Electronic Supporting Information

Thiophene-functionalized isoindigo dyes bearing electron donor substituents with absorptions approaching the near infrared region

David Bialas, Sabin-Lucian Suraru, Ralf Schmidt and Frank Würthner*

Universität Würzburg, Institut für Organische Chemie and Röntgen Research Center for Complex Material Systems, Am Hubland, 97074 Würzburg, Germany.

E-mail: wuerthner@chemie.uni-wuerzburg.de; Fax: +49 (0)931 31 84756; Tel: +49 (0)931 31 85340

Table of contents

1.	Computational Details	S2
2.	Cyclic voltammetry	S4
3.	NMR spectra	S 5
4.	References	S20

1. Computational Details

The isoindigo derivatives were calculated with the DFT method in combination with the B3-LYP^{S1} functional. All calculations were performed with the TURBOMOLE program (version 5.10).^{S2} The TZVP^{S3} basis for C, N, O, and S atoms was combined with the TZV^{S2} basis for the H atom. This basis is designated as TZV(P) and was found to be an excellent compromise between accuracy and computational effort for systems of similar size.^{S4} All dyes were fully geometry-optimized, emanating from structures computed on semi-empirical AM1 level. Long alkyl chains were replaced by methyl groups.

Transition densities were calculated on CC2 level with the TZV(P) basis based on the previously geometry-optimized structures using the TURBOMOLE program (version 5.9). In all CC2 computations, the resolution-of-the-identity (RI) approximation was employed.^{S5} Corresponding auxiliary basis sets were applied for fitting the charge density.^{S6} The frozen core approximation was used to freeze orbitals with eigenvalues smaller than -3.0 a. u. in the calculation of the correlation and excitation energies.

Fig. S 1 HOMO, LUMO according to DFT (B3-LYP) calculations and transition density (CC2 level) of **3a-f**.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

2. Cyclic voltammetry

Fig. S 2 Cyclic voltammograms of **3a-f** in dry dichloromethane (10^{-4} M) ; scan rate 100 mV s⁻¹; supporting electrolyte: tetrabutylammonium hexafluorophosphate (NBu₄PF₆, 0.1 M).

3. NMR-spectra

Fig. S 3 400 MHz ¹H NMR spectrum of 2d in CDCl₃.

Fig. S 4 400 MHz ¹H NMR spectrum of 2e in CD₂Cl₂.

Fig. S 5 400 MHz ¹H NMR spectrum of 2f in CDCl₃.

Fig. S 6 400 MHz 1 H NMR spectrum of 3a in CD₂Cl₂.

Fig. S 7 400 MHz 1 H NMR spectrum of 3b in CD₂Cl₂.

Fig. S 8 400 MHz ¹H NMR spectrum of 3c in CD₂Cl₂.

Fig. S 9 400 MHz ¹H NMR spectrum of 3d in CD₂Cl₂.

Fig. S 10 400 MHz ¹H NMR spectrum of 3e in CD₂Cl₂.

Fig. S 11 400 MHz ¹H NMR spectrum of 3f in CD₂Cl₂.

Fig. S 12 101 MHz 13 C NMR spectrum of 3a in CD₂Cl₂.

Fig. S 13 101 MHz 13 C NMR spectrum of 3b in CD₂Cl₂.

Fig. S 14 101 MHz 13C NMR spectrum of 3c in CD₂Cl₂.

Fig. S 15 101 MHz 13 C NMR spectrum of 3d in CD₂Cl₂.

Fig. S 16 101 MHz ¹³C NMR spectrum of 3e in CD₂Cl₂.

Fig. S 17 151 MHz 13 C NMR spectrum of 3f in CD₂Cl₂.

4. References

- A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098; C. Lee, W. Yang and R. G. Parr; *Phys. Rev. B*, 1988, **37**, 785; A. D. Becke, *J. Chem. Phys.* 1993, **98**, 5648.
- R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Köhmel, *Chem. Phys. Lett.*, 1989, 162, 165; R.
 Ahlrichs and M. von Arnim, *Methods and Techniques in Computational Chemistry: METECC-*95; Clementi, E.; Corongiu, G., Eds.; Club Européen MOTECC, 1995.
- 3 A. Schäfer, C. Huber and R. Ahlrichs, *J. Chem. Phys.*, 1994, **100**, 5829.
- 4 R. F. Fink, J. Seibt, V. Engel, M. Renz, M. Kaupp, S. Lochbrunner, H.-M. Zhao, J. Pfister, F. Würthner and B. Engels, *J. Am. Chem. Soc.*, 2008, **130**, 12858.
- 5 O. Treutler and R. Ahlrichs, J. Chem. Phys., 1995, **102**, 346.
- 6 K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, *Theor. Chim. Acta*, 1997, **97**, 119.