) was added and the reaction mixture became greenish-yellow. Thioester $\mathbf{1 a}(440.5 \mathrm{mg}, 1.999 \mathrm{mmol})$ in 1.0 mL PhMe and ${ }^{t} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added sequentially. The reaction was monitored by TLC and quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The reaction mixture was filtered through a pad of silica gel. The filtrate was extracted with EtOAc (3 x 10 mL), dried over anhydrous MgSO_{4} and concentrated. The residue was purified by flash chromatography using 1.5% EtOAc in hexane to afford $\mathbf{2 a}(403.8 \mathrm{mg}, 91 \%)$ as a pale yellow oil. $\mathbf{2 a}: \mathrm{R}_{f}(5 \% \mathrm{EtOAc}$ in hexane) : 0.56; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3035,2938,2857,1684(\mathrm{C}=\mathrm{O}), 1449,1264 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.25-7.29 (m, 2H), 7.16-7.20 (m, 3H), 2.87 (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.62$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.56$ (m, $2 \mathrm{H}), 1.63-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 199.6,142.1$, $128.42,128.37,125.8,43.9,35.6,30.7,25.3,23.3,14.8 \mathrm{ppm}$; LRMS (ESI): m/z $245\left(\left[\mathrm{M}^{+}+\mathrm{Na}^{+}, 32\right)\right.$, 161 (100), 162 (13); HRMS (ESI): calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{OS}\left(\left[\mathrm{M}^{+}+\mathrm{Na}\right]^{+}\right), 245.0976$, found 245.0983.

$2 \mathrm{a}-\mathrm{d}_{1}$

According to the typical procedure for 1,4-reduction using (BDP)CuH, 3 ($20.0 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{BDP}(45.0 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Ph}_{2} \mathrm{SiD}_{2}(0.28 \mathrm{~g}, 1.50$ mmol) were stirred at in 0.5 mL PhMe. Then $\mathbf{1 a}(0.22 \mathrm{~g}, 1.0 \mathrm{mmol})$ and ${ }^{t} \mathrm{BuOH}(0.44 \mathrm{~g}, 2.0 \mathrm{mmol})$ in 0.5 mL toluene were added. After workup, the residue was purified by flash chromatography using 2% EtOAc in hexane to afford 2a-d $\mathbf{d}_{\mathbf{1}}$ ($129 \mathrm{mg}, 58 \%$ yield) as pale yellow oil. $\mathrm{R} f\left(5 \% \mathrm{EtOAc}\right.$ in hexane): 0.56; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 3030, 2933, 2860, $1683(\mathrm{C}=\mathrm{O}), 1454 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 3 \mathrm{H}), 2.87(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.62$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.5,142.0,128.4,128.4,125.8,43.8,35.6,30.6,24.9(\mathrm{t}, J=19.5 \mathrm{~Hz}), 23.2,14.8$ ppm; LRMS (ESI): m/z 246 ([M+Na $]^{+}$, 246(45), 162 (89), 118 (100); HRMS (ESI): calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ODS}\left(\left[\mathrm{M}^{+} \mathrm{Na}^{+}\right]^{+}\right), 246.1033$, found 246.1039.

2b

According to the typical procedure for 1, 4-reduction using (BDP)CuH, 3
$(39.4 \mathrm{mg}, 0.200 \mathrm{mmol})$ and $\mathrm{BDP}(89.1 \mathrm{mg}, 0.199 \mathrm{mmol})$ were stirred in 1.0
mL PhMe. PMHS ($360 \mu \mathrm{~L}, 6.01 \mathrm{mmol}$), thioester 1b ($496.4 \mathrm{mg}, 1.999 \mathrm{mmol}$) in 1.0 mL PhMe and ${ }^{t} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using 2% EtOAc in hexane to afford $\mathbf{2 b}$ ($449.8 \mathrm{mg}, 90 \%$) as a pale yellow oil. 2b: $\mathrm{R} f(5 \%$ EtOAc in hexane $): 0.44$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3084,3026,2926,2862,1670(\mathrm{C}=\mathrm{O}), 1602,1494$, $1454 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 2.87(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 2 \mathrm{H})$, $0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.7$, 142.2 , 128.5 (2C), 128.4 (2C), 125.9, 44.0, 35.7, 31.8, 30.8, 28.7, 25.4, 22.1, 13.7 ppm; LRMS (EI. 20 eV): m/z $161\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}\right.$, 96), 117 (84), 91 (100); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}\right)$ 161.0961, found 161.0954.

2c

According to the typical procedure for 1, 4-reduction using (BDP) CuH , 3 ($39.4 \mathrm{mg}, 0.200 \mathrm{mmol}$) and BDP ($89.1 \mathrm{mg}, 0.199 \mathrm{mmol}$) were stirred in 1.0 mL PhMe. PMHS $(360 \mu \mathrm{~L}, 6.01 \mathrm{mmol})$, thioester $\mathbf{1 b}(721.2 \mathrm{mg}$, $1.999 \mathrm{mmol})$ in 1.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using 3% EtOAc in hexane to afford $\mathbf{2 c}$ (435.1 mg , 60%) as a pale yellow oil, along with recoverd $\mathbf{1 c}(129.8 \mathrm{mg}, 18 \%) \mathbf{2 c}: \mathrm{Rf}(5 \% \mathrm{EtOAc}$ in hexane) : 0.49; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3063,3042,2927,2854,1686(\mathrm{C}=\mathrm{O}), 1455,1267 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 2.87(\mathrm{t}, 2 \mathrm{H}, J=7.27), 2.66-2.55(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.68$ $(\mathrm{m}, 3 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.27(\mathrm{~m}, 19 \mathrm{H}), 0.92-0.87(\mathrm{t}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 199.5,142.0,128.4,126.1,43.9,41.7,35.6,31.9,30.7,29.6,29.6,29.5,29.4,29.2$, 29.1, 28.9, 28.8, 25.3, 22.7, $14.1 \mathrm{ppm} ; \quad$ LRMS (EI, 20 eV): m/z $161.1\left(\mathrm{M}+-\mathrm{C}_{12} \mathrm{H}_{25}, 100\right), 160.1$ (90); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{OS}, 362.2638$, found 362.2538 .

2d

According to the typical procedure for 1, 4-reduction using (BDP) $\mathrm{CuH}, 3$ ($39.2 \mathrm{mg}, 0.199 \mathrm{mmol}$) and BDP ($89.5 \mathrm{mg}, 0.200 \mathrm{mmol}$) were dissolved in 1.0 mL PhMe. PMHS ($600 \mu \mathrm{~L}, 10.0 \mathrm{mmol}$), thioester 2d ($496.3 \mathrm{mg}, 1.998$ $\mathrm{mmol})$ in 1.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using 3% EtOAc in hexane to afford $\mathbf{2 d}(260.0 \mathrm{mg}, 51 \%)$ as a pale yellow oil, along with recovered $\mathbf{1 d}(170.0 \mathrm{mg}, 34 \%) .2 d: ~ R f(5 \%$ EtOAc in hexane): 0.49 ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 3066, 3029, 2966, 2829, 2863, $1679(\mathrm{C}=\mathrm{O}), 1455,1365 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.58(\mathrm{~m}$, 4 H), $1.45(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.3,142.1,128.4$ (2C), 128.3 (2C), 125.8,
47.8, 44.4, 35.6, 30.7, 29.9 (3C), 25.2 ppm; LRMS (ESI): m/z 273 ([$\left.\mathrm{M}^{+}+\mathrm{Na}^{+}\right]^{+}, 38$), 161 (100), 117 (27); HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{ONaS}\left(\left[\mathrm{M}^{+}+\mathrm{Na}^{+}\right]^{+}\right)$273.1289, found 273.1294 .

According to the typical procedure for 1,4-reduction using (BDP)CuH, 3 (78.6 $\mathrm{mg}, 0.400 \mathrm{mmol})$ and $\operatorname{BDP}(89.2 \mathrm{mg}, 0.200 \mathrm{mmol})$ were dissolved in 1.0 mL PhMe. PMHS ($600 \mu \mathrm{~L}, 10.0 \mathrm{mmol}$), thioester $\mathbf{1 e}(536.1 \mathrm{mg}, 1.998 \mathrm{mmol})$ in 1.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using 3% EtOAc in hexane to afford $\mathbf{2 e}(44.4 \mathrm{mg}, 8 \%)$ as a pale yellow oil, along with recovered 1e $(440.7 \mathrm{mg}, 82 \%)$. 2e: $\mathrm{R} f\left(5 \% \mathrm{EtOAc}\right.$ in hexane): 0.46 ; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $3065,3028,2937,2860,1703(\mathrm{C}=\mathrm{O}), 1477,1440 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45(\mathrm{~s}, 5 \mathrm{H})$, 7.35-7.32 (m, 2H), 7.26-7.22 (m, 3H), 2.74-2.67 (m, 4H), 1.85-1.75 (m, 4H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.3,141.9,134.4$ (2C), 129.3, 129.1 (2C), 128.4 (2C), 128.3 (2C), 127.9, 125.8, 43.5, 35.5, 30.7, 25.2 ppm ; LRMS (EI, 20 eV): m/z 191 ($\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 84$), 117 (46), 91 (100); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)$ 161.0961, found 161.0964.

$2 f$

According to the typical procedure for 1,4-reduction using (BDP) $\mathrm{CuH}, 3$ ($39.5 \mathrm{mg}, 0.201 \mathrm{mmol}$) and BDP ($89.3 \mathrm{mg}, 0.200 \mathrm{mmol}$) were dissolved in 1.0 mL PhMe. PMHS ($360 \mu \mathrm{~L}, 6.01 \mathrm{mmol}$), thioester $\mathbf{1 f}(340.0 \mathrm{mg}, 1.997$ $\mathrm{mmol})$ in 1.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using 3% EtOAc in hexane to afford $4.3 \mathrm{a}(300.5 \mathrm{mg}, 87 \%)$ as a pale yellow oil. 2f: $\mathrm{Rf}\left(5 \% \mathrm{EtOAc}\right.$ in hexane): 0.55 ; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3078,2974,2934$, 2862, $1686(\mathrm{C}=\mathrm{O}), 1455 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.82-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.94(\mathrm{~m}, 2 \mathrm{H}), 2.87$ $(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 2 \mathrm{H})$, $1.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.6,138.3,114.8,44.0,33.4,28.2$, 25.1, 23.2, 14.8 ppm ; LRMS (EI, 20 eV): m/z $111\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 100\right), 83$ (78), 69 (31); HRMS (EI, 20 $\mathrm{eV})$: calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right), 111.0804$, found 111.0789.

2g

According to the typical procedure for 1,4-reduction using (BDP)CuH, 3 (78.7 $\mathrm{mg}, 0.400 \mathrm{mmol})$ and $\operatorname{BDP}(89.6 \mathrm{mg}, 0.201 \mathrm{mmol})$ were dissolved in 1.0 mL PhMe. PMHS ($600 \mu \mathrm{~L}, 10.0 \mathrm{mmol})$, thioester $\mathbf{1 g}(400.1 \mathrm{mg}, 1.999 \mathrm{mmol})$ in 1.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using 2% EtOAc in hexane to afford $\mathbf{2 g}$ ($391.8 \mathrm{mg}, 97 \%$) as a pale yellow oil. 2g: $\mathrm{Rf}(5 \% \mathrm{EtOAc}$ in hexane $): 0.64$; $\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3101,2974,2858,2733,1668(\mathrm{C}=\mathrm{O}), 1458$,
$1379 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.68(\mathrm{~m}$, $1 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.22(\mathrm{~m}, 7 \mathrm{H}), 1.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.2,48.7,33.9,31.8,29.4,28.3,22.7,22.0,17.8,14.0,13.6 \mathrm{ppm}$; LRMS (EI, 20 eV): m/z $145\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 9\right), 113$ (33), 85 (100); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OS}\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ 145.0682, found 145.0077.

2h

According to the typical procedure for 1,4-reduction using (BDP)CuH, 3 (39.4 mg , 0.200 mmol) and BDP ($89.2 \mathrm{mg}, 0.200 \mathrm{mmol}$) were dissolved in 1.0 mL PhMe. PMHS ($600 \mu \mathrm{~L}, 10.0 \mathrm{mmol}$), thioester $\mathbf{1 h}(340.5 \mathrm{mg}, 1.998 \mathrm{mmol})$ in 1.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using 3% EtOAc in hexane to afford $\mathbf{2 h}(87.5 \mathrm{mg}, 25 \%)$ as a pale yellow oil along with recovered $\mathbf{1 h}(233.6 \mathrm{mg}, 69 \%) . \mathbf{2 h}: \mathrm{R} f(5 \%$ EtOAc in hexane): 0.50; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2924,2856,1674(\mathrm{C}=\mathrm{O}), 1450 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 2.82(\mathrm{q}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.76-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3 H), 1.12-1.04 (m, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 202.0,53.2,30.2$ (2C), 26.2, 26.0 (2C), 23.4, 15.4 ppm ; LRMS (EI, 20 eV): m/z $171\left(\mathrm{M}^{+}-\mathrm{H}, 4\right), 111$ (56), 83 (100); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{OS}\left(\mathrm{M}^{+}-\mathrm{H}\right), 171.0838$, found 171.0839.

$2 i$

According to the typical procedure for 1,4-reduction using (BDP)CuH, 3 (39.5 mg , 0.201 mmol) and BDP ($89.2 \mathrm{mg}, 0.200 \mathrm{mmol}$) were dissolved in 1.0 mL PhMe. PMHS ($600 \mu \mathrm{~L}, 10.0 \mathrm{mmol}$), thioester $\mathbf{1 i}(396.1 \mathrm{mg}, 1.994 \mathrm{mmol})$ in 1.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using 3% EtOAc in hexane to afford $\mathbf{2 i}(89.4 \mathrm{mg}, 22 \%)$ as a pale yellow oil and recovered $\mathbf{1 i}(268.3 \mathrm{mg}, 68 \%) . \mathbf{2 i}: \quad \mathrm{R}_{f} \quad\left(5 \% \mathrm{EtOAc}\right.$ in hexane): $0.51 ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 2.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 4 \mathrm{H})$, $1.46-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.18-0.95(\mathrm{~m}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 202.0,53.3,32.6,30.2$ (2C), 28.7, 26.2, 26.0 (2C), 22.5, 14.0 ppm . The characterization corresponded to that of $\mathbf{2 i}$ documented in the literature. ${ }^{7}$

2j

According to the typical procedure for 1,4-reduction using (BDP)CuH, 3 ($78.5 \mathrm{mg}, 0.400 \mathrm{mmol}$) and BDP ($89.4 \mathrm{mg}, 0.200 \mathrm{mmol}$) were dissolved in 1.0 mL PhMe. PMHS ($600 \mu \mathrm{~L}, 10.0 \mathrm{mmol}$), thioester $\mathbf{1 j}(424.5 \mathrm{mg}$, $1.999 \mathrm{mmol})$ in 1.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the
residue was purified by flash chromatography using $3 \% \mathrm{EtOAc}$ in hexane to afford $\mathbf{2} \mathbf{j}$ (375.4 mg , 88%) as a pale yellow oil, along with recovered $\mathbf{2 j}$ ($14.9 \mathrm{mg}, \mathbf{4 \%}$). $\quad \mathbf{2 j}$: $\quad \mathrm{R} f(5 \% \mathrm{EtOAc}$ in hexane): 0.55; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3057,2966,2930,2854,1682(\mathrm{C}=\mathrm{O}), 1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $5.10-5.06(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{dd}, J=14.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=14.4,8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.06-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.20(\mathrm{~m}$, $1 \mathrm{H}), 1.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.3$, 131.6, 124.2, 51.4, 36.7, 30.8, 25.7, 25.4, 23.3, 19.5, 17.7, 14.8 ppm; LRMS (EI, 20 eV): m/z 213 $\left(\mathrm{M}^{+}-\mathrm{H}, 10\right), 153(23), 111(48), 109(100)$; HRMS (EI, 20 eV): calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{OS}\left(\mathrm{M}^{+}-\mathrm{H}\right)$ 213.1308, found 213.1306.

2k

According to the typical procedure for 1,4-reduction using (BDP)CuH, 3 (78.5 $\mathrm{mg}, 0.400 \mathrm{mmol}$) and BDP ($89.1 \mathrm{mg}, 0.199 \mathrm{mmol}$) were dissolved in 1.0 mL PhMe. PMHS ($600 \mu \mathrm{~L}, 10.0 \mathrm{mmol}$), thioester $1 \mathbf{k}(384.0 \mathrm{mg}, 1.997 \mathrm{mmol})$ in 1.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using $3 \% \mathrm{EtOAc}$ in hexane to afford $\mathbf{2 k}(348.8 \mathrm{mg}$, $90 \%)$ as a pale yellow oil. 2k: $\mathrm{R} f\left(5 \% \mathrm{EtOAc}\right.$ in hexane): 0.45 ; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3067,3031,2972$, 2933, 2876, $1685(\mathrm{C}=\mathrm{O}), 1497,1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.34(\mathrm{~m}, 2 \mathrm{H})$, 7.31-7.23 (m, 3H), 3.07-3.00 (m, 2H), 2.95-2.88 (m, 4H), $1.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.7,140.2,128.5$ (2C), 128.3 (2C), 126.3, $45.5,31.5,23.3,14.8 \mathrm{ppm}$; LRMS (EI, 20 eV): m/z 194 ($\mathrm{M}^{+}, 30$), 133 (39), 105 (100), 77 (67); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{OS}\left(\mathrm{M}^{+}\right)$194.0706, found 194.0759.

21

According to the typical procedure for 1,4-reduction using (BDP) $\mathrm{CuH}, 3$ (78.6 $\mathrm{mg}, 0.400 \mathrm{mmol})$ and BDP $(89.4 \mathrm{mg}, 0.200 \mathrm{mmol})$ were dissolved in 1.0 mL PhMe. PMHS ($600 \mu \mathrm{~L}, 10.0 \mathrm{mmol}$), thioester $21(453.1 \mathrm{mg}, 1.998 \mathrm{mmol})$ in 1.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using 3% EtOAc in hexane to afford $\mathbf{2 1}$ (394.5 mg , 86%) as a pale yellow oil and recovered $\mathbf{1 1}$ ($15.4 \mathrm{mg}, 3 \%$).
21: $\operatorname{Rf}\left(5 \%\right.$ EtOAc in hexane): 0.48 ; $\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3070,2974,2934,2876,1690(\mathrm{C}=\mathrm{O}), 1475$, $1446 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.11-3.07(\mathrm{~m}, 2 \mathrm{H})$, 2.91-2.85 (m, 4H), $1.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 198.5,137.7,134.0$, 130.6, 129.6, 127.9, 126.9, 43.5, 29.5, 23.4, 14.8 ppm; LRMS (EI, 20 eV): m/z 193 ($\mathrm{M}^{+}-\mathrm{Cl}, 45$), 139 (100), 125 (58), 77 (25); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{OS}\left(\mathrm{M}^{+}-\mathrm{Cl}\right)$ 193.0682, found 193.0690.

According to the typical procedure for 1,4-reduction using (BDP)CuH, 3 (19.6 $\mathrm{mg}, 0.100 \mathrm{mmol})$ and $\operatorname{BDP}(44.7 \mathrm{mg}, 0.100 \mathrm{mmol})$ were dissolved in 1.0 mL PhMe. PMHS ($180 \mu \mathrm{~L}, 3.00 \mathrm{mmol}$), thioester $\mathbf{1 m}(237.1 \mathrm{mg}, 0.9993 \mathrm{mmol})$ in 2.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using 6% EtOAc in hexane to afford $\mathbf{2 m}(194.6 \mathrm{mg}, 81 \%)$ as a pale yellow oil and recovered $\mathbf{1 m}(8.3 \mathrm{mg}, 4 \%) . \quad \mathbf{2 m}: \quad \mathrm{R} f(10 \%$ EtOAc in hexane): 0.42; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 3063, 3045, 2972, 2931, 2874, $1682(\mathrm{C}=\mathrm{O}), 1529,1352 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{t}, J=2.2,2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6,1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-2.82(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 198.0, 148.4, 142.1, 134.8, 129.4, 123.3, 121.6, 44.6, 30.9, 23.5, 14.7 ppm; LRMS (EI, 20 eV): m/z $239\left(\mathrm{M}^{+}, 2\right), 150(100), 136$ (44), 77 (19); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{NS}\left(\mathrm{M}^{+}\right)$239.0611, found 239.0610.

According to the typical procedure for 1,4-reduction using (BDP) $\mathrm{CuH}, 3$ ($39.1 \mathrm{mg}, 0.199 \mathrm{mmol}$) and BDP ($89.4 \mathrm{mg}, 0.200 \mathrm{mmol}$) were dissolved in 2.0 mL PhMe. PMHS $(600 \mu \mathrm{~L}, 10.0 \mathrm{mmol})$, thioester $\mathbf{1 n}(474.0 \mathrm{mg}$, 1.998 mmol) in 2.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using 6% EtOAc in hexane to afford $\mathbf{2 n}(430.1 \mathrm{mg}, 90 \%)$ as a pale yellow oil. $\quad \mathbf{2 n}: \quad \mathrm{R} f(10 \% \mathrm{EtOAc}$ in hexane $): 0.44$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3078,3047,2972,2934,1682(\mathrm{C}=\mathrm{O}), 1522,1348 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.16-8.12 (m, 2H), 7.36-7.26 (m, 2H), 3.11-3.06 (m, 2H), 2.92-2.84 (m, 4H), $1.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.9,147.9,146.8,129.3$ (2C), 123.8 (2C), 44.4, 31.1, 23.5, 14.7 ppm ; LRMS (EI, 20 eV): m/z 239 ($\mathrm{M}^{+}, 14$), 150 (100), 136 (41), 77 (92); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{NS}\left(\mathrm{M}^{+}\right)$239.0611, found 239.0615.

According to the typical procedure for 1, 4-reduction using (BDP)CuH, 3 (39.1 $\mathrm{mg}, 0.199 \mathrm{mmol}$) and BDP ($89.4 \mathrm{mg}, 0.200 \mathrm{mmol}$) were dissolved in 1.0 mL PhMe. PMHS ($600 \mu \mathrm{~L}, 10.0 \mathrm{mmol}$), thioester $1 \mathbf{1 0}(444.0 \mathrm{mg}, 1.999 \mathrm{mmol})$ in 1.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(380 \mu \mathrm{~L}, 3.97 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using 2\% EtOAc in hexane to afford 2 om ($385.9 \mathrm{mg}, 86 \%$) as a pale yellow oil and recovered $\mathbf{1 0}$ ($15.3 \mathrm{mg}, 3 \%$). $\mathrm{Rf}(5 \% \mathrm{EtOAc}$ in hexane): 0.42; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 3071, 2974, 2934, 2876, $1685(\mathrm{C}=\mathrm{O}), 1531,1353 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.83(\mathrm{~m}, 6 \mathrm{H}), 1.25(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.7,159.8,141.8,129.5,120.7,114.1,111.7$, $55.2,45.5,31.5,23.4,14.8 \mathrm{ppm}$; LRMS (EI, 20 eV): m/z 224 ($\mathrm{M}^{+}, 92$), 163 (87), 121 (100), 91 (52); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right)$224.0871, found 224.0867.

2p

According to the typical procedure for 1,4-reduction using (BDP) $\mathrm{CuH}, \mathbf{3}$ ($11.5 \mathrm{mg}, 0.0585 \mathrm{mmol}$) and BDP ($13.6 \mathrm{mg}, 0.0305 \mathrm{mmol}$) were dissolved in 2.0 mL PhMe. PMHS ($90 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), thioester $\mathbf{2 . 6 c}(93.4 \mathrm{mg}$, $0.299 \mathrm{mmol})$ in 1.0 mL PhMe and ${ }^{\mathrm{t}} \mathrm{BuOH}(60 \mu \mathrm{~L}, 0.63 \mathrm{mmol})$ were added. After workup, the residue was purified by flash chromatography using $3 \% \mathrm{EtOAc}$ in hexane to afford $\mathbf{2 p}(81.2 \mathrm{mg}, 86 \%)$ as a pale yellow oil. $\mathbf{2 p}: \quad \mathrm{R} f\left(10 \% \mathrm{EA}\right.$ in hexane): 0.51 ; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 2939, 2868, 1786 (ketone $\mathrm{C}=\mathrm{O}$), 1709 (thioester $\mathrm{C}=\mathrm{O}$), 1683 (ester $\mathrm{C}=\mathrm{O}$), 1452, $1273 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{q}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 5 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.51(\mathrm{~m}, 8 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 1 \mathrm{H})$, $1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.9,199.4$, $172.0,61.2,60.8,43.8,41.1,36.1,34.3,27.6,25.9,23.7,23.2,22.6,14.8,14.2 \mathrm{ppm}$; LRMS (EI, 20 $\mathrm{eV}): \mathrm{m} / \mathrm{z} 314\left(\mathrm{M}^{+}, 1\right), 253$ (4), 179 (40), 133 (100); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$ 314.1552, found 314.1557 .

Typical procedure for reductive aldol reactions

A solution of $3(23.4 \mathrm{mg}, 0.119 \mathrm{mmol})$ and $\mathrm{BDP}(26.6 \mathrm{mg}, 0.0596 \mathrm{mmol})$ in 2.0 mL PhMe was stirred for 5 minutes. PMHS ($90 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) was added and the reaction mixture turned greenish yellow. Thioester $\mathbf{1 p}(93.1 \mathrm{mg}, 0.298 \mathrm{mmol})$ in 1.0 mL PhMe was added. The reaction was monitored by TLC and quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The reaction mixture was filtered through a pad of silica gel. The filtrate was extracted with EtOAc (3 x 10 mL), dried over anhydrous MgSO_{4} and concentrated. The residue was purified by flash chromatography using 10% EtOAc in hexane to afford $\mathbf{4 a}(53.9 \mathrm{mg}, 57 \%)$ as a pale yellow oil and 2p ($21.5 \mathrm{mg}, 23 \%$). 4a: $\mathrm{Rf}\left(10 \% \mathrm{EtOAc}\right.$ in hexane): 0.53; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3468,2937,2870,1695$ (thioester $\mathrm{C}=\mathrm{O}$), 1655 (ester $\mathrm{C}=\mathrm{O}$), $1456,1236 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , toluene- $\mathrm{d}_{8}, 80{ }^{\circ} \mathrm{C}$): $\delta 4.33$
(s, 1H), 3.96-3.86 (m, 2H), 2.95 (dd, $J=11.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{qd}, J=7.4,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.08$ $(\mathrm{m}, 2 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.22(\mathrm{~m}$, $1 \mathrm{H}), 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~m}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , toluene- $\mathrm{d}_{8}, 80^{\circ} \mathrm{C}$): $\delta 200.7,177.1,73.3,60.5,55.4,51.8,35.7,31.6,31.0,26.1,23.7,23.5,23.2,20.9,14.8,14.2 \mathrm{ppm} ;$ LRMS (EI, 20 eV):m/z $253\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4}, 11\right), 179$ (54), 135 (100); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\mathrm{SC}_{2} \mathrm{H}_{5}\right)$, 253.1440, found 253.1441.

According to typical procedure for reductive aldol reaction of $\mathbf{1 p}, \mathbf{3}(11.9 \mathrm{mg}, 0.0605 \mathrm{mmol})$ and BDP ($13.5 \mathrm{mg}, 0.0302 \mathrm{mmol}$) were dissolved in 2.0 mL PhMe. PMHS ($90 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), thioester $\mathbf{1 q}(89.1 \mathrm{mg}, 0.298 \mathrm{mmol})$ in 1.0 mL PhMe were added. The reaction was monitored by TLC. After the reaction was complete and worked up, the residue was purified by flash chromatography using 10% EtOAc in hexane to afford $\mathbf{4 b}(53.1 \mathrm{mg}, 60 \%)$ as a pale yellow oil and 4c ($10.3 \mathrm{mg}, 14 \%$) as a pale yellow oil. 4b: $\mathrm{R} f\left(10 \% \mathrm{EA}\right.$ in hexane): 0.55 ; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3452,2982$, 2941, 2866, 1647 (thioester $\mathrm{C}=\mathrm{O}$), 1636 (ester $\mathrm{C}=\mathrm{O}$), $1452 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $4.17(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.46-2.36 (m, 2H), 2.26-2.23 (m, 1H), 2.02-1.85 (m, 3H), 1.80-1.76 (m, 1H), 1.67-1.62 (m, 1H), 1.48-1.29 (m, 3H), $1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 199.4,175.9,82.5,60.7,57.0,56.0,33.8,33.3,32.8,23.6,23.3(2 \mathrm{C}), 22.4,14.5,14.1 \mathrm{ppm} ;$ LRMS (EI, 20 eV): m/z 300 (M^{+}, 2), 239 (69), 193 (100), 165 (96); HRMS (EI, 20 eV): calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) 300.1390$, found 300.1388. 4c: $\mathrm{R}_{f}\left(10 \%\right.$ EtOAc in hexane): $0.59 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.22-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.87(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.52$ $(\mathrm{m}, 2 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.20(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 172.7,170.9,88.0,60.9,58.6,53.0,33.3,32.8,29.5,24.0,22.6,21.1,14.2 \mathrm{ppm}$. The characterization corresponded to that of $\mathbf{4 c}$ documented in the literature. ${ }^{8}$

According to typical procedure for reductive aldol reaction of $\mathbf{1 p}, \mathbf{3}(29.7 \mathrm{mg}, 0.151 \mathrm{mmol})$ and BDP ($67.2 \mathrm{mg}, 0.150 \mathrm{mmol}$) were dissolved in 2.0 mL PhMe. PMHS ($90 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), thioester $\mathbf{1 q}(89.1 \mathrm{mg}, 0.298 \mathrm{mmol})$ in 1 mL PhMe were added. The reaction was monitored by TLC. After
the reaction was complete and worked up, the residue was purified by flash chromatography using 10% EtOAc in hexane to afford $\mathbf{4 b}(72.2 \mathrm{mg}, 81 \%)$ as a pale yellow oil.

References

1. G. E. Keck, E. P. Bonen and S. A. Mabury, J. Org. Chem. 1985, 50, 709.
2. H. Kakei, R.Tsuji, T. Ohshima and M. Shibasaki, J. Am. Chem. Soc. 2005, 127, 8962.
3. A. W. van Zijl, A. J. Minnaard and B. L. Feringa, J. Org. Chem. 2008, 73, 5651.
4. M. Yoshimatsu, M. Naito, M. Kawahigashi, H. Shimizu and T. Kataoka, J. Org. Chem. 1995, 60, 4798.
5. H. C. Aspinall, N. Greeves and C. Valla, Org. Lett. 2005 , 7, 1919.
6. P. S. Aburel, C. Roemming, K. Ma and K. Undheim, J. Chem. Soc. Perkin Trans. 1, 2001, 1458.
7. T. Inoue, T. Takeda, N. Kambe, A. Ogawa, I. Ryu and N. Sonoda, J. Org. Chem. 1994, 59, 5824.
8. H. Henry-Riyad, C. Lee, V. C. Purohit and D. Romo, Org. Lett. 2006, 8, 4363.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of New Compounds

200
180
160
140
120
100

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

1g

此

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry

ppm 225

1p $($
 (s)

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

$1 q$

$2 a-d_{1}$

n

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

$$
\begin{aligned}
& \begin{array}{l}
10 \\
000 \\
000
\end{array}
\end{aligned}
$$

$2 f$

$2 g$

1 gpn $\frac{1}{9}$

2h

1k

 (

21

8

部

$4 \mathbf{a}$

$\mathrm{H}-\mathrm{H} \operatorname{COSY}$ of $\mathbf{4 a}$

NOESY of 4a

4b
\qquad

$\mathrm{H}-\mathrm{H} \operatorname{COSY}$ of 4b

NOESY of 4b

