Electronic Supplementary Information

The Reactivity of Quaternary Ammonium- *versus* Potassium-Fluorides Supported on Metal Oxides: Paving the Way to an Instantaneous Detoxification of Chemical Warfare Agents

Yossi Zafrani^{*}, Lea Yehezkel, Michael Goldvaser, Daniele Marciano, Daniel Waysbort, Eytan Gershonov and Ishay Columbus^{*}

The Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel; E-mail: yossiz@iibr.gov.il; ishayc@iibr.gov.il

Table of contents:

Fig. S2: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on KF/Al₂O₃ (6, EtOH, 60), containing 1 mmol KF, and its degradation profile onto this sorbent.

Fig. S3: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on TMAF/Al₂O₃ (16, EtOH, 60), containing 1 mmol TMAF, and its degradation profile onto this sorbent.

Fig. S4: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on TMAF/Al₂O₃ (33, EtOH, 60), containing 2 mmol TMAF, and its degradation profile onto this sorbent.

Fig. S5: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on TEAF/Al₂O₃ (18, EtOH, 60), containing 1 mmol TEAF, and its degradation profile onto this sorbent.

Fig. S6: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on DTMAF/Al₂O₃ (27, EtOH, 60), containing 1 mmol DTMAF, and its degradation profile onto this sorbent.

Fig. S7: ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on BTMAF/Al₂O₃ (20, EtOH, 60), containing 1 mmol TAAF, and its degradation profile onto this sorbent.

Fig. S8: Selected ${}^{13}C$ MAS NMR spectra of adsorbed HD* (5% wt) on TBAF/Al₂O₃ (20, EtOH, 60) and its degradation profile onto this sorbent.

Fig. S9: ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on KF/SiO₂ (12, EtOH, 60), containing 2 mmol KF, and its degradation profile onto this sorbent.

Fig. S10: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on TEAF/SiO₂ (18, EtOH, 60), containing 1 mmol TEAF, and its degradation profile onto this sorbent.

Fig. S11: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on TEAF/TiO₂ (18, EtOH, 60), containing 1 mmol TEAF, and its degradation profile onto this sorbent.

Fig. S12: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on KF/TiO₂ (12, EtOH, 60), containing 2 mmol KF.

Fig. S13: Selected ${}^{31}P$ MAS NMR spectra of adsorbed VX (1% wt) on KF/Al₂O₃ (25, EtOH, 60) and its degradation profile onto this sorbent.

Fig. S14: Selected ${}^{31}P$ MAS NMR spectra of adsorbed VX (1% wt) on TBAF/Al₂O₃ (20, EtOH, 60) and its degradation profile onto this sorbent.

Fig. S15: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on KF/Al₂O₃ (25, EtOH, 60) and its degradation profile onto this sorbent.

Fig. S16: Selected ¹³C MAS NMR spectra of adsorbed HD* (10% wt) on KF/Al₂O₃ (25, EtOH, 60) and its degradation profile onto this sorbent.

Fig. S17: Selected ¹³C MAS NMR spectra of adsorbed HD* (10% wt) on TBAF/KF/Al₂O₃ (20, 20, EtOH, 60) and its degradation profile onto this sorbent.

Fig. S18: Selected ³¹P MAS NMR spectra of adsorbed VX (10% wt) on TBAF/KF/Al₂O₃ (20, 20, EtOH, 60) and its degradation profile onto this sorbent.

Fig. S19: ³¹P MAS NMR spectra of adsorbed GB (10% wt) on TBAF/KF/Al₂O₃ (20, 20, EtOH, 60) and its degradation profile onto this sorbent.

Fig. S20: GC-MS chromatogram of the extraction mixture of HD* on KF/TiO₂ (12, EtOH, 60).

Fig. S2: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on KF/Al₂O₃ (6, EtOH, 60), containing 1 mmol KF, and its degradation profile onto this sorbent.

Fig. S3: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on TMAF/Al₂O₃ (16, EtOH, 60), containing 1 mmol TMAF, and its degradation profile onto this sorbent.

Fig. S4: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on TMAF/Al₂O₃ (33, EtOH, 60), containing 2 mmol TMAF, and its degradation profile onto this sorbent.

Fig. S5: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on TEAF/Al₂O₃ (18, EtOH, 60), containing 1 mmol TEAF, and its degradation profile onto this sorbent.

Fig. S6: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on DTMAF/Al₂O₃ (27, EtOH, 60), containing 1 mmol DTMAF, and its degradation profile onto this sorbent.

Fig. S7: ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on BTMAF/Al₂O₃ (20, EtOH, 60), containing 1 mmol TAAF, and its degradation profile onto this sorbent.

Fig. S8: Selected ¹³C MAS NMR spectra of adsorbed HD* (5% wt) on TBAF/Al₂O₃ (20, EtOH, 60) and its degradation profile onto this sorbent.

Fig. S9: ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on KF/SiO₂ (12, EtOH, 60), containing 2 mmol KF, and its degradation profile onto this sorbent.

Fig. S10: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on TEAF/SiO₂ (18, EtOH, 60), containing 1 mmol TEAF, and its degradation profile onto this sorbent.

time [min]

Fig. S11: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on TEAF/TiO₂ (18, EtOH, 60), containing 1 mmol TEAF, and its degradation profile onto this sorbent.

Fig. S12: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on KF/TiO₂ (12, EtOH, 60), containing 2 mmol KF. One of the degradation products on this sorbent is (2-chloroethyl)(2-fluoroethyl) sulfide. The NMR chemical shifts of this product are overlapping with HD* and bis(2-fluoroethyl)sulfide.

Fig. S13: Selected ³¹P MAS NMR spectra of adsorbed VX (1% wt) on KF/Al₂O₃ (25, EtOH, 60) and its degradation profile onto this sorbent.

Fig. S14: Selected ³¹P MAS NMR spectra of adsorbed VX (1% wt) on TBAF/Al₂O₃ (20, EtOH, 60) and its degradation profile onto this sorbent.

Fig S15: Selected ¹³C MAS NMR spectra of adsorbed HD* (1% wt) on KF/Al₂O₃ (25, EtOH, 60) and its degradation profile onto this sorbent.

Fig. S16: Selected ¹³C MAS NMR spectra of adsorbed HD* (10% wt) on KF/Al₂O₃ (25, EtOH, 60) and its degradation profile onto this sorbent.

Fig. S17: Selected ¹³C MAS NMR spectra of adsorbed HD* (10% wt) on TBAF/KF/Al₂O₃ (20, 20, EtOH, 60) and its degradation profile onto this sorbent.

Fig S18: Selected ³¹P MAS NMR spectra of adsorbed VX (10% wt) on TBAF/KF/Al₂O₃ (20, 20, EtOH, 60) and its degradation profile onto this sorbent.

Fig S19: ³¹P MAS NMR spectra of adsorbed GB (10% wt) on TBAF/KF/Al₂O₃ (20, 20, EtOH, 60) and its degradation profile onto this sorbent.

Fig. S20: The GC-MS-EI chromatogram and the EI and CI mass spectra of the degradation products from the extraction mixture of HD* on KF/TiO₂ (12, EtOH, 60).