Electronic supplementary information

Hydrolysis of 1-(X-substituted-benzoyl)-4-aminopyridinium ions: Effect of substituent X on reactivity and reaction mechanism

Ik-Hwan Um,* Eun-Hee Kim, and Ji-Sun Kang

Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750,

Korea.

e-mail: ihum@ewha.ac.kr Tel: 82-2-3277-2349. Fax: 822-3277-2844.

Table of contents

Tables S1-S9 Kinetic data for the hydrolysis of 1-(X-substituted-benzoyl)-4aminopyridinium ions **2a-i** in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C -----2 – 4

Figs. S1-S8 Plots of k_{obsd} vs. [4-aminopyridine] for the hydrolysis of 1-(X-substitutedbenzoyl)-4-aminopyridinium ions **2a-i** in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C --

Figs. S9-S17¹H NMR spectra for 2,4-dinitrophenyl X-substituted benzoates 1a-i ----9 - 13

[4-amin	nopyridine] / mM	$10^4 k_{\rm obsd} / {\rm s}^{-1}$
	24.2	3.21
	43.4	4.38
	58.9	5.12
	71.7	5.73
	82.4	6.34
	103	7.33
$k_{\text{cat}} = 0.00518 \pm 0.0001 \text{ M}^{-1} \text{s}^{-1}$		
$r_{\rm c} = 0.000204 \pm 0.000008 {\rm s}^{-1}$		

Table S1 Kinetic data for the hydrolysis of 1-(4-dimethylaminobenzoyl)-4-aminopyridinium ion 2a in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C

 $k_0 = 0.000204 \pm 0.000008 \text{ s}$ $R^2 = 0.9990$

Table S2 Kinetic data for the hydrolysis of 1-(4-methoxybenzoyl)-4-aminopyridinium ion 2b in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C

_		
	[4-aminopyridine] / mM	$10^3 k_{\rm obsd} / {\rm s}^{-1}$
	9.81	5.23
	18.7	6.22
	26.9	7.20
	34.3	8.03
	41.2	8.87
116 ± 0.001 N	1 ⁻¹ -1	

 $k_{\text{cat}} = 0.116 \pm 0.001 \text{ M}^{-1} \text{s}^{-1}$ $k_0 = 0.000408 \pm 0.000020 \text{ s}^{-1}$ $\text{R}^2 = 0.9999$

Table S3 Kinetic data for the hydrolysis of 1-(4-methylbenzoyl)-4-aminopyridinium ion 2c in 80 mol % H₂O/20 mol % DMSO at 25.0 \pm 0.1 °C

	[4-aminopyridine] / mM	$10^3 k_{\rm obsd} / {\rm s}^{-1}$		
_	9.81	11.5		
	18.7	13.9		
	26.9	16.3		
	34.3	18.3		
	41.2	20.0		
$-0.272 + 0.004 \sqrt{4}$	-11			

 $k_{\text{cat}} = 0.273 \pm 0.004 \text{ M}^{-1} \text{s}^{-1}$ $k_{\text{o}} = 0.00884 \pm 0.00010 \text{ s}^{-1}$ $\text{R}^{2} = 0.9996$

[4-aminopyridine] / mM	$10^{3}k_{\rm obsd} /{\rm s}^{-1}$
9.81	17.8
18.7	22.0
26.9	25.9
34.3	29.1
41.2	32.3

Table S4 Kinetic data for the hydrolysis of 1-(3-methylbenzoyl)-4-aminopyridinium ion 2d in 80 mol % H₂O/20 mol % DMSO at 25.0 \pm 0.1 °C

k $k_0 = 0.0134$ $R^2 = 0.9998$

Table S5 Kinetic data for the hydrolysis of 1-benzoyl-4-aminopyridinium ion 2e in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C

$\frac{1}{2} = \frac{1}{2} = \frac{1}$				
	[4-aminopyridine] / mM	$10^3 k_{\rm obsd} / {\rm s}^{-1}$		
	4.08	19.8		
	8.00	22.1		
	15.4	26.1		
	22.3	30.5		
	28.7	33.8		
	34.7	37.7		

 $k_{\text{cat}} = 0.581 \pm 0.008 \text{ M}^{-1} \text{s}^{-1}$ $k_0 = 0.0174 \pm 0.0002 \text{ s}^{-1}$ $\text{R}^2 = 0.9996$

Table S6 Kinetic data for the hydrolysis of 1-(4-chlorobenzoyl)-4-aminopyridinium ion 2f in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C

		-
	[4-aminopyridine] / mM	$10^3 k_{\rm obsd} / {\rm s}^{-1}$
	4.04	42.1
	7.92	46.4
	11.7	50.4
	15.3	54.0
	18.7	58.0
$1.07 \pm 0.01 \mathrm{M}^{-1}\mathrm{s}^{-1}$	5	

 $k_{\text{cat}} = 1.07 \pm 0.01 \text{M}^{-1} \text{s}^{-1}$ $k_{\text{o}} = 0.0378 \pm 0.0002 \text{ s}^{-1}$ $\text{R}^{2} = 0.9997$

Table S7	/ Kinetic	data for	the hydroly:	sis of 1-(.	3-chlorob	enzoyl)-4-ai	ninopyridi	inium io	on 2 g	g in
80 mo	1% H ₂ O	/20 mol	% DMSO at	25.0 ± 0	.1 °C					

(0, 2)
69.3
72.6
82.3
91.3
98.9
106

 $k_{\text{cat}} = 2.26 \pm 0.04 \text{ M}^{-1} \text{s}^{-1}$ $k_0 = 0.0640 \pm 0.0008 \text{ s}^{-1}$ $\text{R}^2 = 0.9993$

Table S8 Kinetic data for the hydrolysis of 1-(4-cyanobenzoyl)-4-aminopyridinium ion **2h** in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C

	[4-aminonvridine] / mM	$k_{1,1}/s^{-1}$
-		nobsd / 5
	1.03	0.143
	1.63	0.148
	2.44	0.154
	2.84	0.157
	3.24	0.160
	4.04	0.166
$k_{\rm cat} = 7.60 \pm 0.07 {\rm M}^{-1} {\rm s}^{-1}$	-1	
$k_{\rm o} = 0.135 \pm 0.0002 \ \rm s^{-1}$	1	
$R^2 = 0.9998$		

Table S9 Kinetic data for the hydrolysis of 1-(4-chloro-3-nitrobenzoyl)-4-aminopyridinium ion **2i** in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C

[4-aminopyridine] / mM	$k_{\rm obsd}$ / s ⁻¹
10.2	0.406
20.4	0.505
30.6	0.614
40.8	0.705
51.0	0.798
$0 \pm 0.18 \text{ M}^{-1} \text{s}^{-1}$	

 $k_{\text{cat}} = 9.65 \pm 0.18 \text{ M}^{-1} \text{s}^{-1}$ $k_{\text{o}} = 0.310 \pm 0.006 \text{ s}^{-1}$ $\text{R}^{2} = 0.9994$

Fig. S1 Plot of k_{obsd} vs. [4-aminopyridine] for the hydrolysis of 1-(4-dimethylaminobenzoyl)-4-aminopyridinium ion 2a in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S2 Plot of k_{obsd} vs. [4-aminopyridine] for the hydrolysis of 1-(4-methoxybenzoyl)-4aminopyridinium ion 2b in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S3 Plot of k_{obsd} vs. [4-aminopyridine] for the hydrolysis of 1-(4-methylbenzoyl)-4-aminopyridinium ion **2c** in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S4 Plot of k_{obsd} vs. [4-aminopyridine]] for the hydrolysis of 1-(3-methylbenzoyl)-4-aminopyridinium ion **2d** in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S5 Plot of k_{obsd} vs. [4-aminopyridine] for the hydrolysis of 1-(4-chlorobenzoyl)-4aminopyridinium ion 2f in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S6 Plot of k_{obsd} vs. [4-aminopyridine] for the hydrolysis of 1-(3-chlorobenzoyl)-4aminopyridinium ion 2g in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S7 Plot of k_{obsd} vs. [4-aminopyridine] for the hydrolysis of 1-(4-cyanobenzoyl)-4aminopyridinium ion **2h** in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

Fig. S8 Plot of k_{obsd} vs. [4-aminopyridine] for the hydrolysis of 1-(4-chloro-3-nitrobenzoyl)-4-aminopyridinium ion **2i** in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1.

exp7 s2pul sample sample solvent file solvent solve dfrq dn dpwr dof dm dmm dmf dseq dres homo temp nnn c 200 1.0 n 25.0 -NO₂ gf gfs wtfile proc fn math 1.200 not used ft not used werr wexp wbs wnt wft 9 8 7 10 5 6 4 3 2 1 ppm Fig. S13 ¹H NMR spectrum of 2,4-dinitrophenyl benzoate (1e). 4-C1 exp7 2501 tate 2011 tate 2013 file 0.0013 file DEC. dfrq dn dpwr dof dmm dmf dseq dres homo temp PROCI gf gfs wtfile proc fn math VT 500.122 H1 30 0 nnn c 200 1.0 25.0 CESSING NO2 NO₂ CI-1.200 not used 1f ft not used werr wexp wbs wnt wft 5 1 10 9 8 7 6 4 3 2 ppm Fig. S14 ¹H NMR spectrum of 2,4-dinitrophenyl 4-chlorobenzoate (1f).

