CuAAC Synthesis of Resorcin[4]arene-based glycoclusters as multivalent ligands of lectins

Zahid H. Soomro,^{*a,b*} Samy Cecioni,^{*c,d*} Helen Blanchard,^{*e*} Jean-Pierre Praly,^{*c*} Anne Imberty,^{*d*} Sébastien Vidal,^{*sc*} Susan E. Matthews^{*a*}

^a School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK Fax 44 1603-592003; Tel: 44 1603 595986; E-mail: susan.matthews@uea.ac.uk

^b Institute of Materials and Research, Department of Metallurgy and Materials, Dawood Collge of Engineering and Technology, Karachi, Pakistan.

^c Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 – Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France. E-mail: sebastien.vidal@univ-lyon1.fr

^d CERMAV – CNRS, affiliated with Université Joseph Fourier and ICMG, BP 53, 38041, Grenoble, France. ^e Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222, Australia.

n

	Page
¹ H and ¹³ C NMR spectra for compound 3a	S2
¹ H and ¹³ C NMR spectra for compound 3b	S 3
ESI-MS spectra for compounds 3a and 3b	S4
¹ H and ¹³ C NMR spectra for compound $5a_G$	S 5
¹ H and ¹³ C NMR spectra for compound $\mathbf{5b}_{G}$	S6
¹ H and ¹³ C NMR spectra for compound $5a_L$	S7
¹ H and ¹³ C NMR spectra for compound $\mathbf{5b}_{L}$	S8
¹ H and ¹³ C NMR spectra for compound $6a_G$	S9
¹ H and ¹³ C NMR spectra for compound $\mathbf{6b}_{G}$	S10
¹ H and ¹³ C NMR spectra for compound $6a_L$	S11
¹ H and ¹³ C NMR spectra for compound $\mathbf{6b}_{\mathbf{L}}$	S12
¹ H and ¹³ C NMR spectra for compound $8_{\mathbf{L}}$	S13
¹ H and ¹³ C NMR spectra for compound 9_L	S14
SPR data for compound 9_L	S15

Figure 1: Full ¹H NMR (400 MHz, DMSO-*d*₆) of chair *rctt* 3a

Figure 2: Full ¹³C NMR (100 MHz, DMSO- $d_6 + \varepsilon$ DMF- d_7 , 363K) of chair *rctt* **3a**

Figure 4: Full ¹³C NMR (100 MHz, DMSO-*d*₆) of flattened boat *rccc* 3b

Figure 5: ESI-MS of chair rctt 3a

Figure 6: ESI-MS of flattened boat rccc 3b

– S 4 –

Figure 7: Full ¹H NMR (400 MHz, CDCl₃) Tetra (AcO)₄GalEG₃ Resorcinarene chair - Acetylated Glycocluster **5a**_G

Figure 8: Full ¹³C NMR (100 MHz, CDCl₃) Tetra (AcO)₄GalEG₃ Resorcinarene chair - Acetylated Glycocluster **5a**_G

Figure 9: Full ¹H NMR (400 MHz, CDCl₃) Tetra (AcO)₄GalEG₃ Resorcinarene boat - Acetylated Glycocluster **5b**_G

– S 6 –

Figure 10: Full 13 C NMR (100 MHz, CDCl₃) Tetra (AcO)₄GalEG₃ Resorcinarene boat - Acetylated Glycocluster $\mathbf{5b}_{G}$

Figure 11: Full ¹H NMR (400 MHz, CDCl₃) Tetra (AcO)₇LacEG₃ Resorcinarene chair - Acetylated Glycocluster **5a**_L

– S 7 –

Figure 13: Full ¹H NMR (400 MHz, CDCl₃) Tetra (AcO)₇LacEG₃ Resorcinarene boat - Acetylated Glycocluster **5b**_L

– S 8 –

Figure 14: Full ¹³C NMR (100 MHz, CDCl₃) Tetra (AcO)₇LacEG₃ Resorcinarene boat - Acetylated Glycocluster **5b**_L

Figure 15: Full ¹H NMR (400 MHz, DMSO- $d_{6+} \varepsilon$ D₂O) Tetra (HO)₄GalEG₃ Resorcinarene chair - Hydroxylated Glycocluster **6a**_G

– S 9 –

Figure 16: Full ¹³C NMR (100 MHz, DMSO- $d_{6+} \varepsilon$ D₂O) Tetra (HO)₄GalEG₃ Resorcinarene chair - Hydroxylated Glycocluster **6a**_G

Figure 17: Full ¹H NMR (400 MHz, DMSO- $d_{6+} \varepsilon D_2 O$) Tetra (HO)₄GalEG₃ Resorcinarene boat - Hydroxylated Glycocluster **6b**_G

e 18: Full ¹³C NMR (100 MHz, DMSO- $d_{6+} \varepsilon$ D₂O) Tetra (HO)₄GalEG₃ Resorcinarene boat -Hydroxylated Glycocluster **6b**_G

Figure 19: Full ¹H NMR (400 MHz, DMSO- $d_{6+} \varepsilon$ D₂O) Tetra (HO)₇LacEG₃ Resorcinarene chair - Hydroxylated Glycocluster **6a**_L

Figure 20: Full ¹³C NMR (100 MHz, DMSO-*d*₆₊ε D₂O) Tetra (HO)₇LacEG₃ Resorcinarene chair - Hydroxylated Glycocluster **6a**_L

Figure 21: Full ¹H NMR (400 MHz, DMSO- $d_{6+} \varepsilon D_2O$) Tetra (HO)₇LacEG₃ Resorcinarene boat - Hydroxylated Glycocluster **6b**_L

Figure 22: Full ¹³C NMR (100 MHz, DMSO- $d_{6+} \varepsilon$ D₂O) Tetra (HO)₇LacEG₃ Resorcinarene boat - Hydroxylated Glycocluster **6b**_L

Figure 23: Full ¹H NMR (400 MHz, CDCl₃) 1-[1,2,3-Triazol-4-yl-(acetoxy)methyl]-3,6dioxaoct-8-yl 2,3,6,2',3',4',6'-hepta-*O*-acetyl-β-D-lactoside **8**_L

– S 13 –

Figure 24: Full ¹³C NMR (100 MHz, CDCl₃) 1-[1,2,3-Triazol-4-yl-(acetoxy)methyl]-3,6dioxaoct-8-yl 2,3,6,2',3',4',6'-hepta-*O*-acetyl-β-D-lactoside **8**_L

ure 25: Full ¹H NMR (400 MHz, DMSO- $d_{6+} \varepsilon$ D₂O) 1-[1,2,3-Triazol-4-yl-(hydroxy)methyl]-3,6-dioxaoct-8-yl β -D-lactoside **9**_L

Figure 26: Full ¹³C NMR (100 MHz, DMSO- $d_{6+} \varepsilon$ D₂O) 1-[1,2,3-Triazol-4-yl-(hydroxy)-methyl]-3,6-dioxaoct-8-yl β -D-lactoside **9**_L

Figure 27: SPR sensorgram measured for 9_L incubated with PA-IL (5 microM) and injected on a CM5 chip coated with Streptavidin/Biotin–PAA–alpha-D-Galactose. a) sensorgram, b) corresponding inhibition curve. PAA=Polyacrylamide