Supporting Information

"Organocatalytic Enantioselective Formal Synthesis of Bromopyrrole Alkaloids via Aza-Michael Addition"

Su-Jeong Lee, Seok-Ho Youn and Chang-Woo Cho*

Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea E-mail: cwcho@knu.ac.kr

Table of Contents

Experimental Section	S2							
General methods								
Representative procedure for the organocatalytic enantioselective conjugate ad								
Spectral data and HPLC traces for compounds 3, 5–15	\$3-\$38							
Experimental details and spectral data for compounds 16-22	S39-S52							

General methods:

All reactions were run under an atmosphere of argon, unless otherwise indicated. Anhydrous solvents were transferred by an oven-dried syringe. Flasks were flame-dried and cooled under a stream of nitrogen. Toluene was distilled from calcium hydride. Chemical reagents were purchased from Aldrich chemical company and used without further purification, unless otherwise noted. Pyrroles $\mathbf{1}^1$ and α,β -unsaturated aldehydes $\mathbf{2}^2$ were prepared according to the previously reported procedures. Analytical thin-layer chromatography (TLC) was carried out using 0.2-mm commercial silica gel plates (DC-Fertigplatten Krieselgel 60 F₂₅₄). Preparative column chromatography employing silica gel was performed according to the method of Still.³ Melting points were determined on a Barnstead melting point apparatus in open capillaries and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer spectrometer. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with a Bruker (400 MHz) spectrometer. Chemical Shifts are reported in delta (δ) units, parts per million (ppm) downfield from trimethylsilane. Coupling constants are reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with a Bruker 400 (100 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, parts per million (ppm) relative to the center of the triplet at 77.00 ppm for deuteriochloroform. ¹³C NMR spectra were routinely run with broadbrand decoupling. Mass spectral data were obtained from the Korea Basic Science Institute (Daegu) on a Jeol JMS 700 high resolution mass spectrometer. HPLC analysis was performed on an Agilent 1200 Series with UV detector, using chiral separation column (Chiralpak AD-H).

Representative procedure for the organocatalytic enantioselective conjugate additions:

To a mixture of pyrrole **1** (100 mol %), organocatalyst (20 mol %) and PhCO₂H (40 mol %) in toluene (0.1 M) was added α,β -unsaturated aldehyde **2** (200 mol %) in one portion. The reaction mixture was allowed to stir at -20, -30, or -40 °C for 18 hours, at which point the aldehyde was directly reduced with either NaBH₄ (110 mol %) in EtOH (0.1 M) or BH₃·SMe₂ (110 mol %) in THF (0.1 M) to alcohol. After 30 min the reaction was quenched by saturated aqueous NaHCO₃. The mixture was poured into ethyl acetate, and the layers were separated. The organic layer was washed with saturated aqueous NaHCO₃ and brine, and dried over MgSO₄. The organic layer was filtered and evaporated. The crude residue was purified by silica gel column chromatography.

^{1. (}a) Smith, J. A.; Ng, S.; White, J. Org. Biomol. Chem. 2006, 4, 2477. (b) Schmuck, C.; Dudaczek, J. Tetrahedron Lett. 2005, 46, 7101. (c) Loader, C. E.; Anderson, H. J. Can. J. Chem. 1981, 59, 2673.

^{2.} Avi, M.; Gaisberger, R.; Feichtenhofer, S.; Griengl, H. Tetrahedron 2009, 65, 5418.

^{3.} Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

Colorless Oil

 $[\alpha]^{22}_{D}$ +4.0 (c 1, CH₃OH) in the case of 76% ee (Table 1, entry 1)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.92 (d, *J* = 7.6 Hz, 2H), 7.58-7.55 (m, 1H), 7.44-7.40 (m, 2H), 6.99 (s, 1H), 5.33-5.22 (m, 1H), 4.81-4.67 (m, 2H), 3.83-3.77 (m, 1H), 3.50 (dt, *J* = 10.8, 3.6 Hz, 1H), 2.57-2.45 (m, 1H), 2.34-2.23 (m, 1H), 1.73 (s, 1H)

¹³C NMR (100 MHz, CDCl₃) δ 165.8, 133.3, 129.5, 128.9, 128.4, 124.3, 113.7, 112.7, 102.6, 99.5, 65.2, 57.9, 57.2, 32.6

FTIR (neat) 3487, 3125, 2956, 2221, 1722, 1415, 1314, 1270, 1118, 711 cm⁻¹

<u>HRMS (EI)</u> calcd for $[M]^+$ C₁₆H₁₄Br₂N₂O₃ 439.9371, found 439.9373

HPLC Condition to determine enantiomeric excess: Chiral column: Chiralpak AD-H (250 x 4.6 mm) Mobile Phase (90/10 = Hexane/IPA) Flow Rate (0.9 mL/min), Detection Wavelength (254 nm) Retention Time: 24.9 min (minor isomer), 27.2 min (major isomer)

Enantiomeric excess of 3: 76% (Table 1, entry 4)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

¹HNMR of **3**

White Solid

<u>M.P.</u> 70~72 °C

 $[\alpha]^{22}_{D}$ –12.0 (c 1, CH₃OH) in the case of 80% ee (Table 1, entry 3)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 6.95 (s, 1H), 4.99-4.88 (m, 1H), 4.09-4.05 (m, 1H), 3.90 (dd, J = 10.8, 5.2 Hz, 1H), 3.75-3.71 (m, 1H), 3.53-3.43 (m, 1H), 2.43-2.32 (m, 1H), 2.18-2.08 (m, 1H), 1.48 (s, 1H), 0.79 (s, 9H), 0.01 (s, 3H), -0.05 (s, 3H)

¹³C NMR (100 MHz, CDCl₃) δ 123.7, 114.1, 113.0, 102.3, 98.9, 64.4, 60.5, 58.4, 32.4, 25.4, 17.8, -5.6, -5.8

FTIR (neat) 3438, 2928, 2855, 2221, 1413, 1319, 1249, 1109, 835, 777 cm⁻¹

<u>HRMS (FAB)</u> calcd for $[M+H]^+ C_{15}H_{25}O_2N_2Br_2Si 451.0052$, found 451.0049

HPLC Condition to determine enantiomeric excess:Chiral column: Chiralpak AD-H (250 x 4.6 mm)Mobile Phase (90/10 = Hexane/IPA)Flow Rate (0.9 mL/min), Detection Wavelength (254 nm)Retention Time: 5.6 min (minor isomer), 6.6 min (major isomer)

Totals :

Enantiomeric excess of 5: 80% (Table 1, entry 6)

461.45306 59.00366

White Solid

<u>M.P.</u> 99~101 °C

 $[\alpha]_{D}^{20}$ +18.2 (c 1, CH₃OH) in the case of 93% ee (Table 1, entry 6)

<u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.61-7.56 (m, 2H), 7.51-7.34 (m, 8H), 6.91 (s, 1H), 5.07-4.96 (m, 1H), 4.11 (t, J = 10.0 Hz, 1H), 3.93-3.87 (m, 1H), 3.70-3.63 (m, 1H), 3.47-3.38 (m, 1H), 2.36-2.25 (m, 1H), 2.11-2.00 (m, 1H), 1.42 (s, 1H), 0.96 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 135.4, 132.6, 132.3, 129.9, 129.8, 127.7, 123.8, 114.2, 112.8, 102.4, 99.0, 65.0, 60.3, 58.2, 32.3, 26.4, 18.9

<u>FTIR (neat)</u> 3391, 2929, 2858, 2223, 2102, 1416, 1311, 1113, 700 cm⁻¹

<u>HRMS (EI)</u> calcd for $[M]^+$ C₂₅H₂₈Br₂N₂O₂Si 574.0287, found 574.0286

HPLC Condition to determine enantiomeric excess: Chiral column: Chiralpak AD-H (250 x 4.6 mm) Mobile Phase (95/5 = Hexane/IPA) Flow Rate (1.0 mL/min), Detection Wavelength (254 nm) Retention Time: 7.8 min (minor isomer), 8.7 min (major isomer)

Racemate of 6

Enantiomeric excess of 6: 93% (Table 1, entry 9)

Area Percent Report

Sorted By		:	Signal			
Multiplier	: 1.0000					
Dilution		: 1.0000				
Use Multiplier	&	Dilution	Factor	with	ISTDs	

Peak Re	etTime	Type	Width	A:	rea	Heig	ht	Area
#	[min]		[min]	mAU	*s	[mAU]	%
1	7.819	BB	0.1813	,	.34903	3.1	6520	3.7491
2	8.777	BB	0.2235	958	.85693	66.5	2519	96.2509
Totals	:			996	.20597	69.6	9039	

Yellow Oil

 $[\alpha]^{21}_{D} + 26.8 (c 1, CH_3OH)$

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.63-7.55 (m, 2H), 7.51-7.33 (m, 8H), 6.85 (s, 1H), 5.03-4.93 (m, 1H), 4.12 (t, J = 9.6 Hz, 1H), 3.93-3.86 (m, 1H), 3.68-3.63 (m, 1H), 3.42 (dt, J = 10.0, 3.6 Hz, 1H), 2.36-2.25 (m, 1H), 2.10-1.99 (m, 1H), 1.49 (s, 1H), 0.96 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 135.4, 132.6, 132.2, 129.9, 129.8, 127.7, 121.1, 113.4, 112.9, 111.7, 101.4, 64.9, 59.8, 58.2, 32.3, 26.4, 18.9

FTIR (neat) 3368, 3114, 2929, 2858, 2224, 1426, 1329, 1113, 825, 701, 508 cm⁻¹

HRMS (EI) calcd for $[M]^+$ C₂₅H₂₈BrClN₂O₂Si 530.0792, found 530.0791

HPLC Condition to determine enantiomeric excess: Chiral column: Chiralpak AD-H (250 x 4.6 mm) Mobile Phase (95/5 = Hexane/IPA) Flow Rate (1.0 mL/min), Detection Wavelength (254 nm) Retention Time: 7.4 min (minor isomer), 8.5 min (major isomer)

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:		
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak R	etTime	Type	Width	A	rea	Heig	ght	Area
#	[min]		[min]	mAU	* 3	[mAU]	8
1	7.612	VB	0.1818	561	.38043	47.9	90997	50.8621
2	8.694	BB	0.2321	542	.34937	36.4	40378	49.1379
Totals				1103	.72980	84.3	31375	

Enantiomeric excess of 7: 93%

Area Percent Report

Sort	ed By		:	Sig	nal	
Mult	iplier		:	1.0	000	
Dilu	tion		:	1.0	000	
Use	Multiplier	£.	Dilution	Factor	with	ISTDS

Peak #	RetTime [min]	Туре	Width [min]	A1 mAU	rea *s	Hei [mAU	ght]	Area %	
1	7.493	VB	0.1876	60	.13028	4.	92578	3.2671	
2	8.522	BB	0.2265	1780	.34387	122.	39133	96.7329	
Total	s :			1840	.47415	127.	31711		

Light Yellow Solid

<u>**M.P.**</u> 93~95 °C

 $[\alpha]^{22}_{D}$ –9.0 (c 1, CH₃OH)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.52-7.37 (m, 10H), 7.32 (d, *J* = 1.2 Hz, 1H), 7.03 (d, *J* = 1.6 Hz, 1H), 4.71-4.65 (m, 1H), 3.91 (dd, *J* = 11.2, 3.6 Hz, 1H), 3.83 (dd, *J* = 11.2, 7.2 Hz, 1H), 3.67-3.62 (m, 1H), 3.44-3.38 (m, 1H), 2.10-1.99 (m, 2H), 1.57 (s, 1H), 1.00 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 135.4, 135.3, 132.0, 131.9, 130.2, 130.1, 130.0, 127.8, 121.9, 114.2, 111.5, 106.3, 94.5, 65.5, 59.0, 57.8, 33.1, 26.5, 18.9

FTIR (neat) 3447, 3128, 2931, 2858, 2231, 1428, 1114, 702 cm⁻¹

<u>HRMS (EI)</u> calcd for $[M]^+$ C₂₆H₂₉N₃O₂Si 443.2029, found 443.2032

HPLC Condition to determine enantiomeric excess: Chiral column: Chiralpak AD-H (250 x 4.6 mm) Mobile Phase (90/10 = Hexane/IPA) Flow Rate (1.0 mL/min), Detection Wavelength (254 nm) Retention Time: 6.0 min (minor isomer), 9.6 min (major isomer)

Racemate of 8

Signal 1: VWD1 A, Wavelength=254 nm

Peak 3	RetTime	Type	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	* s	[mAU	1	8
1	6.093	BB	0.1319	865	.35352	101.	06882	50.8989
2	9.618	BB	0.2366	834	.78906	54.	60849	49.1011
Total:				1700	.14258	155.	67732	

Enantiomeric excess of 8: 93%

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier		:	1.00	000	
Dilution		:	1.00	000	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Peak Re #	etTime [min]	Type	Width [min]	A mAU	rea *s	Hei [mAU	ght]	Area %
1	6.088	BB	0.1326	59	.66602	6.9	92 0 4 4	3.6141
Totale	9.032	DD	0.2304	1650	02175	110.0	78550	90.3039

Light Yellow Solid

<u>M.P.</u> 88~90 °C

 $[\alpha]^{21}_{D}$ +16.1 (c 1, CH₃OH)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.71 (d, *J* = 1.6 Hz, 1H), 7.52-7.34 (m, 11H), 4.70-4.66 (m, 1H), 3.94 (dd, *J* = 11.2, 3.2 Hz, 1H), 3.86 (dd, *J* = 11.2, 6.8 Hz, 1H), 3.69-3.64 (m, 1H), 3.48-3.42 (m, 1H), 2.11-2.05 (m, 2H), 1.72 (s, 1H), 1.01 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 136.4, 135.4, 135.3, 132.0, 131.9, 130.1, 130.1, 127.8, 123.9, 114.6, 111.2, 105.7, 65.5, 59.3, 57.9, 33.1, 26.6, 18.9

FTIR (neat) 3419, 3127, 2928, 2857, 2230, 1512, 1389, 1308, 1113, 702 cm⁻¹

<u>HRMS (EI)</u> calcd for $[M]^+ C_{25}H_{29}N_3O_4Si 463.1927$, found 463.1932

HPLC Condition to determine enantiomeric excess: Chiral column: Chiralpak AD-H (250 x 4.6 mm) Mobile Phase (95/5 = Hexane/IPA) Flow Rate (0.9 mL/min), Detection Wavelength (254 nm) Retention Time: 11.2 min (minor isomer), 17.8 min (major isomer)

Racemate of 9

Enantiomeric excess of 9: 91%

Colorless Oil

 $[\alpha]^{24}_{D}$ –8.2 (c 1, CH₃OH)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.54-7.35 (m, 10H), 6.87 (d, J = 1.6 Hz, 1H), 6.70 (d, J = 1.6 Hz, 1H), 4.61-4.55 (m, 1H), 3.85 (dd, J = 10.8, 3.6 Hz, 1H), 3.76 (dd, J = 10.8, 6.8 Hz, 1H), 3.65-3.59 (m, 1H), 3.46-3.40 (m, 1H), 2.04-1.98 (m, 2H), 1.58 (s, 1H), 1.00 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 135.5, 135.4, 132.3, 132.2, 129.9, 129.9, 127.8, 127.8, 121.8, 118.2, 112.9, 112.6, 104.3, 66.1, 58.3, 58.3, 33.5, 26.5, 19.0

FTIR (neat) 3394, 3114, 2930, 2858, 2223, 1427, 1128, 1113, 700 cm⁻¹

HRMS (EI) calcd for $[M]^+ C_{25}H_{29}ClN_2O_2Si 452.1687$, found 452.1684

HPLC Condition to determine enantiomeric excess: Chiral column: Chiralpak AD-H (250 x 4.6 mm) Mobile Phase (95/5 = Hexane/IPA) Flow Rate (0.95 mL/min), Detection Wavelength (254 nm) Retention Time: 7.8 min (minor isomer), 10.1 min (major isomer)

Racemate of 10

Enantiomeric excess of 10: 93%

Area Percent Report

Sorted By			:			
Mult	iplier		:	1.00	000	
Dil	ation		:	1.00	000	
Use	Multiplier	δ.	Dilution	Factor	with	ISTDs

Signal 1: VWD1 A, Wavelength=254 $\ensuremath{\mathsf{nm}}$

Peak #	RetTime [min]	Type	Width [min]	A mAU	rea *s	Hei [mAU	ght]	Area %
1	7.895	BB	0.1967	57	.93516	4.	41850	3.3546
2	10.183	BB	0.2322	1669	.08008	111.	03948	96.6454
Total	s:			1727	.01524	115.	45798	

Yellow Oil

 $[\alpha]^{25}_{D}$ –9.3 (c 1, CH₃OH)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.54-7.36 (m, 10H), 6.92 (d, J = 1.6 Hz, 1H), 6.78 (d, J = 1.6 Hz, 1H), 4.64-4.58 (m, 1H), 3.85 (dd, J = 10.8, 3.6 Hz, 1H), 3.76 (dd, J = 10.8, 6.8 Hz, 1H), 3.67-3.61 (m, 1H), 3.49-3.41 (m, 1H), 2.06-2.00 (m, 2H), 1.47 (s, 1H), 1.00 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 135.4, 135.4, 132.3, 132.2, 129.9, 129.9, 127.8, 124.3, 120.6, 112.5, 105.2, 96.4, 66.1, 58.3, 58.3, 33.5, 26.5, 19.0

<u>FTIR (neat)</u> 3446, 3071, 2931, 2858, 2221, 1427, 1318, 1113, 758, 702, 504 cm⁻¹

<u>HRMS (EI)</u> calcd for $[M]^+ C_{25}H_{29}BrN_2O_2Si$ 496.1182, found 496.1185

HPLC Condition to determine enantiomeric excess: Chiral column: Chiralpak AD-H (250 x 4.6 mm) Mobile Phase (95/5 = Hexane/IPA) Flow Rate (0.95 mL/min), Detection Wavelength (254 nm) Retention Time: 9.0 min (minor isomer), 11.7 min (major isomer)

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Type	Width	Width Area		Hei	ght	Area	
#	[min]		[min]	mAU	* s	[mAU]	8	
		-							
1	9.196	BB	0.2118	497	.13705	36.3	39104	49.2742	
2	12.026	BB	0.2892	511	.78235	27.4	40550	50.7258	
Tota.	ls :			1008	.91940	63.1	79654		

Enantiomeric excess of 11: 94%

λrea Percent Report

Sorted By		:	Sig		
Multiplier		:	1.00	000	
Dilution		:	1.00	000	
Use Multiplier	δ.	Dilution	Factor	with	ISTDs

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	mAU *s	[mAU]	%
1 9.002 BB	0.1979	87.11239	6.84746	2.8538
2 11.707 BB	0.2651	2965.43652	173.34142	97.1462
Totals :		3052.54891	180.18887	

Light Yellow Oil

 $[\alpha]^{21}_{D}$ –19.0 (c 1, CH₃OH)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.53-7.35 (m, 10H), 6.98 (d, J = 2.0 Hz, 1H), 6.86 (d, J = 1.6 Hz, 1H), 4.64-4.58 (m, 1H), 3.84 (dd, J = 10.8, 3.6 Hz, 1H), 3.77 (dd, J = 10.8, 6.8 Hz, 1H), 3.65-3.60 (m, 1H), 3.47-3.41 (m, 1H), 2.06-2.01 (m, 2H), 1.53 (s, 1H), 1.00 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 135.5, 135.4, 132.4, 132.3, 129.9, 129.9, 129.2, 127.8, 127.8, 125.6, 112.3, 106.4, 66.2, 59.9, 58.3, 58.2, 33.6, 26.6, 19.0

FTIR (neat) 3447, 3071, 2930, 2857, 2222, 1589, 1460, 1427, 1310, 1114, 758, 702, 504 cm⁻¹

<u>HRMS (EI)</u> calcd for $[M]^+$ C₂₅H₂₈N₂O₂SiI 543.0965, found 543.0968

HPLC Condition to determine enantiomeric excess: Chiral column: Chiralpak AD-H (250 x 4.6 mm) Mobile Phase (95/5 = Hexane/IPA) Flow Rate (1.0 mL/min), Detection Wavelength (254 nm) Retention Time: 9.4 min (major isomer), 10.9 min (minor isomer)

Racemate of 12

Enantiomeric excess of 12: 93%

Colorless Oil

 $[\alpha]^{21}_{D}$ –22.5 (c 1, CH₃OH)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.59-7.57 (m, 2H), 7.49-7.34 (m, 8H), 6.99 (s, 1H), 4.99-4.92 (m, 1H), 4.14 (dd, J = 10.8, 9.6 Hz, 1H), 3.89 (dd, J = 11.2, 4.8 Hz, 1H), 3.70-3.63 (m, 1H), 3.44-3.36 (m, 1H), 2.36-2.27 (m, 1H), 2.09-2.00 (m, 1H), 1.42 (s, 1H), 0.96 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 135.4, 132.6, 132.2, 129.9, 129.8, 127.7, 124.3, 112.6, 106.2, 104.4, 89.4, 65.1, 63.4, 58.2, 32.5, 26.5, 18.9

FTIR (neat) 3448, 3071, 2930, 2857, 2219, 1427, 1306, 1113, 741, 702, 504 cm⁻¹

HRMS (EI) calcd for [M]⁺ C₂₅H₂₈ClN₂O₂SiI 578.0653, found 578.0648

HPLC Condition to determine enantiomeric excess: Chiral column: Chiralpak AD-H (250 x 4.6 mm) Mobile Phase (95/5 = Hexane/IPA) Flow Rate (0.9 mL/min), Detection Wavelength (254 nm) Retention Time: 8.0 min (minor isomer), 10.2 min (major isomer)

Enantiomeric excess of 13: 93%

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier		:	1.00	000	
Dilution		:	1.00	000	
Use Multiplier	δ.	Dilution	Factor	with	ISTDS

Peak	RetTime	Туре	Width	Ar	ea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	%
1	8.022	BB	0.2031	64.	41565	4.6	63057	3.4199
2	10.251	BB	0.2213	1819.	13977	126.7	79105	96.5801
Tota	ls :			1883.	55542	131.4	42163	

Yellow Oil

 $[\alpha]^{21}_{D}$ -44.8 (c 1, CH₃OH)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.59-7.57 (m, 2H), 7.49-7.34 (m, 8H), 6.99 (s, 1H), 4.98-4.92 (m, 1H), 4.14 (dd, J = 10.8, 9.6 Hz, 1H), 3.89 (dd, J = 11.2, 4.8 Hz, 1H), 3.68-3.63 (m, 1H), 3.40 (dt, J = 9.6, 4.0 Hz, 1H), 2.35-2.27 (m, 1H), 2.08-2.00 (m, 1H), 1.47 (s, 1H), 0.96 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 135.5, 132.6, 132.3, 129.9, 129.8, 127.8, 124.4, 112.6, 106.3, 104.5, 89.3, 65.2, 63.4, 58.3, 32.6, 26.5, 19.0

FTIR (neat) 3456, 3071, 2930, 2219, 1427, 1311, 1114, 758, 702, 504 cm⁻¹

HRMS (EI) calcd for [M]⁺ C₂₅H₂₈BrN₂O₂SiI 622.0148, found 622.0153

HPLC Condition to determine enantiomeric excess: Chiral column: Chiralpak AD-H (250 x 4.6 mm) Mobile Phase (95/5 = Hexane/IPA) Flow Rate (1.0 mL/min), Detection Wavelength (254 nm) Retention Time: 7.8 min (minor isomer), 10.1 min (major isomer)

Enantiomeric excess of 14: 94%

Sorted By		:	Sig		
Multiplier		:	1.00	000	
Dilution		:	1.00	000	
Use Multiplier	s.	Dilution	Factor	with	ISTDs

Peak #	RetTime [min]	Туре	Width [min]	A: mAU	rea *s	Heig [mAU	ght]	Area %
1	7.845	VB	0.1788	32	.74894	2.8	32841	2.9481
2	10.105	VB	0.2393	1078	.10925	70.0	02 00 4	97.0519
Tota.	ls :			1110	.85819	72.8	34845	

Light Yellow Oil

 $[\alpha]^{21}_{D}$ –36.0 (c 1, CH₃OH)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.58-7.56 (m, 2H), 7.48-7.34 (m, 8H), 7.06 (s, 1H), 5.03-4.96 (m, 1H), 4.12 (dd, J = 10.8, 9.6 Hz, 1H), 3.88 (dd, J = 10.8, 4.8 Hz, 1H), 3.70-3.62 (m, 1H), 3.45-3.37 (m, 1H), 2.35-2.27 (m, 1H), 2.08-1.99 (m, 1H), 1.40 (s, 1H), 0.96 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 135.4, 132.6, 132.3, 129.9, 129.8, 129.7, 127.8, 127.7, 112.3, 105.5, 95.5, 77.2, 75.5, 65.2, 64.3, 58.2, 32.7, 26.5, 19.0

<u>FTIR (neat)</u> 3452, 3071, 2930, 2218, 1427, 1362, 1298, 1113, 757, 702, 504 cm⁻¹

HRMS (EI) calcd for [M]⁺ C₂₅H₂₈N₂O₂SiI₂ 670.0010, found 670.0005

HPLC Condition to determine enantiomeric excess: Chiral column: Chiralpak AD-H (250 x 4.6 mm) Mobile Phase (95/5 = Hexane/IPA) Flow Rate (0.9 mL/min), Detection Wavelength (254 nm) Retention Time: 16.6 min (major isomer), 17.7 min (minor isomer)

Racemate of 15

Peak	RetTime	Type	Width	Ar	ea	Heig	nt	Area
#	[min]		[min]	mAU	* s	[mAU	1	8
		-						
1	16.670	BV	0.4455	382.	52658	13.3	8793	49.9451
2	17.775	VB	0.5043	383.	36755	11.9	8154	50.0549
Total	.s :			765.	89413	25.3	6947	

Enantiomeric excess of 15: 92%

Area Percent Report

Sort	ed By		:	Sig	nal	
Mult	iplier		:	1.00	000	
Dil	ution		:	1.00	000	
Use	Multiplier	æ	Dilution	Factor	with	ISTDs

Peak #	RetTime [min]	Type	Width [min]	A mAU	rea *s	Hei [mAU	ght 1	Area %
		-						
1	16.640	BV	0.4305	1688	.97925	61.0	05460	96.0482
2	17.758	VB	0.4695	69	.49210	2.3	23233	3.9518
Total	ls :			1758	.47135	63.3	28 69 3	

Iodomethane (6.2 mL, 0.2 M) and silver oxide (431 mg, 1.86 mmol) was added to a solution of the conjugate product **6** (715 mg, 1.24 mmol) in acetonitrile (6.2 mL, 0.2 M) at rt. The mixture was allowed to stir at reflux for 12 h. The solids were removed by filtration and the solvents removed. The residue was purified by flash chromatography (SiO₂: 10% EtOAc in hexanes) to provide the ether **16** in 98% yield (717 mg, 1.22 mmol) as a colorless oil.

Colorless Oil

 $[\alpha]^{20}_{D} + 30.9 (c 1, CH_3OH)$

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.58-7.56 (m, 2H), 7.49-7.34 (m, 8H), 6.92 (s, 1H), 5.01-4.96 (m, 1H), 4.11 (t, *J* = 10.0 Hz, 1H), 3.87 (dd, *J* = 10.8, 4.4 Hz, 1H), 3.40-3.35 (m, 1H), 3.25 (s, 3H), 3.04 (dt, *J* = 9.6, 4.0 Hz, 1H), 2.31-2.25 (m, 1H), 2.08-2.02 (m, 1H), 0.95 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 135.4, 132.7, 132.4, 129.8, 129.8, 127.7, 123.7, 114.3, 112.8, 102.4, 98.9, 67.8, 64.9, 60.6, 58.6, 30.1, 26.5, 18.9

<u>FTIR (neat)</u> 3071, 2930, 2857, 2221, 1415, 1313, 1114, 798, 702, 504 cm⁻¹

HRMS (EI) calcd for $[M]^+$ C₂₆H₃₀Br₂N₂O₂Si 588.0443, found 588.0442

1.25 M HCl solution in methanol (6.4 mL, 8.0 mmol) was added to **16** (236 mg, 0.4 mmol). The mixture was stirred at rt for 12 h, at which point 1.25 M HCl solution in methanol (6.4 mL, 8.0 mmol) was added once more and the mixture was stirred at rt for 48 h. The mixture was evaporated to remove methanol and quenched by saturated NaHCO₃. The mixture was extracted with ethyl acetate and the organic layer was dried over MgSO₄. Filtration, concentration, and purification by flash chromatography (SiO₂: 30% EtOAc in hexanes) provided the alcohol **17** in 90% yield (126 mg, 0.358 mmol) as a white solid.

White Solid

<u>**M.P.**</u> 63~65 °C

 $[\alpha]^{21}_{D}$ –5.2 (c 1, CH₃OH)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 6.95 (s, 1H), 4.90-4.84 (m, 1H), 4.19-4.13 (m, 1H), 3.99-3.93 (m, 1H), 3.47-3.42 (m, 1H), 3.29 (s, 3H), 3.10 (dt, *J* = 9.6, 4.0 Hz, 1H), 2.34-2.26 (m, 1H), 2.24-2.15 (m, 1H), 2.05 (t, *J* = 5.6 Hz, 1H)

¹³C NMR (100 MHz, CDCl₃) δ 123.7, 113.9, 112.7, 102.3, 99.5, 67.9, 63.5, 61.0, 58.6, 30.4

FTIR (neat) 3449, 3124, 2890, 2226, 1411, 1379, 1313, 1121, 1085, 828 cm⁻¹

<u>HRMS (EI)</u> calcd for $[M]^+ C_{10}H_{12}Br_2N_2O_2$ 349.9265, found 349.9263

p-Toluenesulfonyl chloride (136 mg, 0.713 mmol) was added to a solution of **17** (114 mg, 0.324 mmol) in pyridine (0.32 mL, 1.0 M). The mixture was allowed to stir at rt for 16 h. The mixture was quenched by water and extracted with ethyl acetate. The organic layer was washed with saturated NH₄Cl and brine, dried over Na₂SO₄. Filtration, concentration, and purification by flash chromatography (SiO₂: 25% EtOAc in hexanes) provided the tosylate **18** in 97% yield (159 mg, 0.314 mmol) as a colorless oil.

Colorless Oil

 $[\alpha]^{20}_{D}$ –12.0 (c 1, CH₃OH)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.64 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 6.74 (s, 1H), 5.11-5.01 (m, 1H), 4.53 (t, J = 10.2 Hz, 1H), 4.32 (dd, J = 10.2, 4.0 Hz, 1H), 3.41-3.36 (m, 1H), 3.23 (s, 3H), 2.96 (dt, J = 9.6, 3.6 Hz, 1H), 2.45 (s, 3H), 2.29-2.20 (m, 1H), 2.16-2.07 (m, 1H)

¹³C NMR (100 MHz, CDCl₃) δ 145.2, 132.0, 129.9, 127.6, 124.0, 113.9, 112.3, 102.1, 99.5, 69.4, 67.2, 58.6, 57.4, 30.3, 21.6

<u>FTIR (neat)</u> 3125, 2927, 2877, 2221, 1598, 1367, 1177, 1122, 981, 813, 666, 554 cm⁻¹

<u>HRMS (EI)</u> calcd for $[M]^+ C_{17}H_{18}Br_2N_2O_4S$ 503.9354, found 503.9358

Sodium azide (122 mg, 1.884 mmol) was added to a solution of **18** (159 mg, 0.314 mmol) in dimethyl sulfoxide (3.14 mL, 0.1 M) at rt. The mixture was allowed to stir at 65 °C for 24 h. The mixture was quenched by water and extracted with ethyl acetate. The organic layers was washed with water and brine, dried over Na₂SO₄. Filtration, concentration, and purification by flash chromatography (SiO₂: 20% EtOAc in hexanes) provided the azide **19** in 82% yield (97 mg, 0.257 mmol) as a white solid.

White Solid

<u>**M.P.**</u> 45~47 °C

 $[\alpha]^{21}_{D}$ +4.0 (c 1, CH₃OH)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 6.99 (s, 1H), 4.97-4.87 (m, 1H), 4.02-3.92 (m, 1H), 3.67 (dd, J = 13.2, 5.2 Hz, 1H), 3.46-3.41 (m, 1H), 3.28 (s, 3H), 3.03 (dt, J = 10.0, 3.6 Hz, 1H), 2.42-2.32 (m, 1H), 2.20-2.12 (m, 1H)

¹³C NMR (100 MHz, CDCl₃) δ 124.4, 114.0, 112.7, 102.3, 99.7, 67.4, 58.7, 58.2, 53.6, 31.6

FTIR (neat) 3101, 2936, 2217, 2101, 1413, 1312, 1275, 1121, 1086, 965, 914 cm⁻¹

<u>HRMS (EI)</u> calcd for $[M]^+$ C₁₀H₁₁Br₂N₅O 374.9330, found 374.9328

1 N aqueous sodium hydroxide (0.48 mL, 0.48 mmol) and hydrogen peroxide (30 wt. % in H₂O, 0.48 mL, 0.144 mmol) were added to a solution of **19** (91 mg, 0.241 mmol) in methanol-dichloromethane (10 : 1 v/v, 4.82 mL, 0.05 M). The mixture was allowed to stir at rt for 12 h. The mixture was quenched by saturated Na₂S₂O₂ and saturated NH₄Cl. The mixture was extracted with dichloromethane and water. The organic layer was dried over MgSO₄. Filtration, concentration, and purification by flash chromatography (SiO₂: 40% EtOAc in hexanes) provided the azide–amide **20** in 95% yield (91 mg, 0.229 mmol) as a colorless oil.

Colorless Oil

 $[\alpha]^{19}_{D}$ –36.0 (c 1, CH₃OH)

¹H NMR (400 MHz, CDCl₃, mixture of two conformers, major : minor = 57 : 43)

δ 6.82 (s, 0.57H) and 6.73 (s, 0.43H), 6.01-5.73 (m, 2.43H) and 4.99-4.89 (m, 0.57H), 4.36 (t, *J* = 11.2 Hz, 0.57H) and 4.10 (t, *J* = 11.2 Hz, 0.43H), 3.62 (dd, *J* = 12.8, 5.2 Hz, 1H), 3.39-3.32 (m, 1H), 3.25 (s, 3H), 3.24-3.17 (m, 0.43H) and 3.06-2.98 (m, 0.57H), 2.50-2.42 (m, 1H), 2.19-2.06 (m, 1H)

¹³C NMR (100 MHz, CDCl₃, mixture of two conformers)

<u>Major</u>: δ 161.9, 126.6, 117.8, 114.7, 98.9, 68.5, 59.0, 58.5, 54.1, 31.9 <u>Minor</u>: δ 161.9, 129.5, 115.8, 107.2, 101.6, 68.8, 58.5, 55.5, 53.1, 31.1

FTIR (neat) 3345, 3188, 2928, 2874, 2102, 1662, 1606, 1420, 1278, 1118, 953, 758 cm⁻¹

<u>HRMS (EI)</u> calcd for $[M]^+ C_{10}H_{13}Br_2N_5O_2$ 392.9436, found 392.9439

Triphenylphosphine (195 mg, 0.75 mmol) was added to a solution of **20** (135 mg, 0.34 mmol) in tetrahydrofuran (3.4 mL, 0.1 M). The mixture was stirred at rt for 1 h, at which point water (0.037 mL, 2.04 mmol) was added and the mixture was refluxed for 20 h. The solvent removed and the residue was purified by flash chromatography (SiO₂: 85% EtOAc in hexanes) to give the pyrrolopiperazinone **21** in 84% yield (100 mg, 0.285 mmol) as a white solid.

White Solid

<u>**M.P.**</u> 113~115 °C

 $[\alpha]^{21}_{D}$ –27.1 (c 1, CH₃OH)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 7.26 (br s, 1H), 6.98 (s, 1H), 4.52-4.47 (m, 1H), 3.85 (dd, J = 13.2, 4.0 Hz, 1H), 3.65 (dd, J = 13.2, 4.8 Hz, 1H), 3.47-3.44 (m, 2H), 3.35 (s, 3H), 2.13-2.04 (m, 1H), 1.96-1.88 (m, 1H)

¹³C NMR (100 MHz, CDCl₃) δ 159.8, 124.7, 115.6, 106.7, 100.5, 68.7, 58.7, 52.0, 42.9, 31.7

FTIR (neat) 3215, 3083, 2923, 1651, 1547, 1466, 1427, 1332, 1120, 963, 760 cm⁻¹

<u>HRMS (EI)</u> calcd for $[M]^+ C_{10}H_{12}Br_2N_2O_2$ 349.9265, found 349.9266

Boron tribromide (1 M solution in dichloromethane, 1.2 mL, 1.2 mmol) was slowly added to a solution of **21** (84 mg, 0.24 mmol) in dichloromethane (2.8 mL, 0.085 M) at -20 °C. The mixture was stirred at rt for 6 h and quenched by water. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were dried over MgSO₄. Filtration, concentration, and purification by flash chromatography (SiO₂: 5% MeOH in dichloromethane) provided the key intermediate **22** in 85% yield (69 mg, 0.204 mmol) as a white solid.

White Solid

<u>**M.P.**</u> 139~141 °C

 $[\alpha]^{19}_{D}$ –28.9 (c 1, CH₃OH)

¹<u>H NMR (400 MHz, CD₃OD)</u> δ 6.91 (s, 1H), 4.60-4.56 (m, 1H), 3.81 (dd, *J* = 13.6, 4.0 Hz, 1H), 3.68-3.63 (m, 3H), 2.03-1.94 (m, 1H), 1.87-1.79 (m, 1H)

¹³C NMR (100 MHz, CD₃OD) δ 161.1, 126.1, 116.3, 108.0, 101.2, 59.2, 53.3, 43.3, 35.5

<u>FTIR (neat)</u> 3431, 3243, 2921, 1647, 1617, 1545, 1426, 1335, 1053, 960, 750 cm⁻¹

<u>HRMS (EI)</u> calcd for $[M]^+$ C₉H₁₀Br₂N₂O₂ 335.9109, found 335.9109

