Gold(III)Chloride Catalysed Synthesis of 5-Alkylidenedihydrothiazoles

Thomas S.A. Heugebaert, Leander P.D. Vervaecke and Christian V. Stevens*

Research Group SynBioC, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium

Chris.Stevens@UGent.be

Contents

General procedure 1: synthesis of dithiocarboimidates 7a-7f	. 3
diallylprop-2-ynyl dithiocarboimidate 7a	. 3
bis(2-methylallyl)prop-2-ynyl dithiocarboimidate 7b	. 3
Di(but-2-enyl)prop-2-ynyl dithiocarboimidate 7c	. 3
bis(3-methylbut-2-enyl)prop-2-ynyl dithiocarboimidate 7d	. 4
bis(2-bromo-allyl)prop-2-ynyl dithiocarboimidate 7e	. 4
bis((Z)-3-fenylallyl)prop-2-ynyl dithiocarboimidate 7f	. 4
General procedure 2: synthesis of dihydrothiazoles 9a-9f	. 5
(E)-2-(thioallyl)-5-(but-3-enylidene)-4,5-dihydrothiazole 9a	. 5
(E)-2-(thio-2-methylallyl)-5-(3-methylbut-3-enylidene)-4,5-dihydrothiazole 9b	. 5
(5 <i>E</i>)-2-(thiobut-2-enyl)-5-(2-methylbut-3-enylidene)-4,5-dihydrothiazole 9c	. 5
(E)-5-(2,2-dimethylbut-3-enylidene)-2-(thio-3-methylbut-2-enyl)-4,5-dihydrothiazole 9d	. 6
(E)-2-(thio-2-bromoallyl)-5-(3-bromo-but-3-enylidene)-4,5-dihydrothiazole 9e	. 6
(E)-2-(cinnamylthio)-5-(2-fenylbut-3-enylidene)-4,5-dihydrothiazole 9f	. 6
Copy of ¹ H-NMR 7a	. 7
Copy of ¹³ C-NMR 7a	. 8
Copy of ¹ H-NMR 7b	. 9
Copy of ¹³ C-NMR 7b	10
Copy of ¹ H-NMR 7c	11
Copy of ¹³ C-NMR 7c	12
Copy of ¹ H-NMR 7d	13
Copy of ¹³ C-NMR 7d	14
Copy of ¹ H-NMR 7e	15
Copy of ¹³ C-NMR 7e	16
Copy of ¹ H-NMR 7f	17
Copy of ¹³ C-NMR 7f	18
Copy of ¹ H-NMR 9a	19
Copy of ¹³ C-NMR 9a	20
Copy of ¹ H-NMR 9b	21
Copy of ¹³ C-NMR 9b	22
Copy of ¹ H-NMR 9c	23
Copy of ¹³ C-NMR 9c	24
Copy of ¹ H-NMR 9d	25

Copy of ¹³ C-NMR 9d	26
Copy of ¹ H-NMR 9e	27
Copy of ¹³ C-NMR 9e	
Copy of ¹ H-NMR 9f	
Copy of ¹³ C-NMR 9f	

General procedure 1: synthesis of dithiocarboimidates 7a-7f

In a dry 50 ml flask 0,600 g (10,9 mmol, 1 equiv) propargylamine is dissolved in 30 ml of hexane. To this 11 g (109 mmol, 10 equiv) Et₃N is added. The flask is placed under inert atmosphere and is cooled to 0°C in order to buffer the exothermic reaction. Slowly 1,26 g (16,4 mmol, 1,5 equiv) carbondisulfide is added, using a syringe. The cooling baths is removed, and the reaction is allowed to stir at room temperature for one hour. A white suspension is formed. Subsequently, 8 equivalents of an allylic bromide are added and the reaction is stirred at room temperature during an overnight period. The extraction is performed from aqueous saturated NaHCO₃ by means of dichloromethane (3x). The combined organic phases are dried using $MgSO_4$ and the volatiles are removed by rotary evaporation. Further purification is performed by means of column chromatography when the allylic bromide could not be evaporated.

diallylprop-2-ynyl dithiocarboimidate 7a

¹H-NMR (300MHz, CDCl₃): δ 2.26 (1H, t, J=2.8Hz, C_a=CH); 3.67 (2H, d, J=7.2Hz, SCH₂); 3.72 (2H, d, J=6.6Hz, SCH₂); 4.23 (2H, d, J=2.8Hz, NCH₂); 5.08 (1H, d, J=9.9Hz, CH=CH_EH_z); 5.15 (1H, d, J=9.9Hz, CH=CH_EH_z); 5.23 (1H, d, J=16.5Hz, CH=CH_E<u>H</u>_z); 5.28 (1H, d, J=15.7Hz, CH=CH_E<u>H</u>_z); 5.79-5.94 (2H, m, 2x C<u>H</u>=CH₂). ¹³C-NMR (**75MHz**, **CDCl**₃): δ 34.5 (SCH₂); 35.5 (SCH₂); 42.3 (C₀CH₂); 71.1 (C₀=CH); 81.6 (C₀=CH); 118.3 (CH=CH₂); 119.0 (CH= \underline{C} H₂); 132.7 (\underline{C} H=CH₂); 133.0 (\underline{C} H=CH₂); 159.7 (NC_aS₂). **MS (ESI): m/z (%):** 212 (M + H⁺, 100). **HRMS (ESI):** m/z calcd for $C_{10}H_{13}NS_2 + H^+ = 212.0568$, found =212.0571. **IR (cm⁻¹) vmax:** 1567 (N=CS₂);

bis(2-methylallyl)prop-2-ynyl dithiocarboimidate 7b

1636 (CH=CH₂); 3296 (C=CH). Chromatography: PE/EtOAc 95/5 Rf = 0.20. Y: 78%.

¹H-NMR (300MHz, CDCl₃): δ 1.80 (3H, s, CH₃); 1.84 (3H, s, CH₃); 2.26 (1H, t, J=2.5Hz, HC=C_a); 3.72 (2H, s, SCH₂); 3.74 (2H, s, SCH₂); 4.29 (2H, d, J=2.5Hz, NCH₂); 4.86 (1H, s, $C_q = C\underline{H}_a H_b$); 4.92 (1H, s, $C_q = C\underline{H}_a H_b$); 4.97 (1H, s, $C_q = CH_a\underline{H}_b$); 5.03 (1H, s, C_a=CH_a<u>H</u>_b). ¹³C-NMR (75MHz, CDCl₃): δ 21.4 (CH₃); 21.6 (CH₃);

38.5 (SCH₂); 39.8 (SCH₂); 42.3 (NCH₂); 70.8 (HC≡C_a); 81.1 (HC≡C_a); 114.6 (H₂C=C_a); 115.3 (H₂C=C_a); 140.0 (H₂C= \underline{C}_q); 140.7 (H₂C= \underline{C}_q); 160.9 (NC_qS₂). **MS (ESI): m/z (%):** 240.3 (M + H⁺, 100). **HRMS (ESI):** m/z calcd for $C_{12}H_{17}NS_2 + H^+ = 240.0881$, found =240.0885. **IR (cm⁻¹) vmax:** 1568 (N=CS₂); 1649 (C=CH₂); 3298 (C≡CH). **Y**: 89%.

Di(but-2-enyl)prop-2-ynyl dithiocarboimidate 7c

An inseparable mixture of EE, EZ and ZZ 7c was characterised.

¹**H-NMR (300MHz, CDCl₃): δ** 1.70 (6H, m, 2x CH₃, EE of 2x CH₃, EZ of 2x CH₃, ZZ); 2.27 (1H, ~t, J=2.2Hz, C_q=CH); 3.65 (2H, d, J=6.1Hz, SC_{a,E}H₂); 3.70 (2H, d, J=7.2Hz, SC_{b,E}H₂); 3.73 (2H, d, J=7.2Hz, SC_{a,Z}H₂); 3.78 (2H,

d, J=7.7Hz, SC_{b.z}H₂); 4.26 (2H, d, J=2.2Hz, C₀CH₂); 5.47-5.57 (2H, m, 2x CHCH₃); 5.60-5.79 (2H, m, 2x CH₂C<u>H</u>). ¹³C-NMR (75MHz, CDCl₃): δ 13.0 (C_zH₃); 17.9 (C_EH₃); 28.7 (SC_{a,z}H₂); 29.3 (SC_{b,z}H₂); 34.0 $(SC_{a,E}H_2)$; 34.9 $(SC_{b,E}H_2)$; 42.1 $(C_q\underline{C}H_2)$; 70.9 $(C_q\equiv\underline{C}H)$; 81.2 $(\underline{C}_q\equiv CH)$; 124.2 $(CH_2\underline{C}_aH, EZ)$; 124.3 $(CH_2\underline{C}_aH, EZ)$; ZZ); 124.4 (CH₂C_bH, EZ); 125.27 (CH₂C_aH, EE); 125.35 (CH₂C_bH, ZZ); 125.4 (CH₂C_bH, EE); 128.5 (C_aHCH₃, EZ); 128.6 (C_aHCH₃, ZZ); 129.2 (C_bHCH₃, EZ); 129.67 (C_aHCH₃, EE); 129.71 (C_bHCH₃, ZZ); 130.4 (C_bHCH₃, EE); 160.6 (NC_aS₂, EE); 160.8 (NC_aS₂, EZ); 160.9 (NC_aS₂, ZZ). **MS (ESI): m/z (%):** 240 (M + H⁺, 100).

HRMS (ESI): m/z calcd for C₁₂H₁₇NS₂ + H⁺= 240.0880, found =240.0879. **IR (cm⁻¹) vmax:** 1561 (N=CS₂); 1698 (HC=CH); 3292 (C≡CH). **Y:** 79%.

bis(3-methylbut-2-enyl)prop-2-ynyl dithiocarboimidate 7d

¹H-NMR (300MHz, CDCl₃): δ 1.70 (6H, s, 2x C_qC_zH₃); 1.74 (6H, s, 2x C_qC_EH₃); 2.27 (1H, t, J=2.2Hz, C_q≡CH); 3.69 (2H, d, J=8.3Hz, SCH₂); 3.74 (2H, d, J=7.7Hz, SCH₂); 4.24 (2H, d, J=2.2Hz, C_qCH₂); 5.23-5.31 (2H, m,

2x SCH₂C<u>H</u>). ¹³C-NMR (75MHz, CDCl₃): δ 17.9 (2x C_qC_zH₃); 25.8 (2x C_qC_EH₃); 30.2 (SCH₂); 30.8 (SCH₂); 42.1 (NCH₂); 70.7 (C_q=<u>C</u>H); 81.3 (<u>C_q</u>=CH); 118.1 (SCH₂CH); 118.2 (SCH₂CH); 137.2 (<u>C_q</u>(CH₃)₂); 138.0 (<u>C_q</u>(CH₃)₂); 161.7 (NCS₂). MS (ESI): m/z (%): 268 (M + H⁺, 100). HRMS (ESI): m/z calcd for C₁₄H₂₁NS₂+ H⁺ = 268.1193, found = 268.1201. IR (cm⁻¹) vmax: 1570 (N=CS₂); 1666 (HC=C); 3294 (C=CH). Chromatography: Hex/EtOAc 95/5 Rf = 0.41. Y: 88%.

bis(2-bromo-allyl)prop-2-ynyl dithiocarboimidate 7e

Freshly destilled bromide must be used. The isolated product is to be used for ring closure immediately.

¹H-NMR (**300MHz**, **CDCl**₃): δ 2.28 (1H, t, J=2.8Hz, HC≡C_q); 4.06 (2H, s, SCH₂); 4.07 (2H, s, SCH₂); 4.34 (2H, d, J=2.8Hz, NCH₂); 5.51 (1H, d, J=1.4Hz, $C_q=CH_a\underline{H}_b$); 5.60 (1H, d, J=2.2Hz, $C_q=CH_a\underline{H}_b$); 5.90 (1H, ~d, J=1.4Hz, $C_q=CH_aH_b$); 5.98 (1H, ~d, J=2.2Hz, $C_q=CH_aH_b$). ¹³C-NMR (75MHz, CDCl₃): δ

41.4 (NCH₂); 42.67 (SCH₂); 42.71 (SCH₂); 71.3 (<u>C</u>H \equiv C_q); 80.6 (CH \equiv C_q); 120.6 (2x C_q=<u>C</u>H₂); 127.6 (2x C_qBr); 157.9 (NCS₂). **MS (ESI): m/z (%):** 368 (M + H⁺, 40); 370 (M + H⁺, 100); 372 (M + H⁺, 60). **HRMS** (**ESI):** m/z calcd for C₁₀H₁₁Br₂NS₂+ H⁺ = 369.8757, found = 369.8754. **IR (cm⁻¹) vmax:** 1576 (N=CS₂); 1623 (C=CH₂); 3295 (C=CH). **Chromatography:** PE/EtOAc 95/5 Rf = 0.38. **Y:** 80%.

bis((Z)-3-fenylallyl)prop-2-ynyl dithiocarboimidate 7f

¹**H-NMR (300MHz, CDCl₃):** δ 2.27 (1H, t, J=2.5Hz, HC=C_q); 3.89 (2H, d, J=7.2Hz, SCH₂); 3.92 (2H, d, J=7.2Hz, SCH₂); 4.31 (2H, d, J=2.5Hz, NCH₂); 6.23 (1H, dt, J=15.7Hz, J=7.2Hz, SCH₂C<u>H</u>); 3.24 (1H, dt, J=15.7Hz, J=7.2Hz, SCH₂C<u>H</u>); 6.60

(2H, ~d, J=15.7Hz, 2x CH₂CH=C<u>H</u>); 7.26-7.38 (10H, m, 10x CH_{arom.}). ¹³C-NMR (75MHz, CDCl₃): δ 34.5 (SCH₂); 35.5 (SCH₂); 42.4 (NCH₂); 71.0 (H<u>C</u>=C_q); 81.2 (HC=<u>C_q</u>); 123.8 (SCH₂<u>C</u>H); 124.2 (SCH₂<u>C</u>H); 126.5 (2x C_q<u>C</u>H_{arom. ortho}); 126.6 (2x C_q<u>C</u>H_{arom. ortho}); 127.7 (CH_{arom. para}); 128.1 (CH_{arom. para}); 128.7 (2x CH_{arom. meta}); 128.7 (2x CH_{arom. meta}); 123.7 (CH=<u>C</u>HC_q); 134.2 (CH=<u>C</u>HC_q); 136.4 (C_{q, arom.}); 136.9 (C_{q, arom.}); 169.2 (NCS₂). MS (ESI): m/z (%): 364 (M + H⁺, 100). HRMS (ESI): m/z calcd for C₂₂H₂₁NS₂ – H⁺= 362.1037, found =362.1045. IR (cm⁻¹) vmax: 1566 (N=CS₂); 1672 (CH_{arom.}); 3288 (C=CH). Chromatography: Hex/EtOAc 98/2 Rf = 0.20. Y: 81%.

General procedure 2: synthesis of dihydrothiazoles 9a-9f

In a dry 25 ml flask under inert atmosphere, dithiocarboimidate **7** is dissolved in dry dichloromethane. Subsequently 0.05 equivalents of $AuCl_3$ is added and the reaction is stirred at room temperature for 15 minutes. The reaction mixture is filtered over a small plug of silica gel and after evaporation of the volatiles, dihydrothiazoles **9** are obtained.

(E)-2-(thioallyl)-5-(but-3-enylidene)-4,5-dihydrothiazole 9a

¹**H-NMR (300MHz, CDCl₃): δ** 2.76 (2H, dd, J=7.7Hz, J=6.1Hz, HCC<u>H</u>₂CH); 3.76 (2H, d, J=6.6Hz, SCH₂); 4.83 (2H, ~d, J=3.0Hz, NCH₂); 5.01 (1H, ~dd, J=9.9Hz, J=1.1Hz, CHCH₂CH=C<u>H</u>_EH_Z); 5.06 (1H, ~dd, J=17.1Hz, J=1.1Hz, CHCH₂CH=C<u>H</u>_EH_Z); 5.15 (1H, dd, J=9.9Hz, J=1.1Hz, SCH₂CH=C<u>H</u>_EH_Z); 5.28

(1H, dd, J=17.1, J=1.1Hz, SCH₂CH=CH_E<u>H</u>_Z); 5.50 (1H, tt, J=7.7Hz, J=3.0Hz, C_q=CH); 5.76 (1H, ddt, J=17.1Hz, J=9.9Hz, J=6.1Hz, C_qCHCH₂C<u>H</u>); 5.93 (1H, ddt, J=17.1Hz, J=9.9Hz, J=6.6Hz, SCH₂C<u>H</u>). ¹³C-NMR (75MHz, CDCl₃): δ 34.3 (HC<u>C</u>H₂CH); 34.7 (SCH₂); 67.1 (NCH₂); 115.6 (CH=<u>C</u>H₂); 116.1 (C_q=<u>C</u>H); 118.7 (SCH₂CH=<u>C</u>H₂); 132.7 (SCH₂CH); 135.0 (HCCH₂CH=CH₂); 139.8 (SC_qCH₂); 163.1 (NC_qS₂). MS (ESI): m/z (%): 212 (M + H⁺, 100). HRMS (ESI): m/z calcd for C₁₀H₁₃NS₂+ H⁺ = 212.0567, found =212.0564. IR (cm⁻¹) vmax: 1573 (N=CS₂); 1637 (HC=CH₂). Y: 92%.

(E)-2-(thio-2-methylallyl)-5-(3-methylbut-3-enylidene)-4,5-dihydrothiazole 9b

¹H-NMR (**300MHz**, **CDCl**₃): δ 1.73 (3H, s, CH₃); 1.84 (3H, s, CH₃); 2.71 (2H, d, J=7.7Hz, CHC<u>H</u>₂); 3.79 (2H, s, SCH₂); 4.72 (1H, s, CHCH₂C_q=CH_a<u>H</u>_b); 4.74 (1H, s, CHCH₂C_q=C<u>H</u>_aH_b); 4.85 (2H, ~d, J=3.0Hz, NCH₂); 4.91 (1H, s, SCH₂C_qCH_a<u>H</u>_b); 5.02 (1H, s, SCH₂C_qC<u>H</u>_aH_b); 5.54 (1H, tt, J=7.7Hz, J=3.0Hz, SC_q=CH). ¹³C-NMR (**75MHz**, **CDCl**₃): δ 21.5 (CH₃); 22.5 (CH₃); 38.6

 $(CH\underline{C}H_2)$; 38.8 (SCH₂); 66.9 (NCH₂); 111.1 (C_q=<u>C</u>H₂); 114.9 (C_q=<u>C</u>H₂); 116.6 (C_q=<u>C</u>HCH₂); 139.7 (<u>C_q</u>=CH₂); 140.2 (<u>C_q</u>=CH₂); 143.1 (S<u>C_q</u>=CH); 163.8 (NC_qS₂). **MS (ESI): m/z (%):** 240 (M + H⁺, 100). **HRMS (ESI):** m/z calcd for C₁₂H₁₇NS₂+ H⁺ = 240.0881, found =240.0875. **IR (cm⁻¹) vmax:** 1575 (N=CS₂); 1651 (C=CH₂). **Y:** 93%.

(5*E*)-2-(thiobut-2-enyl)-5-(2-methylbut-3-enylidene)-4,5-dihydrothiazole 9c

¹**H-NMR (300MHz, CDCl₃): δ** 1.10 (3H, d, J=6.6Hz, CHC<u>H</u>₃); 1.69 (3H, 2x d, J=6.0Hz, CH₂CH=CHC<u>H</u>₃, E and Z); 2.89 (1H, m, C_q=CHC<u>H</u>CH₃); 3.72 (2H, d, J=6.6Hz, SCH₂, E); 3.80 (2H, d, J=7.7Hz, SCH₂, Z); 4.85 (2H, m, NCH₂); 5.34 (1H, dt, J=9.4Hz, J=3.0Hz, C_q=C<u>H</u>); 5.50-5.75 (3H, m,

C<u>H</u>=C<u>H</u>, C<u>H</u>=CH₂). ¹³C-NMR (75MHz, CDCl₃): δ 13.0 (CH₂CH=CH<u>C</u>_zH₃); 17.9 (CH₂CH=CH<u>C</u>_EH₃); 20.3 (C_q=CHCH<u>C</u>H₃); 28.8 (S<u>C</u>H₂, Z); 34.2 (S<u>C</u>H₂, E); 39.3 (C_q=CH<u>C</u>HCH₃); 66.9 (NCH₂); 113.2 (CH=<u>C</u>H₂); 122.3 (C_q=<u>C</u>H); 124.1 (=C_{Z,a}H); 125.2 (=C_{E,a}H); 129.1 (=C_{Z,b}H); 130.2 (=C_{E,b}H); 138.4 (S<u>C</u>_q=CH); 140.8 (<u>C</u>H=CH₂); 163.5 (NC_qS₂). **MS (ESI): m/z (%):** 240 (M + H⁺, 100). **HRMS (ESI):** m/z calcd for C₁₂H₁₇NS₂+ H⁺ = 240.0881, found = 240.0889. **IR (cm⁻¹) vmax:** 1570 (N=CS₂); 1637, 1667 (C=C). **Y:** 91%.

(E)-5-(2,2-dimethylbut-3-enylidene)-2-(thio-3-methylbut-2-enyl)-4,5-dihydrothiazole 9d

¹H-NMR (300MHz, CDCl₃): δ 1.16 (6H, s, C_q(CH₃)₂); 1.69 (3H, s, HC=C_qC<u>H₃</u>); 1.73 (3H, s, HC=C_qC<u>H₃</u>); 3.74 (2H, d, J=7.7Hz, SCH₂); 4.83 (2H, d, J=3.0Hz, NCH₂); 5.01 (1H, d, J=17.6Hz, CH=CH_E<u>H</u>_z); 5.05 (1H, d, J=9.9Hz, CH=CH_EH_z); 5.30 (1H, t, 7.7Hz, SCH₂CH); 5.50 (1H, t, J=3.0Hz,

SC_q=CH); 5.82 (1H, dd, J=17.6Hz, J=9.9Hz; C_qC<u>H</u>=CH₂). ¹³C-NMR (75MHz, CDCl₃): δ 17.9 (HC=C_qCH₃); 25.8 (HC=C_qCH₃); 27.6 (HCC_q(CH₃)₂); 30.3 (SCH₂); 40.1 (C_q(CH)₂); 66.4 (NCH₂); 111.4 (HC=CH₂); 118.0 (SCH₂CH); 126.6 (SC_q=CH); 137.9 (HC=C_q(CH₃)₂); 139.4 (SC_q=CH); 145.2 (HC=CH₂); 163.2 (NC_qS₂). MS (ESI): m/z (%): 268 (M + H⁺, 100). HRMS (ESI): m/z calcd for C₁₄H₂₁NS₂ + H⁺= 268.1194, found = 268.1189. IR (cm⁻¹) vmax: 1572 (N=CS₂); 1633, 1670 (C=C). Y: 92%.

(E)-2-(thio-2-bromoallyl)-5-(3-bromo-but-3-enylidene)-4,5-dihydrothiazole 9e

An analytically pure sample can be obtained only through three consecutive chromatographic steps. In this case, yield drops considerably to 51%.

¹H-NMR (**300**MHz, CDCl₃): δ 3.15 (2H, d, J=7.7Hz, CHCH₂); 4.12 (2H, s, SCH₂); 4.85 (2H, m, NCH₂); 5.43 (1H, d, J=1.8 Hz, C_q=CH_aH_b); 5.51-5.55 (1H, m, SC_q=CH); 5.56 (1H, d, J=1.8 Hz, C_q=CH_aH_b); 5.63 (1H, d, J=1.8 Hz, C_q=CH_aH_b); 5.95 (1H, d, J=1.8 Hz, C_q=CH_aH_b). ¹³C-NMR (75MHz, CDCl₃): δ 41.2 (CHCH₂); 42.1 (SCH₂); 67.1 (NCH₂); 114.4 (C_q=CH₂);

117.5 ($C_q = \underline{C}H_2$); 120.4 ($C_q = \underline{C}HCH_2$); 127.3 ($\underline{C}_q = CH_2$); 130.7 ($\underline{C}_q = CH_2$); 142.4 ($S\underline{C}_q = CH$); 162.1 (NC_qS_2). **MS** (**ESI**): **m/z** (%): 368 (M + H⁺, 45); 370 (M + H⁺, 100); 372 (M + H⁺, 55). **HRMS (ESI)**: **m**/z calcd for $C_{10}H_{11}Br_2NS_2 + H^+ = 369.8757$, found =369.8762. **IR (cm⁻¹) vmax**: 1570 (N=CS₂); 1631 (C=CH₂). **Chromatography**: PE/EtOAc 95/5 Rf = 0.21. **Y**: quant, purity 85%.

(E)-2-(cinnamylthio)-5-(2-fenylbut-3-enylidene)-4,5-dihydrothiazole 9f

¹H-NMR (**300**MHz, **CDCl**₃): δ 3.94 (2H, d, J=7.2Hz, SCH₂); 4.05 (1H, m, CHC<u>H</u>CH=CH₂); 4.91 (2H, m, NCH₂); 5.13 (1H, d, J=17.6Hz, CH=CH_E<u>H</u>_z); 5.13 (1H, d, J=9.9Hz, CH=C<u>H</u>_EH_z); 5.70 (1H, dt, J=9.4Hz, J=3.0Hz, SC_q=CH); 5.94 (1H, ddd, J=17.6Hz, J=9.9Hz, J=6.6Hz, CHC<u>H</u>=CH₂); 6.29 (1H, dt, J=15.6Hz, J=7.2Hz, SCH₂C<u>H</u>); 6.60 (1H, d, 15.6Hz, CH₂C<u>H</u>=CH); 7.20-7.38 (10H, m, CH_{arom}.). ¹³C-NMR (75MHz, CDCl₃): δ 34.6 (SCH₂); 50.5 (CH₂=CH<u>C</u>H); 67.2

 $(NCH_{2}); 115.4 (CHCH=\underline{C}H_{2}); 120.0 (SC_{q}\underline{C}H); 123.9 (SCH_{2}\underline{C}H); 126.6 (2x CH_{arom. ortho}); 126.7 (CH_{arom. para}); 127.6 (2x CH_{arom. meta}); 128.0 (CH_{arom. para}); 128.7 (2x CH_{arom. ortho}); 128.9 (2x CH_{arom. meta}); 133.9 (SCH_{2}CH=\underline{C}H); 136.6 (C_{q}); 138.8 (CH\underline{C}H=CH_{2}); 139.9 (C_{q}); 142.2 (C_{q}); 163.4 (NC_{q}S_{2}). MS (ESI): m/z (%): 364 (M + H^{+}, 100). HRMS (ESI): m/z calcd for C_{22}H_{21}NS_{2} + H^{+}= 364.1193, found = 364.1185. IR (cm⁻¹) vmax: 1573 (N=CS_{2}); 1670 (C=C). Chromatography: PE/EtOAc 98/2 Rf = 0.29. Y: 74%.$

