# Supporting Information 

# "Organocatalytic Enantioselective Formal Synthesis of Bromopyrrole Alkaloids via Aza-Michael Addition" 

Su-Jeong Lee, Seok-Ho Youn and Chang-Woo Cho*
Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
E-mail: cwcho@knu.ac.kr

## Table of Contents

Experimental Section ..... S2General methodsRepresentative procedure for the organocatalytic enantioselective conjugate additions
Spectral data and HPLC traces for compounds 3, 5-15 ..... S3-S38
Experimental details and spectral data for compounds 16-22 ..... S39-S52

## General methods:

All reactions were run under an atmosphere of argon, unless otherwise indicated. Anhydrous solvents were transferred by an oven-dried syringe. Flasks were flame-dried and cooled under a stream of nitrogen. Toluene was distilled from calcium hydride. Chemical reagents were purchased from Aldrich chemical company and used without further purification, unless otherwise noted. Pyrroles $\mathbf{1}^{1}$ and $\alpha, \beta$-unsaturated aldehydes $\mathbf{2}^{2}$ were prepared according to the previously reported procedures. Analytical thin-layer chromatography (TLC) was carried out using $0.2-\mathrm{mm}$ commercial silica gel plates (DC-Fertigplatten Krieselgel $60 \mathrm{~F}_{254}$ ). Preparative column chromatography employing silica gel was performed according to the method of Still. ${ }^{3}$ Melting points were determined on a Barnstead melting point apparatus in open capillaries and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer spectrometer. Proton nuclear magnetic resonance ( ${ }^{1} \mathrm{H}$ NMR) spectra were recorded with a Bruker ( 400 MHz ) spectrometer. Chemical Shifts are reported in delta ( $\delta$ ) units, parts per million (ppm) downfield from trimethylsilane. Coupling constants are reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance ( ${ }^{13} \mathrm{C}$ NMR) spectra were recorded with a Bruker $400(100 \mathrm{MHz})$ spectrometer. Chemical shifts are reported in delta ( $\delta$ ) units, parts per million ( ppm ) relative to the center of the triplet at 77.00 ppm for deuteriochloroform. ${ }^{13} \mathrm{C}$ NMR spectra were routinely run with broadbrand decoupling. Mass spectral data were obtained from the Korea Basic Science Institute (Daegu) on a Jeol JMS 700 high resolution mass spectrometer. HPLC analysis was performed on an Agilent 1200 Series with UV detector, using chiral separation column (Chiralpak AD-H).

## Representative procedure for the organocatalytic enantioselective conjugate additions:

To a mixture of pyrrole 1 ( $100 \mathrm{~mol} \%$ ), organocatalyst ( $20 \mathrm{~mol} \%$ ) and $\mathrm{PhCO}_{2} \mathrm{H}(40$ $\mathrm{mol} \%$ ) in toluene ( 0.1 M ) was added $\alpha, \beta$-unsaturated aldehyde $2(200 \mathrm{~mol} \%)$ in one portion. The reaction mixture was allowed to stir at $-20,-30$, or $-40^{\circ} \mathrm{C}$ for 18 hours, at which point the aldehyde was directly reduced with either $\mathrm{NaBH}_{4}(110 \mathrm{~mol} \%)$ in $\mathrm{EtOH}(0.1 \mathrm{M})$ or $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ ( $110 \mathrm{~mol} \%$ ) in THF $(0.1 \mathrm{M}$ ) to alcohol. After 30 min the reaction was quenched by saturated aqueous $\mathrm{NaHCO}_{3}$. The mixture was poured into ethyl acetate, and the layers were separated. The organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}$ and brine, and dried over $\mathrm{MgSO}_{4}$. The organic layer was filtered and evaporated. The crude residue was purified by silica gel column chromatography.

[^0]

## Colorless Oil

$[\alpha]^{22}{ }_{\mathbf{D}}+\mathbf{4 . 0}\left(\mathrm{c} \mathbf{1}, \mathbf{C H}_{3} \mathbf{O H}\right)$ in the case of $76 \%$ ee (Table 1, entry 1)
${ }^{1}{ }^{\mathbf{H}}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H})$, $6.99(\mathrm{~s}, 1 \mathrm{H}), 5.33-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.67(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{dt}, J=10.8,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ( $100 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta 165.8,133.3,129.5,128.9,128.4,124.3,113.7,112.7,102.6$, 99.5, 65.2, 57.9, 57.2, 32.6

FTIR (neat) $3487,3125,2956,2221,1722,1415,1314,1270,1118,711 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} 439.9371$, found 439.9373

## HPLC Condition to determine enantiomeric excess:

Chiral column: Chiralpak AD-H ( $250 \times 4.6 \mathrm{~mm}$ )
Mobile Phase ( $90 / 10=$ Hexane/IPA)
Flow Rate ( $0.9 \mathrm{~mL} / \mathrm{min}$ ), Detection Wavelength ( 254 nm )
Retention Time: 24.9 min (minor isomer), 27.2 min (major isomer)

Racemate of 3


```
==================================================================
    Area Percent Report
```

| Sorted By | $:$ | Signal |  |
| :--- | :---: | :---: | :---: |
| Multiplier | $:$ | 1.0000 |  |
| Dilution | $\vdots$ | 1.0000 |  |
| Use Multiplier | \& | Dilution | Factor |

Signal 1: VWD 1 A, wavelength=254 nm

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | $\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$ |  | $\begin{gathered} \text { Width } \\ {[\text { min] }} \end{gathered}$ | $\stackrel{c}{\text { Area }}{ }_{\mathrm{mAU}}^{\mathrm{*}_{\mathrm{s}}}$ |  | $\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 24.947 | BB | 0.5481 | 462.84396 | 13.17890 | 50.0119 |
| 2 | 27.175 | Bb | 0.6012 | 462.62314 | 12.03768 | 49.9881 |
| Totals |  |  |  | 925.46710 | 25.21658 |  |

Enantiomeric excess of 3: 76\% (Table 1, entry 4)



Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1}$ H NMR of 3

${ }^{13}$ C NMR of 3

$\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & & \text { ppm }\end{array}$


## White Solid

M.P. $70 \sim 72^{\circ} \mathrm{C}$
$[\alpha]^{22}{ }_{\mathbf{D}} \mathbf{- 1 2 . 0}\left(\mathrm{c} \mathbf{1}, \mathrm{CH}_{3} \mathrm{OH}\right)$ in the case of $80 \%$ ee (Table 1, entry 3)
${ }^{1}{ }^{\mathbf{H}}$ NMR ( $400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 6.95(\mathrm{~s}, 1 \mathrm{H}), 4.99-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{dd}, \mathrm{J}=$ $10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 1 \mathrm{H})$, $1.48(\mathrm{~s}, 1 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 123.7,114.1,113.0,102.3,98.9,64.4,60.5,58.4,32.4,25.4$, 17.8, -5.6, -5.8

FTIR (neat) $3438,2928,2855,2221,1413,1319,1249,1109,835,777 \mathrm{~cm}^{-1}$

HRMS (FAB) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Br} 2 \mathrm{Si} 451.0052$, found 451.0049

## HPLC Condition to determine enantiomeric excess:

Chiral column: Chiralpak AD-H ( $250 \times 4.6 \mathrm{~mm}$ )
Mobile Phase ( $90 / 10=$ Hexane/IPA)
Flow Rate ( $0.9 \mathrm{~mL} / \mathrm{min}$ ), Detection Wavelength ( 254 nm )
Retention Time: 5.6 min (minor isomer), 6.6 min (major isomer)

## Racemate of 5



$\angle==============================================================1$ Area Percent Report

| Sorted By | : | Signal |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplier | : | 1.0000 |  |  |  |  |
| Dilution | : | 1.0000 |  |  |  |  |
| Use Multiplier \& Dilution Factor with ISTDs |  |  |  |  |  |  |
| Signal 1: VWD 1 A , Wavelength $=254 \mathrm{~nm}$ |  |  |  |  |  |  |
| $\begin{aligned} & \text { RetTime Type } \\ & {[\mathrm{min}]} \end{aligned}$ | Width | Area |  | Height |  | Area |
|  | [min] | mAU | U * | [mAU | ] | 8 |
| 5.641 BV | 0.1092 |  | 30.64087 |  | 41093 | 49.9814 |
| 26.677 BB | 0.1333 |  | 30.81219 | 26. | 59273 | 50.0186 |
| Totals : |  |  | 61.45306 |  | 00366 |  |

Enantiomeric excess of 5: 80\% (Table 1, entry 6)


```
====================================================================12
```

Area Percent Report


Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1}$ H NMR of 5

${ }^{13}$ C NMR of 5


## White Solid

M.P. $9^{99 \sim 101 ~}{ }^{\circ} \mathrm{C}$
$[\alpha]^{20}{ }_{\mathbf{D}} \mathbf{+ 1 8 . 2}\left(\mathbf{c} \mathbf{1}, \mathbf{C H}_{3} \mathbf{O H}\right)$ in the case of $93 \%$ ee (Table 1, entry 6)
${ }^{1}{ }^{1}$ NMR ( 400 MHz, CDCl $_{3}$ ) $\delta 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.34(\mathrm{~m}, 8 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 5.07-4.96(\mathrm{~m}$, $1 \mathrm{H}), 4.11(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.36-$ $2.25(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ( $100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 135.4,132.6,132.3,129.9,129.8,127.7,123.8,114.2,112.8$, $102.4,99.0,65.0,60.3,58.2,32.3,26.4,18.9$

FTIR (neat) $3391,2929,2858,2223,2102,1416,1311,1113,700 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si} 574.0287$, found 574.0286

## HPLC Condition to determine enantiomeric excess:

Chiral column: Chiralpak AD-H ( $250 \times 4.6 \mathrm{~mm}$ )
Mobile Phase (95/5 = Hexane/IPA)
Flow Rate ( $1.0 \mathrm{~mL} / \mathrm{min}$ ), Detection Wavelength ( 254 nm )
Retention Time: 7.8 min (minor isomer), 8.7 min (major isomer)

Racemate of 6



| Sorted By | : |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplier | : | $\begin{aligned} & 1.0000 \\ & 1.0000 \end{aligned}$ |  |  |  |  |
| Dilution | : |  |  |  |  |  |
| Use Multiplier \& Dilution Factor with ISTDs |  |  |  |  |  |  |
| Signal 1: VWD 1 A, Wavelength=254 nm |  |  |  |  |  |  |
| $\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$ | Width <br> [min] | Area |  | Height |  | Area |
|  |  | maU | * 3 | [mAU | ] | 8 |
| 7.647 vb | 0.1686 | 1302 | 2.55652 | 118. | . 87830 | 50.6750 |
| 8.500 BB | 0.1990 | 1267 | 7.85608 |  | . 96604 | 49.3250 |
| Totals |  | 2570 | 0.41260 | 217. | . 84435 |  |

Enantiomeric excess of 6: 93\% (Table 1, entry 9)


Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1}$ H NMR of 6

${ }^{13}$ C NMR of 6

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & p p m\end{array}$


## Yellow Oil

$[\alpha]^{21}{ }_{D}+26.8\left(\mathrm{c} \mathrm{1}, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1}{ }^{1}$ NMR ( 400 MHz, CDCl $_{3}$ ) $\delta 7.63-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.33(\mathrm{~m}, 8 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 5.03-4.93(\mathrm{~m}$, $1 \mathrm{H}), 4.12(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{dt}, J=10.0,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ( $100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 135.4,132.6,132.2,129.9,129.8,127.7,121.1,113.4,112.9$, 111.7, 101.4, 64.9, 59.8, 58.2, 32.3, 26.4, 18.9

FTIR (neat) $3368,3114,2929,2858,2224,1426,1329,1113,825,701,508 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] $]^{+} \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BrClN}_{2} \mathrm{O}_{2} \mathrm{Si} 530.0792$, found 530.0791

## HPLC Condition to determine enantiomeric excess:

Chiral column: Chiralpak AD-H ( $250 \times 4.6 \mathrm{~mm}$ )
Mobile Phase (95/5 = Hexane/IPA)
Flow Rate ( $1.0 \mathrm{~mL} / \mathrm{min}$ ), Detection Wavelength ( 254 nm )
Retention Time: 7.4 min (minor isomer), 8.5 min (major isomer)

Racemate of 7



| Sorted By | $:$ | Signal |
| :--- | :---: | :---: |
| Multiplier | $:$ | 1.0000 |
| Dilution | $:$ | 1.0000 |
| Use Multiplier | Dilution |  |


| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | $\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$ | Type | $\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$ | Area |  | Height |  | Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | maU | *s | [mAU | ] | \% |
| 1 | 7.612 | vB | 0.1818 |  | 1.38043 |  | . 90997 | 50.8621 |
| 2 | 8.694 | Bb | 0.2321 |  | 2.34937 |  | . 40378 | 49.1379 |
| Total | ls : |  |  | 1103 | 3.72980 |  | 4.31375 |  |

Enantiomeric excess of 7: 93\%



Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1} H$ NMR of 7

${ }^{13}$ C NMR of 7


[^1]

## Light Yellow Solid

M.P. $93 \sim 95^{\circ} \mathrm{C}$
$[\alpha]^{22}{ }^{\mathrm{D}}-\mathbf{- 9 . 0}\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1}{ }^{1}$ NMR ( 400 MHz, CDCl $_{3}$ ) $\delta 7.52-7.37(\mathrm{~m}, 10 \mathrm{H}), 7.32(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=1.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.71-4.65(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-$ $3.62(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 135.4,135.3,132.0,131.9,130.2,130.1,130.0,127.8,121.9$, $114.2,111.5,106.3,94.5,65.5,59.0,57.8,33.1,26.5,18.9$

FTIR (neat) $3447,3128,2931,2858,2231,1428,1114,702 \mathrm{~cm}^{-1}$
$\underline{\text { HRMS (EI) calcd for [M] }{ }^{+} \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si} 443.2029 \text {, found } 443.2032}$

## HPLC Condition to determine enantiomeric excess:

Chiral column: Chiralpak AD-H ( $250 \times 4.6 \mathrm{~mm}$ )
Mobile Phase ( $90 / 10=$ Hexane/IPA)
Flow Rate ( $1.0 \mathrm{~mL} / \mathrm{min}$ ), Detection Wavelength ( 254 nm )
Retention Time: 6.0 min (minor isomer), 9.6 min (major isomer)

Racemate of 8



Area Percent Report

| Sorted By | : | Signal |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplier | : | 1.0000 |  |  |  |  |
| Dilution | : | 1.0000 |  |  |  |  |
| Use Multiplier \& Dilution Factor with ISTDs |  |  |  |  |  |  |
| Signal 1: VWD 1 A, Wavelength=254 nm |  |  |  |  |  |  |
| $\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$ | $\begin{gathered} \text { Width } \\ {[\text { min }]} \end{gathered}$ | Area |  | Height |  | Area |
|  |  | mAU | *s | [mad | ] | 8 |
| 6.093 BB | 0.1319 |  | 65.35352 | 101. | 06882 | 50.8989 |
| 9.618 BB | 0.2366 |  | 4.78906 | 54. | 60849 | 49.1011 |
| Totals : |  | 1700 | 0.14258 | 155. | 67732 |  |

Enantiomeric excess of 8: 93\%



Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

${ }^{13}$ C NMR of 8


[^2]

## Light Yellow Solid

M.P. $88 \sim 90^{\circ} \mathrm{C}$
$[\alpha]^{21}{ }_{D}+16.1\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1}{ }^{\mathbf{H}}$ NMR ( 400 MHz, CDCl $_{3} \mathbf{2} \delta 7.71(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.34(\mathrm{~m}, 11 \mathrm{H}), 4.70-4.66(\mathrm{~m}, 1 \mathrm{H})$, $3.94(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.42(\mathrm{~m}$, 1 H ), 2.11-2.05 (m, 2H), $1.72(\mathrm{~s}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 136.4,135.4,135.3,132.0,131.9,130.1,130.1,127.8,123.9$, $114.6,111.2,105.7,65.5,59.3,57.9,33.1,26.6,18.9$

FTIR (neat) $3419,3127,2928,2857,2230,1512,1389,1308,1113,702 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si} 463.1927$, found 463.1932

## HPLC Condition to determine enantiomeric excess:

Chiral column: Chiralpak AD-H ( $250 \times 4.6 \mathrm{~mm}$ )
Mobile Phase (95/5 = Hexane/IPA)
Flow Rate ( $0.9 \mathrm{~mL} / \mathrm{min}$ ), Detection Wavelength ( 254 nm )
Retention Time: 11.2 min (minor isomer), 17.8 min (major isomer)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Racemate of 9


Area Percent Report


Enantiomeric excess of 9: 91\%


[^3]$\begin{array}{lll}\text { Sorted By } & : & \text { Signal } \\ \text { Multiplier } & : & 1.0000\end{array}$
Multiplier $\quad 1.0000$
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD 1 A , wavelength=254 run

| Peak | Rettime Type [min] |  | Width | area |  | Height |  | Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# |  |  | [min] | masu | ${ }^{*}$ | A. | I |  |
| 1 | 11.295 | MM | 0.2763 | 124 | a |  | 7.49312 | 4.49 |
|  | 17.82 | MM | 0.475 | 263 | 28662 |  | . 521 | 5.5 |

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1} H$ NMR of 9

${ }^{13}$ C NMR of 9


[^4]

## Colorless Oil

$[\alpha]^{24}{ }_{\mathrm{D}}-8.2\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1}{ }^{\mathbf{H}} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}\right.$, CDCl $\left._{3}\right) \delta 87.54-7.35(\mathrm{~m}, 10 \mathrm{H}), 6.87(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.61-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=10.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-$ $3.59(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 135.5,135.4,132.3,132.2,129.9,129.9,127.8,127.8,121.8$, 118.2, 112.9, 112.6, 104.3, 66.1, 58.3, 58.3, 33.5, 26.5, 19.0

FTIR (neat) $3394,3114,2930,2858,2223,1427,1128,1113,700 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{25} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{Si} 452.1687$, found 452.1684

## HPLC Condition to determine enantiomeric excess:

Chiral column: Chiralpak AD-H ( $250 \times 4.6 \mathrm{~mm}$ )
Mobile Phase (95/5 = Hexane/IPA)
Flow Rate ( $0.95 \mathrm{~mL} / \mathrm{min}$ ), Detection Wavelength ( 254 nm )
Retention Time: 7.8 min (minor isomer), 10.1 min (major isomer)

Racemate of 10


| Area Percent Report |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Sorted By | : | Signal |  |  |
| Multiplier | : | 1.0000 |  |  |
| Dilution | . | 1.0000 |  |  |
| Use Multiplier \& | ilution | Factor with | ISTDs |  |
| Signal 1: VWD 1 A , Wavelength $=254 \mathrm{~nm}$ |  |  |  |  |
| $\begin{aligned} & \text { Peak RetTime Type } \\ & \# \underset{[\mathrm{~min}]}{ } \end{aligned}$ | Width <br> [min] | $\underset{\text { maU }}{\text { Area }}{ }^{*}$ | $\begin{gathered} \text { Height } \\ {[\mathrm{mAU} \quad]} \end{gathered}$ | $\begin{gathered} \text { Area } \\ \underset{8}{2} \end{gathered}$ |
| 18.103 BB | 0.1766 | 1483.76416 | 130.21782 | 50.2906 |
| $2 \quad 10.371 \mathrm{BV}$ | 0.2285 | 1466.61914 | 99.63952 | 49.7094 |
| Totals : |  | 2950.38330 | 229.85734 |  |

Enantiomeric excess of 10: 93\%


Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1} H$ NMR of 10

${ }^{13}$ C NMR of 10



## Yellow Oil

$[\alpha]^{25}{ }_{\mathrm{D}}-9.3\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1}{ }^{\mathbf{H}}$ NMR ( 400 MHz, CDCl $_{3}$ ) $\delta 7.54-7.36(\mathrm{~m}, 10 \mathrm{H}), 6.92(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.64-4.58(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=10.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-$ $3.61(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 135.4,135.4,132.3,132.2,129.9,129.9,127.8,124.3,120.6$, $112.5,105.2,96.4,66.1,58.3,58.3,33.5,26.5,19.0$

FTIR (neat) 3446, 3071, 2931, 2858, 2221, 1427, 1318, 1113, 758, 702, $504 \mathrm{~cm}^{-1}$
$\underline{\text { HRMS (EI) calcd for }[M]^{+} \mathrm{C}_{25} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{Si} 496.1182 \text {, found } 496.1185}$

## HPLC Condition to determine enantiomeric excess:

Chiral column: Chiralpak AD-H ( $250 \times 4.6 \mathrm{~mm}$ )
Mobile Phase (95/5 = Hexane/IPA)
Flow Rate ( $0.95 \mathrm{~mL} / \mathrm{min}$ ), Detection Wavelength ( 254 nm )
Retention Time: 9.0 min (minor isomer), 11.7 min (major isomer)

Racemate of 11

$==================================================================$
$\begin{array}{lll}\text { Sorted By } & : & \text { Signal } \\ \text { Multiplier } & : & 1.0000\end{array}$
Dilution : 1.0000
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD 1 A , Wavelength=254 nm

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | $\begin{aligned} & \text { Ret Time } \\ & {[\mathrm{min}]} \end{aligned}$ |  | $\begin{aligned} & \text { Width } \\ & {[\mathrm{min}]} \end{aligned}$ | Area |  | Height |  | Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | maU | *s | [mad | U ] |  |
| 1 | 9.196 | BB | 0.2118 |  | 7.13705 |  | 6.39104 | 49.2742 |
| 2 | 12.026 | BB | 0.2892 |  | 1.78235 |  | 7.40550 | 50.7258 |
| Tota |  |  |  | 1008 | 8.91940 |  | 3.79654 |  |

Enantiomeric excess of 11: 94\%



Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1} H$ NMR of 11

${ }^{13}$ C NMR of 11



## Light Yellow Oil

$[\alpha]^{21}{ }_{D}-19.0\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1}{ }^{1}$ N NMR ( 400 MHz, CDCl $_{3}$ ) $\delta 7.53-7.35(\mathrm{~m}, 10 \mathrm{H}), 6.98(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.64-4.58(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=10.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-$ $3.60(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3} \mathbf{3}$ ) 135.5, 135.4, 132.4, 132.3, 129.9, 129.9, 129.2, 127.8, 127.8, 125.6, 112.3, 106.4, 66.2, 59.9, 58.3, 58.2, 33.6, 26.6, 19.0

FTIR (neat) 3447, 3071, 2930, 2857, 2222, 1589, 1460, 1427, 1310, 1114, 758, 702, $504 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SiI} 543.0965$, found 543.0968

## HPLC Condition to determine enantiomeric excess:

Chiral column: Chiralpak AD-H ( $250 \times 4.6 \mathrm{~mm}$ )
Mobile Phase (95/5 = Hexane/IPA)
Flow Rate ( $1.0 \mathrm{~mL} / \mathrm{min}$ ), Detection Wavelength ( 254 nm )
Retention Time: 9.4 min (major isomer), 10.9 min (minor isomer)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Racemate of 12



Enantiomeric excess of 12: 93\%

$\begin{array}{lll}\text { Sorted By } & : & \text { Signal } \\ \text { Multiplier } & : & 1.0000\end{array}$
Dilution
Use Multiplier a Dilution Factor with ISTD

Signal 1: vid 1 A , Wavelength=254 nin


Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1} H$ NMR of 12

${ }^{13}$ C NMR of 12

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$


## Colorless Oil

$[\alpha]^{21}{ }_{\mathrm{D}}-22.5\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 8 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 4.99-4.92(\mathrm{~m}$, 1 H ), 4.14 (dd, $J=10.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.89 (dd, $J=11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.70-3.63 (m, 1H), 3.44$3.36(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13}{ }^{\mathbf{C}} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 135.4,132.6,132.2,129.9,129.8,127.7,124.3,112.6,106.2$, $104.4,89.4,65.1,63.4,58.2,32.5,26.5,18.9$

FTIR (neat) 3448, 3071, 2930, 2857, 2219, 1427, 1306, 1113, 741, 702, $504 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{SiI} 578.0653$, found 578.0648

## HPLC Condition to determine enantiomeric excess:

Chiral column: Chiralpak AD-H ( $250 \times 4.6 \mathrm{~mm}$ )
Mobile Phase (95/5 = Hexane/IPA)
Flow Rate ( $0.9 \mathrm{~mL} / \mathrm{min}$ ), Detection Wavelength ( 254 nm )
Retention Time: 8.0 min (minor isomer), 10.2 min (major isomer)

Racemate of 13


Area Percent Report
$\begin{array}{lll}\text { Sorted By } & : & \text { Signal } \\ \text { Multiplier } & : & 1.0000\end{array}$
Dilution : $\quad 1.0000$
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | $\begin{gathered} \text { Ret Time } \\ {[\mathrm{min}]} \end{gathered}$ |  | $\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$ | $\underset{\operatorname{mAU}}{\text { Area }}{ }^{*}$ | $\underbrace{\mathrm{H}}_{[\mathrm{mAU} \mathrm{Height}}$ | $\begin{gathered} \text { Area } \\ 8 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.010 | vB | 0.1696 | 1133.12988 | 102.61249 | 49.2445 |
| 2 | 10.216 | bв | 0.2239 | 1167.89673 | 80.13323 | 50.7555 |
| ta |  |  |  | 2301.02661 | 182.74572 |  |

Enantiomeric excess of 13: 93\%



Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1} H$ NMR of 13

${ }^{13}$ C NMR of 13



## Yellow Oil

$[\alpha]^{21}{ }_{\mathrm{D}}-44.8\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathbf{H}$ NMR ( 400 MHz, CDCl $_{3}$ ) $\delta 7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 8 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 4.98-4.92(\mathrm{~m}$, $1 \mathrm{H}), 4.14(\mathrm{dd}, J=10.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{dt}$, $J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ( $100 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta 135.5,132.6,132.3,129.9,129.8,127.8,124.4,112.6,106.3$, $104.5,89.3,65.2,63.4,58.3,32.6,26.5,19.0$

FTIR (neat) $3456,3071,2930,2219,1427,1311,1114,758,702,504 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{SiI} 622.0148$, found 622.0153

## HPLC Condition to determine enantiomeric excess:

Chiral column: Chiralpak AD-H ( $250 \times 4.6 \mathrm{~mm}$ )
Mobile Phase (95/5 = Hexane/IPA)
Flow Rate ( $1.0 \mathrm{~mL} / \mathrm{min}$ ), Detection Wavelength ( 254 nm )
Retention Time: 7.8 min (minor isomer), 10.1 min (major isomer)

Racemate of 14


| Sorted By | $:$ | Signal |
| :--- | :--- | :--- |
| Multiplier | $:$ | 1.0000 |
| Dilution | $:$ | 1.0000 |

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, wavelength=254 nm

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | $\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$ | Type | $\begin{aligned} & \text { Width } \\ & {[\mathrm{min}]} \end{aligned}$ | Area |  | Height |  | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | mAU | *s | [mAU | ] |  |
| 1 | 7.801 | vB | 0.1779 | 1848 | . 33374 | 160. | 63713 | 49.7617 |
| 2 | 10.064 | vB | 0.2463 | 1866 | . 03979 | 117. | . 60342 | 50.2383 |
| Tota |  |  |  | 3714 | . 37354 | 278. | 24055 |  |

Enantiomeric excess of 14: 94\%


| Area Percent Report |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Sorted By | : | signal |  |  |
| Multiplier | : | 1.0000 |  |  |
| Dilution | : | 1.0000 |  |  |
| Use Multiplier \& | ilution | Factor with | ISTDs |  |
| Signal 1: VWD 1 A , | Waveleng | $\mathrm{gth}=254 \mathrm{~nm}$ |  |  |
| $\begin{gathered} \text { Peak } \\ \# \quad[\mathrm{Ret} \text { Time } \\ \# \mathrm{~min}] \end{gathered}$ | Width <br> [min] | $\operatorname{maU}^{\text {Area }}{ }^{*}$ | $\begin{gathered} \text { Height } \\ {[\mathrm{mAU} \mathrm{e}} \end{gathered}$ | $\begin{gathered} \text { Area } \\ 8 \end{gathered}$ |
| 7.845 VB | 0.1788 | 32.74894 | 2.82841 | 2.9481 |
| 210.105 vb | 0.2393 | 1078.10925 | 70.02004 | 97.0519 |
| Totals : |  | 1110.85819 | 72.84845 |  |

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1} H$ NMR of 14

${ }^{13}$ C NMR of 14


[^5]

## Light Yellow Oil

$[\alpha]^{21}{ }_{\mathrm{D}}-36.0\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathbf{H}$ NMR ( 400 MHz, CDCl $_{3}$ ) $\delta 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 5.03-4.96(\mathrm{~m}$, $1 \mathrm{H}), 4.12(\mathrm{dd}, J=10.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=10.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.45-$ 3.37 (m, 1H), 2.35-2.27 (m, 1H), 2.08-1.99 (m, 1H), 1.40 (s, 1H), 0.96 (s, 9H)
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 135.4,132.6,132.3,129.9,129.8,129.7,127.8,127.7,112.3$, $105.5,95.5,77.2,75.5,65.2,64.3,58.2,32.7,26.5,19.0$

FTIR (neat) $3452,3071,2930,2218,1427,1362,1298,1113,757,702,504 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SiI}_{2} 670.0010$, found 670.0005

## HPLC Condition to determine enantiomeric excess:

Chiral column: Chiralpak AD-H ( $250 \times 4.6 \mathrm{~mm}$ )
Mobile Phase (95/5 = Hexane/IPA)
Flow Rate ( $0.9 \mathrm{~mL} / \mathrm{min}$ ), Detection Wavelength ( 254 nm )
Retention Time: 16.6 min (major isomer), 17.7 min (minor isomer)

Racemate of 15


[^6]| Sorted By | $:$ | Signal |
| :--- | :---: | :---: |
| Multiplier | $:$ | 1.0000 |
| Dilution | $:$ | 1.0000 |
| Use Multiplier | \& | Dilution |

Signal 1: VWD 1 A , Wavelength=254 nm

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | $\begin{gathered} \text { Ret Time } \\ {[\mathrm{min}]} \end{gathered}$ |  | $\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$ | Area |  | Height |  | Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | mad | * 3 | [mAU | ] |  |
| 1 | 16.670 | BV | 0.4455 | 382 | . 52658 |  | 38793 | 49.9451 |
| 2 | 17.775 | vB | 0.5043 | 383 | . 36755 |  | 98154 | 50.0549 |
| Tota | s : |  |  | 765 | . 89413 |  | 36947 |  |

Enantiomeric excess of 15: 92\%



Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1} H$ NMR of 15

${ }^{13}$ C NMR of 15



Iodomethane ( $6.2 \mathrm{~mL}, 0.2 \mathrm{M}$ ) and silver oxide ( $431 \mathrm{mg}, 1.86 \mathrm{mmol}$ ) was added to a solution of the conjugate product $\mathbf{6}(715 \mathrm{mg}, 1.24 \mathrm{mmol})$ in acetonitrile $(6.2 \mathrm{~mL}, 0.2 \mathrm{M})$ at rt . The mixture was allowed to stir at reflux for 12 h . The solids were removed by filtration and the solvents removed. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}: 10 \% \mathrm{EtOAc}\right.$ in hexanes) to provide the ether $\mathbf{1 6}$ in $98 \%$ yield ( $717 \mathrm{mg}, 1.22 \mathrm{mmol}$ ) as a colorless oil.

## Colorless Oil

## $[\alpha]^{20}{ }_{D}+30.9\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$

${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 8 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 5.01-4.96(\mathrm{~m}$, $1 \mathrm{H}), 4.11(\mathrm{t}, \mathrm{J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H})$, $3.04(\mathrm{dt}, J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ( $100 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta 135.4,132.7,132.4,129.8,129.8,127.7,123.7,114.3,112.8$, $102.4,98.9,67.8,64.9,60.6,58.6,30.1,26.5,18.9$

FTIR (neat) 3071, 2930, 2857, 2221, 1415, 1313, 1114, 798, 702, $504 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si} 588.0443$, found 588.0442

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1} H$ NMR of 16

${ }^{13}$ C NMR of 16


[^7]
1.25 M HCl solution in methanol ( $6.4 \mathrm{~mL}, 8.0 \mathrm{mmol}$ ) was added to $\mathbf{1 6}(236 \mathrm{mg}, 0.4$ mmol ). The mixture was stirred at rt for 12 h , at which point 1.25 M HCl solution in methanol $(6.4 \mathrm{~mL}, 8.0 \mathrm{mmol})$ was added once more and the mixture was stirred at rt for 48 h . The mixture was evaporated to remove methanol and quenched by saturated $\mathrm{NaHCO}_{3}$. The mixture was extracted with ethyl acetate and the organic layer was dried over $\mathrm{MgSO}_{4}$. Filtration, concentration, and purification by flash chromatography ( $\mathrm{SiO}_{2}: 30 \%$ EtOAc in hexanes) provided the alcohol 17 in $90 \%$ yield ( $126 \mathrm{mg}, 0.358 \mathrm{mmol}$ ) as a white solid.

## White Solid

M.P. $63 \sim 65^{\circ} \mathrm{C}$
$[\alpha]^{21}{ }_{D}-5.2\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1}{ }^{1}$ NMR ( 400 MHz, CDCl $_{3}$ ) $\delta 6.95(\mathrm{~s}, 1 \mathrm{H}), 4.90-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.93(\mathrm{~m}$, $1 \mathrm{H}), 3.47-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dt}, J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.15$ (m, 1H), $2.05(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 123.7,113.9,112.7,102.3,99.5,67.9,63.5,61.0,58.6,30.4$

FTIR (neat) $3449,3124,2890,2226,1411,1379,1313,1121,1085,828 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} 349.9265$, found 349.9263

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

${ }^{13}$ C NMR of 17


p-Toluenesulfonyl chloride ( $136 \mathrm{mg}, 0.713 \mathrm{mmol}$ ) was added to a solution of $\mathbf{1 7}(114 \mathrm{mg}$, $0.324 \mathrm{mmol})$ in pyridine $(0.32 \mathrm{~mL}, 1.0 \mathrm{M})$. The mixture was allowed to stir at rt for 16 h . The mixture was quenched by water and extracted with ethyl acetate. The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, concentration, and purification by flash chromatography ( $\mathrm{SiO}_{2}$ : $25 \%$ EtOAc in hexanes) provided the tosylate 18 in $97 \%$ yield ( 159 $\mathrm{mg}, 0.314 \mathrm{mmol}$ ) as a colorless oil.

## Colorless Oil

## $[\alpha]^{20}{ }_{D}-12.0\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$

${ }^{1}{ }^{\mathbf{H}} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H})$, 5.11-5.01 (m, 1H), $4.53(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=10.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.36(\mathrm{~m}, 1 \mathrm{H})$, 3.23 (s, 3H), 2.96 (dt, $J=9.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (s, 3H), 2.29-2.20 (m, 1H), 2.16-2.07 (m, 1H)
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) ~ \delta 145.2,132.0,129.9,127.6,124.0,113.9,112.3,102.1,99.5$, 69.4, 67.2, 58.6, 57.4, 30.3, 21.6

FTIR (neat) 3125, 2927, 2877, 2221, 1598, 1367, 1177, 1122, 981, 813, 666, $554 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 503.9354$, found 503.9358

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1} H$ NMR of 18

${ }^{13}$ C NMR of 18



Sodium azide ( $122 \mathrm{mg}, 1.884 \mathrm{mmol}$ ) was added to a solution of $18(159 \mathrm{mg}, 0.314 \mathrm{mmol})$ in dimethyl sulfoxide $(3.14 \mathrm{~mL}, 0.1 \mathrm{M})$ at rt . The mixture was allowed to stir at $65{ }^{\circ} \mathrm{C}$ for 24 h . The mixture was quenched by water and extracted with ethyl acetate. The organic layers was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, concentration, and purification by flash chromatography $\left(\mathrm{SiO}_{2}: 20 \% \mathrm{EtOAc}\right.$ in hexanes) provided the azide 19 in $82 \%$ yield ( 97 mg , 0.257 mmol ) as a white solid.

## White Solid

M.P. $45 \sim 47{ }^{\circ} \mathrm{C}$
$[\alpha]^{21}{ }_{D}+4.0\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathbf{~ M H z}$, CDCl $_{3}$ ) $\delta 6.99(\mathrm{~s}, 1 \mathrm{H}), 4.97-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dd}, \mathrm{J}=$ $13.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{dt}, J=10.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.32(\mathrm{~m}$, $1 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 124.4,114.0,112.7,102.3,99.7,67.4,58.7,58.2,53.6,31.6$

FTIR (neat) $3101,2936,2217,2101,1413,1312,1275,1121,1086,965,914 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~N}_{5} \mathrm{O} 374.9330$, found 374.9328

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1} H$ NMR of 19

${ }^{13}$ C NMR of 19
$\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & p p m\end{array}$


1 N aqueous sodium hydroxide ( $0.48 \mathrm{~mL}, 0.48 \mathrm{mmol}$ ) and hydrogen peroxide ( $30 \mathrm{wt} . \%$ in $\mathrm{H}_{2} \mathrm{O}, 0.48 \mathrm{~mL}, 0.144 \mathrm{mmol}$ ) were added to a solution of $19(91 \mathrm{mg}, 0.241 \mathrm{mmol})$ in methanol-dichloromethane ( $10: 1 \mathrm{v} / \mathrm{v}, 4.82 \mathrm{~mL}, 0.05 \mathrm{M}$ ). The mixture was allowed to stir at rt for 12 h . The mixture was quenched by saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with dichloromethane and water. The organic layer was dried over $\mathrm{MgSO}_{4}$. Filtration, concentration, and purification by flash chromatography ( $\mathrm{SiO}_{2}: 40 \% \mathrm{EtOAc}$ in hexanes) provided the azide-amide $\mathbf{2 0}$ in $95 \%$ yield ( $91 \mathrm{mg}, 0.229 \mathrm{mmol}$ ) as a colorless oil.

## Colorless Oil

$[\alpha]^{19}{ }_{D}-36.0\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1}{ }^{1}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3} \mathbf{3}_{2}$ mixture of two conformers, major : minor $=57: \mathbf{4 3}$ )
$\delta 6.82(\mathrm{~s}, 0.57 \mathrm{H})$ and $6.73(\mathrm{~s}, 0.43 \mathrm{H}), 6.01-5.73(\mathrm{~m}, 2.43 \mathrm{H})$ and $4.99-4.89(\mathrm{~m}, 0.57 \mathrm{H}), 4.36(\mathrm{t}, J$ $=11.2 \mathrm{~Hz}, 0.57 \mathrm{H})$ and $4.10(\mathrm{t}, J=11.2 \mathrm{~Hz}, 0.43 \mathrm{H}), 3.62(\mathrm{dd}, J=12.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.32(\mathrm{~m}$, $1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.17(\mathrm{~m}, 0.43 \mathrm{H})$ and $3.06-2.98(\mathrm{~m}, 0.57 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.06$ (m, 1H)

## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of two conformers)

Maior: $\delta 161.9,126.6,117.8,114.7,98.9,68.5,59.0,58.5,54.1,31.9$
Minor: $\delta 161.9,129.5,115.8,107.2,101.6,68.8,58.5,55.5,53.1,31.1$

FTIR (neat) $3345,3188,2928,2874,2102,1662,1606,1420,1278,1118,953,758 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~N}_{5} \mathrm{O}_{2} 392.9436$, found 392.9439
${ }^{1} H$ NMR of 20

${ }^{13}$ C NMR of 20



Triphenylphosphine ( $195 \mathrm{mg}, 0.75 \mathrm{mmol}$ ) was added to a solution of $20(135 \mathrm{mg}, 0.34$ $\mathrm{mmol})$ in tetrahydrofuran $(3.4 \mathrm{~mL}, 0.1 \mathrm{M})$. The mixture was stirred at rt for 1 h , at which point water ( $0.037 \mathrm{~mL}, 2.04 \mathrm{mmol}$ ) was added and the mixture was refluxed for 20 h . The solvent removed and the residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}: 85 \% \mathrm{EtOAc}\right.$ in hexanes $)$ to give the pyrrolopiperazinone 21 in $84 \%$ yield ( $100 \mathrm{mg}, 0.285 \mathrm{mmol}$ ) as a white solid.

## White Solid

M.P. $113 \sim 115^{\circ} \mathrm{C}$
$[\alpha]^{21}{ }_{D}-27.1\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 4.52-4.47(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=$ $13.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.04(\mathrm{~m}$, $1 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl 32$) ~ \delta 159.8,124.7,115.6,106.7,100.5,68.7,58.7,52.0,42.9,31.7$

FTIR (neat) $3215,3083,2923,1651,1547,1466,1427,1332,1120,963,760 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} 349.9265$, found 349.9266

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011
${ }^{1} H$ NMR of 21

${ }^{13}$ C NMR of 21
$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & p p m\end{array}$


Boron tribromide ( 1 M solution in dichloromethane, $1.2 \mathrm{~mL}, 1.2 \mathrm{mmol}$ ) was slowly added to a solution of $21(84 \mathrm{mg}, 0.24 \mathrm{mmol})$ in dichloromethane $(2.8 \mathrm{~mL}, 0.085 \mathrm{M})$ at $-20^{\circ} \mathrm{C}$. The mixture was stirred at rt for 6 h and quenched by water. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. Filtration, concentration, and purification by flash chromatography ( $\mathrm{SiO}_{2}: 5 \% \mathrm{MeOH}$ in dichloromethane) provided the key intermediate 22 in $85 \%$ yield ( $69 \mathrm{mg}, 0.204 \mathrm{mmol}$ ) as a white solid.

## White Solid

M.P. $139 \sim 141{ }^{\circ} \mathrm{C}$
$[\alpha]^{19}{ }_{D}-28.9\left(\mathrm{c} 1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathbf{H}^{\text {NMR }}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 6.91(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=13.6,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.68-3.63 (m, 3H), 2.03-1.94 (m, 1H), 1.87-1.79 (m, 1H)
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \underline{\text { OD }}$ ) $\delta 161.1,126.1,116.3,108.0,101.2,59.2,53.3,43.3,35.5$

FTIR (neat) $3431,3243,2921,1647,1617,1545,1426,1335,1053,960,750 \mathrm{~cm}^{-1}$

HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} 335.9109$, found 335.9109
${ }^{1} H$ NMR of 22

${ }^{13}$ C NMR of 22




[^0]:    1. (a) Smith, J. A.; Ng, S.; White, J. Org. Biomol. Chem. 2006, 4, 2477. (b) Schmuck, C.; Dudaczek, J. Tetrahedron Lett. 2005, 46, 7101. (c) Loader, C. E.; Anderson, H. J. Can. J. Chem. 1981, 59, 2673.
    2. Avi, M.; Gaisberger, R.; Feichtenhofer, S.; Griengl, H. Tetrahedron 2009, 65, 5418.
    3. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
[^1]:    $\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^2]:    $\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^3]:    $=======================================$
    Area Percent Report

[^4]:    $\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \text { ppm }\end{array}$

[^5]:    $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^6]:    - 

    Area Percent Report

[^7]:    $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

