Supplementary Information

Optimizing dirhodium(II) tetrakiscarboxylates as chiral NMR auxiliaries

Jens T. Mattiza^a, Joerg G. G. Fohrer^a, Helmut Duddeck^{a,*}, Michael G. Gardiner^b and Ashraf Ghanem^c

Scheme 3 Structures of the dirhodium tetracarboxylate complexes and the ligands investigated.

Experimental Complete spectral data sets of the dirhodium complexes (for their structures see Scheme 1).

Table S1Spectral data of the ligands.

Tables S2a – S2e NMR spectral data of the dirhodium complexe – ligand adducts (for their structures see Scheme 1).

Table S3 X-ray data and ORTEP plot of the bis(methanol) adduct of N2tL.

NMR Spectra Eleven ¹H and eleven ¹³C NMR spectra of 1:1-adducts and ligands.

Experimental

For details on NMR measurements see original manuscript. IR spectra were recorded on a Bruker Vector 22 spectrometer without solvent. Specific rotations $[\alpha]_D^{20}$ at 589 nm were measured in methanol or chloroform at room temperature; concentrations (in g/ml) are given in parentheses. Mass spectrometry of the dirhodium complexes using a Micromass LCT (ESI mode) was not successful. Complete spectral data sets are given in the following for those dirhodium complexes unreported hitherto (see structures in Scheme 3):

Dirhodium(II) tetrakis[N-p-toluenesulfonyl-(R)-alaninate] (TsA)

Yield: 35 %. ¹H NMR recorded in CDCl₃ (ppm): $\delta = 1.27$ (d, 12H, H-3, ³*J*_{HH} = 7.3 Hz); 2.36 (s, 12H, H-8); 3.71 (q, 4H, H-2, ³*J*_{HH} = 7.3 R = Hz); 7.34 (dd, 8H, H-6/6'), 7.73 (m, 8H, H-5/5'). ¹³C NMR recorded in CDCl₃ (ppm): $\delta = 20.2$ (CH₃, C-3); 21.5 (CH₃, C-8); 53.7 (CH, C-

2); 128.3 (CH, C-5/5'); 130.7 (CH, C-6/6'); 139.3 (C, C-4); 143.7 (C, C-7); 192.8 (CO₂, C-1). IR (solid, cm⁻¹): $\tilde{\nu} = 3035$, 2978, 1741, 1705, 1621, 1378, 1154, 1075, 717, 696. $[\alpha]_D^{20} = -16.7$ (MeOH, c = 0.004).

Dirhodium(II) tetrakis[*N-p*-toluenesulfonyl-(*S*)-phenylalaninate] (TsPA)

Yield: 51 %. ¹H NMR recorded in CDCl₃ (ppm): $\delta = 2.32$ (s, 12H, H-12); 2.70 (ddd, 8H, H-3, ² $J_{HH} = 14.2$ Hz, ³ $J_{HH} = 9.3$ Hz, ³ $J_{HH} = 4.5$ Hz); 3.73 (dd, 4H, H-2, ³ $J_{HH} = 9.3$ Hz, ³ $J_{HH} = 4.5$ Hz); 6.98 (m, 8H, H-10/10°), 7.09 (m, 20H, H-5/5′/6/6′/7); 7.26 (m, 8H, H-9/9′). ¹³C NMR recorded in CDCl₃ (ppm): $\delta = 21.6$ (CH₃, C-12); 40.4

(CH₂, C-3); 59.7 (CH, C-2); 127.5 (CH, C-7); 127.8 (CH, C-9/9'); 129.3 (CH, C-5/5'); 130.5 (CH, C-6/6'); 130.6 (CH, C-10/10'); 138.6 (C, C-8); 139.3 (C, C-4); 144.2 (C, C-11); 191.8 (CO₂, C-1). IR (solid, cm⁻¹): $\tilde{\nu} = 3050, 2925, 2362, 2348, 1585, 1403, 1324, 1155, 1091, 812, 699, 665. [\alpha]_D^{20} = -44.61$ (MeOH, c = 0.0023).

Dirhodium(II) tetrakis[3-(*N-p*-toluenesulfonyl)-(*S*)-tryptophanate] (TsTp)

Yield: 24 %. ¹H NMR recorded in CDCl₃ (ppm): δ = 2.27 (s, 12H, H-16); 3.10 (ddd, 8H, H-3, ²*J*_{HH} = 14.6 Hz, ³*J*_{HH} = 8.2 Hz, ³*J*_{HH} = 4.4 Hz); 3.88 (dd, 4H, H-2, ³*J*_{HH} = 8.2 Hz, ³*J*_{HH} = 4.4 Hz); 6.89 (m 4H, H-9); 6.96 (dd, 8H, H-14/14'); 6.98 (s 4H, H-5); 7.03 (m, 4H, H-8), 7.24 (m, 4H, H-7); 7.34 (dd, 8H, H-13/13'), 7.44 (m, 4H, H-

10). ¹³C NMR recorded in CDCl₃ (ppm): $\delta = 21.6$ (CH₃, C-16); 30.3 (CH₂, C-3); 59.8 (CH, C-2); 111.5 (C, C-4); 112.2 (CH, C-7); 119.6 (CH, C-9); 119.7 (CH, C-10); 122.1 (CH, C-8); 124.8 (CH, C-5); 127.8 (CH, C-13/13'); 128.9 (CH, C-11); 130.2 (C, C-14/14'); 138.0 (C, C-6); 138.5 (C, C-12); 144.1 (C, C-15); 188.7 (CO₂, C-1). IR (solid, cm⁻¹): $\tilde{\nu} = 3054$, 2915, 2358, 2343, 1601, 1399, 1322, 1153, 1090, 812, 741, 664. [α]_D²⁰ = -95.6 (CHCl₃, c = 0.0046).

Dirhodium(II) tetrakis[N-phthaloyl-(S)-alaninate] (PA)

Yield: 59 %. ¹H NMR recorded in CDCl₃ (ppm): $\delta = 1.54$ (s, 12H, H-3, ³ $J_{HH} = 7.2$ Hz); 5.09 (q, 4H, H-2, ³ $J_{HH} = 7.2$ Hz); 7.62 (m, 8H, H-7/7'); 7.77 (m, 8H, H-6/6'). ¹³C NMR recorded in CDCl₃ (ppm): $\delta = 15.9$ (CH₃, C-3); 48.6 (CH, C-2); 123.3 (CH, C-6/6'); 131.9 (CH, C-7/7'); 133.7 (C, C-5/5'); 167.2 (C=O, C-4/4'); 188.5 (CO₂, C-1). IR (solid, cm⁻¹): $\tilde{\Psi} = 3102$, 2933, 2357, 1777, 1708, 1604, 1385, 1344, 1082, 883, 717. $[\alpha]_D^{20} = +48.9$ (MeOH, c = 0.006).

Dirhodium(II) tetrakis[N-phthaloyl-(R)-phenylglycinate] (PPG)

Yield: 48 %. ¹H NMR recorded in CDCl₃ (ppm): $\delta = 5.55$ (s, 4H, H-2); 7.14 (m, 8H, H-4/4'); 7.22 (m, 8H, H-5/5'), 7.46 (m, 4H, H-6); 7.62 (m, 8H, H-10/10'); 7.77 (m, 8H, H-9/9'). ¹³C NMR recorded in CDCl₃ (ppm): $\delta = 56.7$ (CH, C-2); 123.4 (CH, C-9/9'); 127.9 (C, C-6); 128.2 (CH, C-4/4'); 129.8 (CH, C-5/5'); 131.9 (CH, C-10/10'); 133.9 (C, C-8/8'); 135.9 (C, C-3); 166.9 (C=O, C-7/7'); 186.7 (CO₂, C-1). IR (solid, cm⁻¹): $\tilde{\nu} =$ 3012, 2919, 1770, 1713, 1610, 1378, 1110, 1075, 717, 696. $[\alpha]_D^{20} = +672.7$ (CHCl₃, c = 0.0073).

Yield: 94 %. ¹H NMR recorded in CDCl₃ (ppm): $\delta = 0.98$ (s, 36H, H-4); 2.82 (s, 16H, H-6/6'); 4.49 (s, 4H, H-2). ¹³C NMR recorded in CDCl₃ (ppm): $\delta = 28.4$ (CH₃, C-4); 31.9 (CH₂, C-6/6'); 35.9 (C, C-3); 61.6 (CH, C-2); 177.2 (C=O, C-5/5'); 186.4 (CO₂, C-1). IR (solid, $\tilde{\nu}$ in cm⁻¹): 2961, 2363, 1703, 1610, 1379, 1346, 1172, 769, 657. [α]_D²⁰ = +116.1 (MeOH, c = 0.0031).

Dirhodium(II) tetrakis[N-maleinyl-(S)-tert-leucinate] (MtL)

Yield: 78 %. ¹H NMR recorded in CDCl₃ (ppm): $\delta = 0.99$ (s, 36H, H-4); 4.54 (s, 4H, H-2), 7.37 (s, 8H, H-6/6'). ¹³C NMR recorded in CDCl₃ (ppm): $\delta = 27.8$ (CH₃, C-4); 35.3 (C, C-3); 61.3 (CH, C-2); 133.3 (CH, C-6/6'); 170.4 (C=O, C- R = 5/5'); 187.3 (CO₂, C-1). IR (solid, cm⁻¹): $\tilde{\nu} = 2959$, 2360, 1712, 1689, 1607, 1398, 1155, 830, 698. [α]_D²⁰ = -129.0 (MeOH, c = 0.0031).

Dirhodium(II) tetrakis[(S)-N-naphthalene-2,3-dicarboxyl-*tert*.-leucinate] (N23tL)

Yield: 79 %. ¹H NMR recorded in CDCl₃ (ppm): $\delta = 1.20$ (s, 36H, H-4); 5.04 (s, 4H, H-2), 7.61 (m, 8H, H-10/10'); 7.97 (s, 8H, H-9/9'); 8.26 (s, 8H, H-7/7'). ¹³C NMR recorded in CDCl₃ (ppm): $\delta = 28.0$ R = $-\frac{2}{C}$ ($-\frac{1}{2}$ (CH₃, C-4); 35.8 (C, C-3); 61.7 (CH, C-2); 124.6 (CH, C-10/10'); 127.8 (CH, C-9/9'); 128.7 (CH, C-7/7'); 130.2 (CH, C-6/6'); 135.5 (C, C-8/8'); 173.5 (C=O, C-5/5'); 187.2 (CO₂, C-1). IR (solid, cm⁻¹): Ψ = 3112, 2978, 2334, 1710, 1606, 1365, 1341, 773, 659. [α]_D²⁰ = -221.6 (MeOH, c = 0.0037).

Dirhodium(II) tetrakis[(S)-N-naphthalene-1,8-dicarboxyl-*tert*.-leucinate] (N18tL)

Yield: 75 %. ¹H NMR recorded in CDCl₃ (ppm): $\delta = 1.29$ (s, 36H, H-4); 5.83 (s, 4H, H-2), 7.58 (t, 4H, H-9); 7.84 (t, 4H, H-11); 8.04 (dd, 8H, H-8/12); 8.45 (d, 4H, H-13); 8.73 (d, 4H, H-7). ¹³C NMR recorded in CDCl₃ R = (ppm): $\delta = 28.9$ (CH₃, C-4); 36.2 (C, C-3); 61.9 (CH, C-2); 122.8 (C, C-6/14); 126.3 (C, C-15); 127.3 (CH, C-12); 127.9 (CH, C-8); 130.8 (CH, C-11); 130.8 (C, C-10); 131.2 (CH, C-9); 133.2 (CH, C-13); 133.5 (CH,

C-7); 163.0 (C=O, C-16); 164.7 (C=O, C-5); 187.2 (CO₂, C-1). IR (solid, cm⁻¹): $\vec{v} = 3010, 2920, 1705, 1663, 1604, 1588, 1397, 1375, 1338, 1237, 787, 777. [\alpha]_D^{20} = +92.5$ (CHCl₃, c = 0.004).

Note: in contrast to all other complexes, diastereotopic nuclei in the naphthyl residue are not isochronous pairwise. Here, local symmetry is no longer dominant for the chemical shifts of ¹H and ¹³C.

Dirhodium(II) tetrakis[N-2,3-anthracenedicarboxyl-(S)-tert-leucinate] (AtL)

Yield: 73 %. ¹H NMR recorded in CDCl₃ (ppm): δ = 1.27 (s, 36H, H-4); 4.88 (s, 4H, H-2), 7.21 (m, 8H, H-12/12'); 7.63 (s, 8H, H-11/11'); 8.05 (m, 8H, H-9/9'); 8.50 (m, 8H, H-7/7'). ¹³C NMR re- R = corded in CDCl₃ (ppm): δ = 28.4 (CH₃, C-4); 36.1 (C, C-3); 60.6 (CH, C-2); 125.3 (CH, C-12/12'); 125.8 (CH, C-9/9'); 126.3 (CH, C-7/7'); 127.3 (CH, C-11/11'); 128.3 (CH, C-6/6'); 129.1 (CH, C-8/8'); 133.0 (CH, C-10/10'); 178.4 (C=O, C-5/5'); δ = 188.1 (CO₂, C

C-8/8'); 133.0 (CH, C-10/10'); 178.4 (C=O, C-5/5'); $\delta = 188.1$ (CO₂, C-1). IR (solid, cm⁻¹): $\tilde{\psi} = 3010$, 2925, 1769, 1709, 1609,1365, 1337, 1133, 917, 741. [α]_D²⁰ = -1011.5 (CHCl₃, c = 0.0026).

Table S1 1 H / 13 C chemical shifts of the ligands 2-butyldiphenylphosphane (**P**), 2-butylphenyl-selenide (Se), 2-butylphenylsulfide (S), 2-butylphenylether (**O**) and 2-butyl acetate (C=O); in CDCl₃.

Atom #	1	2	3 ^a	4	ipso	ortho	meta	para
P ^b	1.03/15.6	2.23/31.8	1.24, 1.57/26.0	0.98/12.1	- /137.4	7.48/133.4	7.31/128.2	7.31/128.5
Se	1.40/21.6	3.24/41.5	1.61, 1.71/30.4	1.00/12.3	- /127.2	7.54/134.8	7.26/128.8	7.26/129.5
S	1.27/20.5	3.15/44.8	1.53, 1.66/29.4	1.00/11.4	-/135.5	7.39/128.7	7.27/131.8	7.20/126.5
0	1.29/19.3	4.29/74.9	1.60, 1.75/29.2	0.98/9.8	-/158.2	7.26/115.9	6.90/129.4	6.90/120.4
	1	2	3	4	CH_3	C=O		
C=O	1.20/19.4	4.83/72.2	1.57/28.8	0.90/9.7	2.03/21.3	170.8		

^a Diastereotopic protons; no stereochemical assignment.

^b Separate consistent data sets for each diastereotopic phenyl group but no stereochemical assignment.

Table S2a ¹ H a	nd ¹³ C complexations shifts $\Delta\delta$ / diastereomeric dispersion effects $\Delta\nu$ (integers in
Hz) of 2-butyldip	bhenylphosphane (P) in the presence of an equimolar amount of dirhodium tetra-
carboxylate comp	plexes, in CDCl ₃ , recorded at 9.4 Tesla (400.1 MHz ¹ H, 100.6 MHz ¹³ C). ^a

Atom #		1	2	3 ^b	4	ipso	ortho	meta	para
Rh*	¹ H	0.26 / 7	0.79 / 0	0.07 / 0 0.66 / 0	-0.03 / 6	-	0.21 / 44	n.d ^c / n.d. ^c	0.04 / 0
	¹³ C	-2.2 / 0	-1.0 / 3	-2.1 / 0	0.2 / 10	-8.8 / 0 -8.8 / 0	0.5 / 9 0.5 / 9	n.d. ^c n.d. ^c	1.4 / 13 1.5 / 9
ΜαΝΡ	^{1}H				coal ^d	<u> </u>			
	¹³ C				coal -				
PtL	^{1}H				coal -				
PtL	¹³ C				coal -				
TsA	¹ H	0.12 / 17	0.83 / 0	0.07 / 0 -0.11 / 0	0.03 / 37	-	0.31 / 0	0.15 / 0	0.21 / 0
	¹³ C	-2.3 / 0	-1.3 / 7	-2.1 / 0	0.6 / 6	-3.6 / 0	-3.3 / 2	0.2 / 3	2.6 / 0
						-3.5 / 3	-3.6 / 2	0.4 / 3	2.4 / 0
TsPA	^{1}H				coal ·				
	¹³ C				coal ·				
TsTp	^{1}H				coal ·				
	¹³ C				coal -				
ΡΑ	¹ H	-0.53 / 35	-0.10 / 13	-0.54 / 11 -0.04 / 0	-0.64 / 36	-	-0.38 / 0	-0.51 / 0	-0.21 / 0
	¹³ C	-3.4 / 0	-1.2 / 0	-3.0 / 0	-0.1 / 6	-3.9 / 0 -3.9 / 0	-0.9 / 8 -1.2 / 8	0.5 / 0 0.3 / 0	0.6 / 2 0.7 / 0
PPG	^{1}H				coal ·				
	¹³ C				coal ·				
StL	^{1}H				coal ·				
	¹³ C				coal -				
MtL	¹ H	-0.28 / 3	0.06 / 0	-0.20 / 0 -0.03 / 0	-0.16 / 0	-	-0.16 / 0	-0.15 / 0	-0.10 / 0
	¹³ C	-2.4 / 0	0.2 / 4	-2.9 / 0	0.8 / 0	-3.8 / 0	-1.0 / 0	-0.1 / 0	0.5 / 0
						-3.8 / 0	-1.0 / 0	0 / 0	0.5 / 0
N23tL	¹ H	-1.06 / 86	-0.85 / 0	-0.84 / 135 -0.74 / 0	-1.46 / 117	-	-0.88 / 65	-1.10 / 9	-0.81 / 0
	¹³ C	-3.4 / 0	-0.7 / 14	-3.3 / 0	-0.8 / 31	-4.7 / 0 -4.8 / 0	-1.7 / 0 -2.5 / 0	-1.4 / 39 -1.9 / 39	-0.2 / 3 -0.7 / 2
N18tL	¹ H	-1.40 / 82	-1.09 / 0	-1.40 / 47 -1.06 / 117	-1.94 / 56	-	-1.13 / 18	-0.63 / 46	-2.06 / 197
	¹³ C	-3.7 / 41	-1.3 / 120	-0.5 / 3	-1.6 / 10	n.d. ^c n.d. ^c	-2.4 / 6 -2.2 / 6	-2.6 / 17 -2.8 / 17	1.5 / 0 1.6 / 0
AtL	^{1}H				coal -				
	¹³ C				coal -				

^a Separate data sets for the diastereotopic phenyl groups; no stereochemical assignment.

^b Diastereotopic protons; no stereochemical assignment.

^c Not detectable, n.d., due to signal complexity or overlap.

^d Not detectable at room temperature due to signal broadening by coalescence (coal).

Table S2b	Complexations shifts $\Delta\delta$ / diastereomeric dispersion effects Δv (integers in Hz) of
2-butylphen	ylselenide (Se) in the presence of an equimolar amount of dirhodium tetracarboxylate
complexes,	in CDCl ₃ , recorded at 9.4 Tesla (400 MHz 1 H, 100.6 MHz 13 C).

Atom #		1	2	3 ^a	4	ipso	ortho	meta	para
Rh*	¹ H	0.10 / 2	0.63 / 2	0.24 / 0 0.27 / 1	-0.02 / 4	-	0.26 / 1	-0.09 / 0	0.05 / 0
	¹³ C	-2.9 / 8	4.5 / 0	-1.9 / 2	-0.6 / 3	-1.1 / 0	0 / 0	0.2 / 0	-0.1 / 0
ΜαΝΡ	¹ H	-0.44 / 11	-0.16 / 0	0 / 0 0 / 0	-0.26 / 15	-	-0.56 / 0	-0.19 / 0	-0.19 / 0
	¹³ C	-3.3 / 10	3.2 / 8	-2.1 / 11	-0.6 / 13	n.d. ^b	0.1 / 6	-0.8 /3	n.d. ^b
PtL	¹ H	-1.17 / 49	-0.91 / 45	-0.68 / 0 -0.91 / 40	-0.95 / 22	-	-0.66 / 0	-0.72 / 14	-0.52 / 7
	¹³ C	-3.1 / 18	4.2 / 53	1.2 / 0	-0.5 / 14	n.d. ^b	-0.8 / 0	-1.0 / 5	-1.7 / 5
TsA	¹ H	0.20 / 7	0.72 / 0	0.11 / 0 0.13 / 0	0.13 / 2	-	0.32 / 0	0.18 / 0	0.18 / 0
	¹³ C	-2.7 / 5	4.0 / 10	-1.7 / 7	-0.4 / 13	-0.7 / 0	-0.1 / 3	0.4 / 0	-2.2 / 6
TsPA	¹ H	0.21 / 27	0.84 / 0	0.24 / 0 0.42 / 0	0.12 / 9	-	0.33 / 0	-0.56 / 0	-0.56 / 0
	¹³ C	-2.5 / 6	3.4 / 13	-1.6 / 8	-0.5 / 18	1.4 / 0	0.2 / 0	0.8 / 0	n.d ^b / n.d ^b
TsTp	^{1}H				coa	°			
	¹³ C				coa	°			
ΡΑ	¹ H	-0.60 / 13	-0.15 / 0	-0.31 / 0 -0.51 / 0	-0.20 / 16	-	-0.05 / 11	-0.26 / 0	-0.26 / 0
	¹³ C	-3.1 / 6	3.7 / 0	-2.0 / 33	-0.4 / 6	-0.4 / 18	0.2 / 21	-0.6 / 6	-1.4 / 6
PPG	^{1}H				coa	°			
	¹³ C				coa	c			
StL	¹ H	-0.08 / 34	0.10 / 24	-0.04 / 18 0.08 / 0	0.03 / 0	-	0.22 / 0	0.08 / 0	0.14 / 0
	¹³ C	-2.1 / 25	4.3 / 51	-1.4 / 25	0.4 / 17	-0.5 / 31	1.0 / 10	0.1/3	-0.5 / 8
MtL	¹ H	-0.08 / 32	0.15 / 13	-0.05 / 10 0 / 0	-0.01 / 14	-	0.22 / 0	0.03 / 0	0.03 / 0
	¹³ C	-1.5 / 2	3.4 / 17	-1.1 / 25	0.5 / 7	-0.3 / 13	-1.2 / 0	0/3	-1.1 / 5
N23tL	¹ H	-1.07 / 36	-0.85 / 59	-0.80 / 43 n.d ^b	-1.09 / 15	-	-0.44 / 0	-0.81 / 0	-0.28 / 0
	¹³ C	-2.5 / 0	3.3 / 17	-1.9 / 0	-0.6 / 32	0.1 / 3	0 / 6	-1.2 / 10	-1.6 / 0
N18tL	¹ H				coa	°			
	¹³ C				coa	°			
AtL	^{1}H				coa	lc			
	¹³ C				coa	l ^c			

^b Not detectable, n.d., due to signal complexity or overlap.

^c Not detectable at room temperature due to signal broadening by coalescence (coal).

Atom #		1	2	3 ^a	4	ipso	ortho	meta	para
Rh*	¹ H	0.18 / 5	0.61 / 0	0.13 / 0 0.44 / 0	0.01 / 4	-	0.39 / 0	n.d. ^b	0.10 / 0
	¹³ C	-2.5 / 11	3.4 / 7	-1.8 / 4	-0.3 / 11	-6.1 / 0	0.1 / 1	2.3/3	2.6 / 0
ΜαΝΡ	¹ H	-0.52 / 6	-1.69 / 7	-0.67 / 0 -0.47 / 0	-0.33 / 23	-	n.d.	-0.06 / 0	0.28 / 0
	¹³ C	-3.5 / 6	2.1/0	-2.4 / 5	-0.7 / 9	-6.5 / 0	-0.7 / 12	1.3 / 25	4.1/0
PtL	¹ H	-1.09 / 39	-0.93 / 32	-0.93 / 0 -1.22 / 43	-0.94 / 17	-	-0.59 / 0	-0.82 / 0	-0.59 / 31
	¹³ C	-2.9 / 21	3.4 / 55	-2.3 / 52	-1.0 / 25	-2.2 / 0	-0.9 / 8	-4.5 / 6	2.7 / 0
TsA	¹ H	0.24 / 6	0.70 / 0	0.21 / 3 0.39 / 4	0.13 / 2	-	0.05 / 0	0.05 / 0	0.01 / 0
	¹³ C	-2.3 / 0	2.2 / 13	-1.6 / 0	-0.3 / 15	-2.3 / 7	0.1/3	-2.1 / 0	0 / 0
TsPA	¹ H	0.21 / 20	0.71/0	0.20 / 0 0.34 / 0	0.10 / 7	-	0.35 / 0	0.06 / 0	0.13 / 0
	¹³ C	-1.9 / 7	1.5 / 13	-1.2 / 0	-0.3 / 14	-2.2 / 0	0.1 / 0	-3.7 / 0	-0.1 / 0
TsTp	^{1}H				coa	al ^c			
	¹³ C				coa	al ^c			
ΡΑ	¹ H	-0.57 / 29	-0.19 / 0	-0.52 / 1 -0.30 / 1	-0.49 / 12	-	-0.04 / 0	-0.38 / 0	-0.24 / 0
	¹³ C	-3.1 / 7	3.1 / 17	-2.1 / 27	-0.4 / 14	-1.6 / 0	-0.9 / 0	-1.7 / 0	1.4 / 8
PPG	¹ H	-1.27 / 0	-0.31 / 0	-0.66 / 0 -0.74 / 0	-0.53 / 0	-	0.11 / 0	0.03 / 0	0.10 / 0
	¹³ C	-2.8 / 0	2.4 / 0	-2.0 / 0	-0.3 / 0	0.4 / 2	0.3 / 4	0.3 / 3	-0.3 / 0
StL	¹ H	0.03 / 19	0.15 / 14	0.03 / 13 0.17 / 11	0.08 / 3	-	0.40 / 0	0.11 / 0	0.18 / 0
	¹³ C	-1.3 / 11	4.0 / 35	-1.1 / 18	0.8 / 14	-0.3 / 21	-0.1 / 2	-0.8 / 5	2.3 / 5
MtL	¹ H	-0.08 / 22	-0.01 / 9	0.07 / 12 0.08 / 11	-0.01 / 6	-	0.26 / 0	0.08 / 0	0.15 / 0
	¹³ C	-1.2 / 6	3.3 / 9	-1.0 / 23	0.7 / 8	-0.5 / 0	-0.1 / 2	1.8 / 0	1.9 / 0
N23tL	¹ H	-0.96 / 38	-0.82 / 54	-0.74 / 65 n.d. ^b	-1.05 / 25	-	n.d. ^b	0.05 / 0	0.12 / 0
	¹³ C	-2.2 / 0	3.0 / 37	-2.1 / 53	-0.5 / 23	-1.5 / 4	-1.4 / 0	-4.4 / 0	1.5 / 0
N18tL	^{1}H				coa	al ^c ———			
	¹³ C				coa	al ^c ———			
AtL	¹ H	-0.66 / 46	-0.87 / 99	-0.47 / 0 -0.12 / 0	-0.82 / 27	-	0.28 / 0	-0.09 / 0	-0.09 / 0
	¹³ C	-1.6 / 4	2.6 / 29	-1.6 / 48	-0.2 / 21	-1.3 / 0	-1.2 / 5	-4.2 / 0	1.2 / 0

Table S2c Complexations shifts $\Delta\delta$ / diastereomeric dispersion effects $\Delta\nu$ (integers in Hz) of 2-butylphenylsulfide (**S**) in the presence of an equimolar amount of dirhodium tetracarboxylate complexes, in CDCl₃, recorded at 9.4 Tesla (400 MHz ¹H, 100.6 MHz ¹³C).

^b Not detectable, n.d., due to signal complexity or overlap.

^c Not detectable at room temperature due to signal broadening by coalescence (coal).

Table S2d	Complexations shifts $\Delta \delta$ / diastereomeric dispersion effects Δv (integers in Hz) of
2-butylphen	ylether (O) in the presence of an equimolar amount of dirhodium tetracarboxylate
complexes,	in CDCl ₃ , recorded at 9.4 Tesla (400 MHz ¹ H, 100.6 MHz ¹³ C).

Atom #		1	2	3ª	4	ipso	ortho	meta	para
Rh*	¹ H	0.01 / 0	0.02 / 0	0.02 / 0 0.02 / 0	-0.01 / 0	-	n.d. ^b	0.02 / 0	0.02 / 0
	¹³ C	0 / 0	0.6 / 4	0 / 1	0 / 1	0 / 1	0.4 / 0	0.1 / 2	0 / 1
ΜαΝΡ	¹ H	0/0	0.01 / 0	0.01 / 0 0 / 0	0 / 0	-	n.d.	0/3	0/3
	¹³ C	0 / 0	0 / 0	0 / 0	0 / 0	0 / 0	0 / 0	0 / 1	0 / 0
PtL	¹ H	-0.02 / 3	-0.01 / 4	-0.02 / 0 -0.02 / 0	-0.03 / 4	-	-0.37 / 0	0.33 / 0	-0.01 / 0
	¹³ C	0 / 1	0.3 / 15	-0.1 / 1	0 / 1	0/3	0.2 / 5	0 / 2	0 / 2
TsA	¹ H	0 / 0	0.01 / 0	0.02 / 0 0 / 0	0 / 0	-	0.01 / 0	0 / 0	0.03 / 0
	¹³ C	0 / 0	0 / 0	0 / 0	0 / 2	0 / 1	0 / 0	0 / 0	0 / 0
TsPA	¹ H	0 / 0	0.01 / 0	0.01 / 0 0 / 0	0 / 0	-	0.01 / 0	0/0	0 / 0
	¹³ C	0 / 0	0 / 0	0 / 0	0 / 0	0 / 0	0 / 0	0 / 0	0 / 0
TsTp	¹ H	0 / 0	0 / 0	0 / 0 0 / 0	0 / 0	-	0 / 0	0 / 0	0 / 0
	¹³ C	-0.1 / 0	-0.1 / 0	-0.1 / 0	-0.1 / 0	0 / 0	-0.1 / 0	-0.1 / 0	-0.1 / 0
ΡΑ	¹ H	0 / 1	0 / 0	0.06 / 0 0 / 0	-0.01 / 0	-	0.01 / 0	0 / 0	0 / 0
	¹³ C	0 / 0	0.1/3	0 / 0	0 / 0	0 / 1	0 / 1	0 / 0	0 / 1
PPG	¹ H	-0.01 / 0	-0.01 / 0	0.01 / 0 -0.01 / 0	-0.01 / 0	-	-0.12 / 0	-0.02 / 0	-0.02 / 0
	¹³ C	0 / 0	0.1/0	0 / 0	0 / 0	0 / 0	0 / 0	0 / 0	0 / 0
StL	¹ H	0.13 / 0	0.13 / 0	0.09 / 0 0.14 / 0	0.14 / 0	-	0.14 / 0	0.12/0	0.12 / 0
	¹³ C	0 / 0	-0.1 / 0	0 / 0	0 / 0	0 / 0	0 / 0	0 / 0	0 / 0
MtL	¹ H	0 / 0	0.01 / 0	0.02 / 0 0 / 0	0 / 0	-	0 / 0	0/0	0 / 0
	¹³ C	0 / 0	0 / 0	0 / 0	0 / 1	0 / 1	0 / 1	0/0	0 / 0
N23tL	¹ H	-0.02 / 6	-0.01 / 4	-0.01 / 6 -0.02 / 1	-0.03 / 3	-	0.05 / 5	-0.03 / 2	0.02/3
	¹³ C	0 / 0	0.2/9	-0.1 / 1	0 / 1	0/2	0.1/3	0 / 1	0 / 1
N18tL	¹ H	-0.02 / 3	-0.01 / 4	-0.01 / 2 -0.01 / 5	-0.02 / 4	-	0.01 / 0	0/0	0 / 0
	¹³ C	0 / 0	0.1 / 7	0 / 0	0 / 0	0 / 1	0/2	0 / 1	-0.1 / 0
AtL	¹ H	0/0	0.01 / 0	0.01 / 0 -0.01 / 0	0 / 0	-	0 / 0	-0.01 / 0	0.02 / 0
	¹³ C	0 / 0	0 / 0	0 / 0	0 / 1	0 / 1	0 / 1	0/2	0 / 0

^b Not detectable, n.d., due to signal complexity or overlap.

Atom #		1	2	3 ^a	4	CH₃	C=O
Rh*	^{1}H	0.05 / 2	0.18 / 6	0.05 / 1	0.01 / 1	0.13 / 1	-
	¹³ C	-0.1 / 1	1.1 / 1	0/0	0 / 0	0 / 0	2.7 / 0
ΜαΝΡ	¹ H	0 / 0	0/0	-0.01 / 0	0 / 0	0 / 0	-
	¹³ C	0 / 1	0.1/0	0/0	0 / 1	0 /0	0.2 / 1
PtL	¹ H	-0.04 / 6	-0.35 / 2	-0.05 / 2	-0.04 / 4	-0.01 / 2	-
	¹³ C	-0.1 / 3	0.4 / 2	-0.1 / 1	0 / 1	0 / 1	1.0 / 2
TsA	¹ H	0 / 0	0.01/0	-0.01 / 0	0.30 / 0	0.01 / 0	-
	¹³ C	0 / 0	0.1 / 0	0 / 0	0 / 0	0.1 / 0	0.2 / 0
TsPA	^{1}H	0 / 0	0.01 / 0	-0.01 / 0	0 / 0	0.01 / 0	-
	¹³ C	0 / 0	0.1/0	0/0	0 / 0	0 / 0	n.d. ^b
TsTp	^{1}H	0 / 0	0.01 / 0	-0.01 / 0	0 / 0	2.81/0	-
	¹³ C	0 / 0	0 / 0	0 / 0	0 / 0	0 / 0	0.1 /0
ΡΑ	¹ H	-0.54 / 31	-1.92 / 0	0.10/0	-0.40 / 4	-0.15 / 0	-
	¹³ C	-2.2 / 7	n.d. ^b	-1.5 / 36	-1.3 / 14	-0.3 / 0	0.6 / 0
PPG	¹ H	-0.05 / 0	0.02 / 0	-0.03 / 0	-0.03 / 0	-0.05 / 0	-
	¹³ C	-0.1 / 0	0.4 / 0	-0.1 / 1	-0.1 / 1	-0.1 / 0	1.2 / 0
StL	^{1}H	0 / 0	0 / 0	-0.01 / 0	-0.01 / 0	0.01 / 0	-
	¹³ C	0 / 0	0.1/0	0/0	0 / 1	0 / 1	0.1/0
MtL	^{1}H	0.02 / 0	0.02 / 0	0.01 / 0	0/0	0.02 / 0	-
	¹³ C	0 / 0	0.1/0	0 / 0	0 / 0	0.1 / 0	-0.4 / 0
N23tL	¹ H	-0.13 / 6	-0.07 / 0	-0.14 / 0	-0.13 / 7	-0.06 / 3	-
	¹³ C	-0.2 / 5	0.4 / 2	-0.2 / 2	-0.1 / 2	-0.1 / 0	1.1/2
N18tL	¹ H	-0.05 / 2	-0.04 / 0	-0.13 / 0	-0.05 / 2	-0.01 / 0	-
	¹³ C	-0.1 / 1	0.1 / 0	-0.1 / 0	0 / 1	0 / 0	0.4 / 0
AtL	¹ H	-0.01 / 0	0.04 / 0	-0.02 / 0	-0.01 / 0	0 / 0	-
	¹³ C	0 / 1	0 / 0	-0.5 / 0	0 / 1	0 / 1	0.1 / 1

Table S2e Complexations shifts $\Delta\delta$ / diastereomeric dispersion effects $\Delta\nu$ (integers in Hz) of 2-butylacetate (**C=O**) in the presence of an equimolar amount of dirhodium tetracarboxylate complexes, in CDCl₃, recorded at 9.4 Tesla (400 MHz ¹H, 100.6 MHz ¹³C).

^b Not detectable, n.d., due to signal complexity or overlap.

checkCIF/PLATON report

 Table S3
 X-ray data and ORTEP plot of the bis(methanol) adduct of N2tL.

No syntax errors four	nd. CIF dictionary	Interpreting this repor	t					
Datablock: d_14ag1x								
Bond precision:	C-C = 0.0063 A	Wavelengt	h=0.71067					
Cell:	a=28.965(14)	b=36.811(18)	c=15.395(16)					
	alpha=90	beta=90	gamma=90					
Temperature:	100 K							
	Calculated	Reported						
Volume	16415(20)	16415(20))					
Space group	P 21 21 2	P21212						
Hall group	P 2 2ab	P 2 2ab						
Moiety formula	4 (C74 H70 N4 O18 F 16 (C H3 O), 4 (C H3	(h2), 2(C74 H72), 13(0) 4.5(H2 0)	2 N4 O18 Rh2),), 10(C1 H4 O1)					
Sum formula	C316 H340 N16 0101	Rh8 C159 H21	5 N8 050.5 Rh4					
Mr	6801.34	3458.04						
Dx, g cm-3	1.376	1.399						
Z	2	4						
Mu (mm-1)	0.473	0.481						
F000	7032.0	7236.0						
F000'	7017.96							
h,k,lmax	36,46,19	36,44,18						
Nref	18907[35221]	33748						
Tmin,Tmax Tmin'								
Correction method= Not given								
Data completeness= 1.78/0.96 Theta(max) = 26.820								
R(reflections) =	0.0418(31041)	wR2(reflections)	= 0.1054(33748)					
S = 1.079	Npar= 2	058						

22

