Unprecedented Intramolecular [3+2] Cycloadditions Azido-ketenimines and Azido-carbodiimides. Synthesis of Indolo[1,2-a]quinazolines and Tetrazolo[5,1-b]quinazolines

Mateo Alajarin,^a Baltasar Bonillo,^a Maria-Mar Ortin,^a Raul-Angel Orenes^b and Angel Vidal*^a

^a Departamento de Quimica Organica, Facultad de Quimica, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain

Table of Contents

Figure S1 ORTEP representation of the crystal structure of 4a	S2
Figure S2 ORTEP representation of the crystal structure of 12	S3
Figure S3 Dimer formation via C1—H1···N2 hydrogen bonds in compound 12	S4
Figure S4 Ribbons formation via C24—H24···O1 hydrogen bonds in compound	S5
12	
Copy of ¹ H and ¹³ C NMR Spectra of Compounds 2, 4, 5, 12, 14 and 15. Copy	S6-S75
of ³¹ P NMR Spectra of Compounds 2 .	

^b Servicio Universitario de Instrumentacion Cientifica, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain

Figure S1: ORTEP representation of the crystal structure of 4a

Figure S2: ORTEP representation of the crystal structure of 12

Figure S3: Dimer formation via O1—H1···N2 hydrogen bonds in compound **12** (some hydrogen atoms have been omitted for clarity)

Figure S4. Ribbons formation via C24—H24···O1 hydrogen bonds in compound **12** (some hydrogen atoms have been omitted for clarity)

Copy of ¹H and ¹³C NMR Spectra of Compounds 2, 4, 5, 12, 14 and 15. Copy of ³¹P NMR Spectra of Compounds 2.

¹H NMR of **2a**

¹³C NMR of **2a**

³¹P NMR of **2a**

¹H NMR of **2b**

¹³C NMR of **2b**

³¹P NMR of **2b**

¹H NMR of **2c**

¹³C NMR of **2c**

³¹P NMR of **2c**

¹H NMR of **2d**

¹³C NMR of **2d**

³¹P NMR of **2d**

¹H NMR of **2e**

¹³C NMR of **2e**

³¹P NMR of **2e**

¹H NMR of **2f**

¹³C NMR of **2f**

³¹P NMR of **2f**

¹H NMR of **4a**

¹³C NMR of **4a**

¹H NMR of **4c**

¹³C NMR of **4c**

¹H NMR of **4d**

¹³C NMR of **4d**

¹H NMR of **4e**

¹³C NMR of **4e**

¹H NMR of **4f**

¹³C NMR of **4f**

¹H NMR of **4g**

¹³C NMR of **4g**

¹H NMR of **4h**

¹³C NMR of **4h**

¹H NMR of **4i**

¹³C NMR of **4i**

¹H NMR of **4j**

¹³C NMR of **4j**

¹H NMR of **4k**

¹³C NMR of **4k**

¹H NMR of **41**

¹³C NMR of **41**

¹H NMR of **5b**

¹³C NMR of **5b**

¹H NMR of **5i**

¹³C NMR of **5i**

¹H NMR of **12**

¹³C NMR of **12**

¹H NMR of **14a**

¹³C NMR of **14a**

¹H NMR of **14b**

¹³C NMR of **14b**

¹H NMR of **14c**

¹³C NMR of **14c**

¹H NMR of **14d**

¹³C NMR of **14d**

¹H NMR of **14e**

¹³C NMR of **14e**

¹H NMR of **14f**

¹³C NMR of **14f**

¹H NMR of **14g**

¹³C NMR of **14g**

¹H NMR of **14h**

¹³C NMR of **14h**

¹H NMR of **15a**

¹³C NMR of **15a**

¹H NMR of **15b**

¹³C NMR of **15b**

¹H NMR of **15c**

¹³C NMR of **15c**

¹H NMR of **15d**

¹³C NMR of **15d**

