Supporting Information of Chiral Phosphoproline-Catalyzed Asymmetric Michael Addition of Ketones to Nitroolefins: an Experimental and Theoretical Study.

Zhiping Zeng, ^a Ping Luo, ^a Yao Jiang, ^a Yan Liu, ^a Guo Tang, ^a Pengxiang Xu, ^a Yufen Zhao * ^a ^band G. Michael Blackburn *^c

^a Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China. Fax: +8605922185780; Tel: +8605922185780; E-mail: yfzhao@xmu.edu.cn. ^bThe Key Laboratory for Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, School of Sciences,

Tsinghua University, Beijing, 100084, P. R. China. ^cKrebs Institute, Department of Molecular Biology & Biotechnology, Sheffield University, S10 2TN, UK. Fax: +44 114 2222800; Tel: +44 114 2229462; Email: g.m.blackburn@shef.ac.uk;

1	General Information:				
2	Experime	Experimental section			
2.1	Synthesis of new catalyst 4:				
2.2	Characterization data of Michael products 3a-3m				
2.3	¹ H NMR and ¹³ C NMR Spectra of all compounds				
	2.3.1	The spectra of compound 3SR	9		
	2.3.2	The spectra of compound 4	11		
	2.3.3	The spectra of compound 5	14		
	2.3.4	The spectra of compound 3a	16		
	2.3.5	The spectra of compound 3b	17		
	2.3.6	The spectra of compound 3c	18		
	2.3.7	The spectra of compound 3d	19		
	2.3.8	The spectra of compound 3e	20		
	2.3.9	The spectra of compound 3f	21		
	2.3.10	The spectra of compound 3g	22		
	2.3.11	The spectra of compound 3h	23		
	2.3.12	The spectra of compound 3i	24		
	2.3.13	The spectra of compound 3j	25		
	2.3.14	The spectra of compound 3k	26		
2.4	The X-ray	data of compound 5	27		
2.5	The HPLC Spectra of all compounds 3a~3k		30		
	2.5.1	The HPLC Spectra of compound 3a	30		
	2.5.2	The HPLC Spectra of compound $3b^{[11]}$	31		
	2.5.3	The HPLC Spectra of compound 3c	32		
	2.5.4	The HPLC Spectra of compound 3d	33		
	2.5.5	The HPLC Spectra of compound 3e	34		
	2.5.6	The HPLC Spectra of compound 3f	35		
	2.5.7	The HPLC Spectra of compound 3g	36		
	2.5.8	The HPLC Spectra of compound 3h	37		
	2.5.9	The HPLC Spectra of compound 3i	38		
	2.5.10	The HPLC Spectra of compound 3j	39		
	2.5.11	The HPLC Spectra of compound 3k	40		
3	Cartesian	Coordinates of Intermediates and Transition States	41		
4	1 Reference				

1 General Information:

- ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were measured on Bruker 400M spectrometers with CDCl₃ as solvent and tetramethylsilane (TMS) as internal standard or 85% H₃PO₄ as external standard for ³¹P NMR. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the ¹H spectrum as 0.00 ppm and CDCl₃ resonance in the ¹³C spectrum as 77.0 ppm. All coupling constants (*J* values) were reported in Hertz (Hz). Chemical shifts of common trace ¹H NMR impurities (ppm): H₂O: 1.56, CHCl₃: 7.26.
- Melting points were determined on a WRS-1B melting point apparatus and were uncorrected.
- Infrared spectra were measured with a Nicolet Avatar 330 FT-IR spectrometer.
- Optical rotations were measured in CHCl₃ with a Perkin-Elmer 341 automatic polarimeter. Absolute configuration of the products was determined by comparison with compounds previously published.
- Elemental analyses were performed by the Elemental Analysis Section of Xiamen University. HRMS spectra were recorded on a Bruker En Apex ultra 7.0 FT-MS apparatus. All new compounds were further characterized by elemental analysis or HRMS.
- Enantioselectivities were determined by High performance liquid chromatography (HPLC) analysis employing a Daicel Chirapak AS-H column.
- ◆ All the reagents were purchased from Alfa Aesar and J&K Chemical and used without further purification. Column chromatography was performed on silica gel 300- 400 mesh. Spectroscopy data of the known compounds matches with the data reported in the corresponding references. Nitroolefins were synthesized according to literature procedures^[1]. the product from L-proline catalysed reaction gave very poor enantioselectivity^[2]. Accordingly, These enantiomers were used as a reference to determine the ee values for our reaction.

2 Experimental section.

2.1 Synthesis of new catalyst 4:

S-2-(R-Diphenylphosphanyl-hydroxy-methyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (3SR)

m.p. 162 °C (solvent: acetate); $[\alpha]_D^{25} = -5.40$ (c = 1.0, CHCl₃), ¹H NMR (400 MHz, CDCl₃) δ 7.94 (m, 4H), 7.44 (m, 6H), 6.09 (d, J = 7.2 Hz, 1H), 4.79 (s, 1H), 4.41 - 4.20 (m, 1H), 3.56 - 3.42 (m, 1H), 3.33 (ddd, J = 10.6, 8.5, 6.7 Hz, 1H), 2.59 (m, 1H), 2.19 - 2.00 (m, 2H), 1.76 - 1.59 (m, 1H), 1.28 - 1.13 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 134.2 (d, J = 95.8 Hz), 132.2 (d, J = 8.3 Hz), 131.5 (d, J = 11.3 Hz), 130.9 (d, J = 8.7 Hz), 128.5 (d, J = 11.3 Hz), 128.0 (d, J = 11.3 Hz), 80.5, 73.9 (d, J = 83.2 Hz) 62.1, 48.2, 28.3, 24.6(2C); ³¹P NMR (162 MHz, CDCl₃) δ 26.56; IR (KBr, film), v_{max} (cm⁻¹): 3440, 3132, 2965, 2927, 2869, 1690, 1434,

1396, 1360, 1159, 1117, 1085, 752, 729, 695, 528; Anal. calcd. (%) for C₂₂H₂₈NO₄P: C, 65.82; H, 7.03; N, 3.49; Found: C, 65.90; H, 7.33; N, 3.46.

S-2-[R-(Diphenyl-phosphinoyl)-hydroxy-methyl]-pyrrolidinium chloride (4)

m.p. 130 °C (solvent: MeOH); $[\alpha]_D^{25} = -23.8$ (c = 1.3, CHCl₃) ¹H NMR (CDCl₃, 400MHz): 1.47 - 1.55(m, 1H), 1.69 - 1.82 (m, 2H), 1.83 - 1.93 (m, 1H), 2.91 (s, 1H), 3.21 (s, 2H), 4.18 (s, 1H), 5.34 - 5.38 (m, 1H), 6.17 (dd, 1H, J= 6.3, 18.4 Hz), 7.38 - 7.43 (m, 2H), 7.44 - 7.51 (m, 3H), 7.54 - 7.61 (m, 1H), 7.82 - 7.87 (m, 2H), 7.91 - 7.96 (m, 2H), 9.32 (s, 1H), 9.73 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 132.6 (d, *J* = 8.6 Hz), 131.3 (d, *J* = 9.4 Hz), 129.1 (d, *J* = 227.8 Hz), 128.9 (d, *J* = 11.8 Hz), 128.5 (d, *J* = 11.6 Hz), 67.8 (d, *J* = 90.9 Hz), 61.1 (d, *J* = 9.1 Hz), 45.4, 24.6; ³¹P NMR (CDCl₃, 160 MHz): 29.10; IR(KBr, film) ν_{max} (cm⁻¹): 3410, 3205, 3058, 2981, 2767, 2940, 1623, 1588, 1434, 1393, 1159, 1120, 1095, 1069, 1024, 995, 976, 749, 723, 694, 534; ESI-HRMS: calcd. for [C₁₇H₂₀NO₂P+H⁺], 302.1304; found, 302.1303.

R-(Diphenyl-phosphinoyl)-[S-1-(quinoline-8-sulfonyl)-pyrrolidin-2-yl]-methanol (5)

m.p. 168 °C (solvent: CH₂Cl₂:MeOH = 20 : 1); $[\alpha]_D^{25} = -73.3$ (c = 1.2, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): 1.42 - 1.53 (m, 1H), 1.78 - 1.88 (m, 2H), 2.20 - 2.29 (m, 2H), 3.06 - 3.12 (m, 1H), 3.50 (td, J = 4.28, 8.66 Hz, 1H), 4.76 (tt, J= 1.80, 7.25 Hz, 1H), 5.12 (dd, J = 5.20, 20.01 HZ, 1H), 5.30 (s, 1H), 5.64 (t, J = 5.54 Hz, 1H), 7.45 - 7.59 (m, 7H), 7.63 (t, J= 7.8 Hz, 1H), 7.98-8.04 (m, 4H), 8.06 (dd, J = 1.2, 8.2 Hz, 1H), 8.27 (dd, J = 1.7, 8.4 Hz, 1H), 8.54 (dd, J = 1.3, 7.4 Hz, 1H), 8.78 (dd, J = 1.7, 4.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): 25.4, 27.1, 48.9, 62.1 (d, J= 9.47 Hz), 71.0 (d, J= 85.73 Hz), 122.1, 125.6, 128.4 (d, J = 11.68 Hz), 128.7 (d, J = 11.40 Hz), 129.2, 131.2 (d, J = 9.03 Hz), 131.9 (d, J = 8.85 Hz), 131.7 (d, J = 2.12 Hz), 131.3 (d, J = 1.78 Hz), 134.1, 134.5, 137.2, 143.6, 151.2; ³¹P NMR (CDCl₃, 160 MHz): 27.76; IR(KBr, film), ν_{max} (cm⁻¹): 3430, 3202, 3058, 2932, 2920, 2872, 2850, 1610, 1559, 1495, 1434, 1338, 1213, 1172, 1165, 1139, 1117, 1095, 1066, 1024, 1002, 823, 790, 743, 723, 695, 605, 573; Anal. calcd. (%) for C₂₆H₂₅N₂O₄PS: C, 63.40; H, 5.12; N, 5.69. Found: C, 63.38; H, 4.86; N, 5.55.

2.2 Characterization data of Michael products 3a-3m

(S)-2-((R)-2-Nitro-1-phenylethyl)cyclohexanone

3a^[3]: prepared according to the general procedure from (*E*)-(2-nitrovinyl)benzene (38 mg, 0.25 mmol) to provide the title compound as a white solid (51 mg, 82% yield) after silica gel chromatography (EtOAc : hexane = 1 : 9). white solid; m.p. 124.5 °C (solvent: EtOAc : hexane = 1 : 9); $[\alpha]_D^{20}$ = -20.4 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.23 (m, 3H), 7.17 (d, *J* = 7.7 Hz, 2H), 4.93 (dd, *J* = 12.5, 4.5 Hz, 1H), 4.64 (dd, *J* = 12.4, 9.9 Hz, 1H), 3.79 (td, *J* = 9.9, 4.5 Hz, 1H), 2.76 - 2.64 (m, 1H), 2.52 - 2.45 (m, 1H), 2.39 (td, *J* = 12.6, 5.9 Hz, 1H), 2.08 (dtd, *J* = 8.8, 5.9, 3.0 Hz, 1H), 1.86 - 1.57 (m, 4H), 1.34 - 1.16 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 211.8, 137.8, 129.0, 128.2, 127.8, 78.9, 52.6, 44.0, 42.7, 33.2, 28.5, 25.0; HPLC: Chiralpak AS-H (hexane/*i*-PrOH, 85/15, flow rate 1 mL/min, λ = 230 nm), *t*R (minor) = 17.9 min, *t*R (major) = 29.4 min; 96% ee.

(S)-2-((R)-2-Nitro-1-p-tolylethyl)cyclohexanone

3b: prepared according to the general procedure from (*E*)-1-methyl-4-(2-nitrovinyl)benzene (41 mg, 0.25 mmol) to provide the title compound as a white solid (57 mg, 88% yield) after silica gel chromatography (EtOAc : hexane = 1 : 9). Crystals; m.p. 120.8 °C (solvent: EtOAc : hexane = 1 : 9); $[\alpha]_D^{20}$ = -26.2 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 8.1 Hz, 2H), 4.91 (dd, *J* = 12.4, 4.6 Hz, 1H), 4.61 (dd, *J* = 12.4, 9.9 Hz, 1H), 3.72 (td, *J* = 9.9, 4.6 Hz, 1H), 2.70 - 2.63 (m, 1H), 2.51 - 2.33 (m, 2H), 2.31 (s, 1H), 2.11 - 2.02 (m, 1H), 1.85 - 1.50 (m, 4H), 1.32 - 1.23 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 211.9, 137.4, 134.6, 129.6, 128.0, 79.0, 52.6, 43.6, 42.7, 33.1, 28.5, 25.0, 21.0. HPLC analysis (Chiralpak AS-H column, hexane: 2-propanol = 85:15, flow rate = 1.0 mL/min, wavelength = 230 nm): Rt = 10.94 (minor) and 16.91 min (major); syn/anti = 92/8, 92% ee.

(S)-2-((R)-2-Nitro-1-m-tolylethyl)cyclohexanone

3c^[4]: prepared according to the general procedure from (*E*)-1-methyl-3-(2-nitrovinyl)benzene (57 mg, 0.35 mmol) to provide the title compound as a white solid (74 mg, 91% yield) after silica gel chromatography (EtOAc : hexane = 1 : 9); pale yellow solid; m.p. 96.2 °C (solvent: EtOAc : hexane = 1 : 9); $[\alpha]_D^{20}$ = -27.0 (c = 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.23 - 7.17 (m, 1H), 7.07 (d, *J* = 7.4 Hz, 1H), 6.95 (d, *J* = 6.1 Hz, 1H), 4.92 (dd, *J* = 12.5, 4.5 Hz, 1H), 4.62 (dd, *J* = 12.5, 9.9 Hz, 1H), 3.71 (td, *J* = 9.9, 4.5 Hz, 1H), 2.71 - 2.63 (m, 1H), 2.53 - 2.39 (m, 2H), 2.32 (s, 3H), 2.12 - 2.03 (m, 1H), 1.82 - 1.51 (m, 4H), 1.24 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 211.9, 138.6, 137.7, 129.0, 128.8, 128.5, 125.0, 78.9, 52.6, 43.9, 42.7, 33.2, 28.5, 25.0, 21.4; HPLC analysis (Chiralpak AS-H column, hexane: 2-propanol = 85:15, flow rate = 1.0 mL/min, wavelength = 230 nm): Rt = 10.94 (minor) and 16.20 min (major), syn/anti = 92/8, 96% ee.

(S)-2-((R)-2-Nitro-1-o-tolylethyl)cyclohexanone

3d: prepared according to the general procedure from(*E*)-1-methyl-2-(2-nitrovinyl)benzene (53 mg, 0.33 mmol) to provide the title compound as a white solid (67 mg, 87% yield) after silica gel chromatography (EtOAc : hexane = 1 : 9); white liquid; $[\alpha]_D^{20} = -27.7$ (c = 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.22 - 7.08 (m, 4H), 4.99 (dd, *J* = 12.6, 4.4 Hz, 1H), 4.61 (dd, *J* = 12.6, 10.1 Hz, 1H), 4.12 (td, *J* = 10.3, 4.4 Hz, 1H), 2.71 - 2.60 (m, 1H), 2.51 - 2.44 (m, 1H), 2.44 - 2.33 (m, 4H), 2.13 - 2.06 (m, 1H), 1.80 - 1.49 (m, 4H) , 1.29 - 1.22 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 212.2, 137.4, 136.4, 131.0, 127.3, 126.7, 125.7, 78.8, 53.5, 42.9, 38.3, 32.9, 28.7, 25.4, 19.9; HPLC analysis (Chiralpak AS-H column, hexane: 2-propanol = 85:15, flow rate = 1.0 mL/min, wavelength = 230 nm): Rt = 10.83 (minor) and 15.88 min (major) syn/anti = 93/7, 95% ee.

(S)-2-((R)-1-(4-Fluorophenyl)-2-nitroethyl)cyclohexanone

 $3e^{[5]}$: prepared according to the general procedure from (E)-1-fluoro-4-(2-nitrovinyl)benzene (42 mg, 0.25 mmol) to provide the title compound as a white solid (66 mg, 99% yield) after silica gel chromatography

(EtOAc : hexane = 1 : 9); pale yellow solid; m.p. 56.8 °C (solvent: EtOAc : hexane = 1 : 9); $[\alpha]_D^{20}$ = -16.4 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.22 - 7.09 (m, 2H), 7.07 - 6.94 (m, 2H), 4.92 (dd, *J* = 12.5, 4.6 Hz, 1H), 4.60 (dd, *J* = 12.5, 9.9 Hz, 1H), 3.77 (td, *J* = 9.8, 4.6 Hz, 1H), 2.73 - 2.61 (m, 1H), 2.52 - 2.44 (m, 1H), 2.42-2.34 (m, 1H), 2.15 - 2.03 (m, 1H), 1.85 - 1.51 (m, 4H), 1.26 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 211.5, 162.2 (d, *J* = 246.7 Hz), 133.5 (d, *J* = 3.4 Hz), 129.8 (d, *J* = 8.0 Hz), 115.9 (d, *J* = 21.5 Hz), 78.8, 52.6, 43.3, 42.7, 33.1, 28.4, 25.0; HPLC analysis (Chiralpak AS-H column, hexane: 2-propanol = 85:15, flow rate = 1.0 mL/min, wavelength = 230 nm): Rt = 15.93 (minor) and 24.71 min (major) syn/anti = 90/10, 94% ee.

(S)-2-((R)-1-(4-Chlorophenyl)-2-nitroethyl)cyclohexanone

3f^[6]: prepared according to the general procedure from (E)-1-chloro-4-(2-nitrovinyl)benzene (46 mg, 0.25 mmol) to provide the title compound as a white solid (61 mg, 87% yield) after silica gel chromatography (EtOAc : hexane = 1 : 9); pale yellow solid; m.p. 85.4 °C (solvent: EtOAc : hexane = 1 : 9); $[\alpha]_D^{20}$ = -27.8 (c = 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.30 (dt, *J* = 8.80, 2.24 Hz, 2H), 7.12 (dt, *J* = 8.76, 2.20 Hz, 2 H), 4.93 (dd, *J* = 12.6, 4.5 Hz, 1H), 4.61 (dd, *J* = 12.6, 10.0 Hz, 1H), 3.76 (td, *J* = 9.8, 4.5 Hz, 1H), 2.69 - 2.61 (m, 1H), 2.51 - 2.33 (m, 2H), 2.06 - 2.11 (m, 1H), 1.83 - 1.54 (m, 4H), 1.21 - 1.28 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 211.4, 136.3, 133.7, 129.1, 129.2, 78.6, 52.4, 43.4, 42.7, 33.1, 28.4, 25.1; HPLC analysis (Chiralpak AS-H column, hexane: 2-propanol = 85:15, flow rate = 1.0 mL/min, wavelength = 230 nm): Rt = 15.09 (minor) and 25.30 min (major), syn/anti = 92/8, 91% ee.

(S)-2-((R)-1-(2-Chlorophenyl)-2-nitroethyl)cyclohexanone

3g^[6]: prepared according to the general procedure from (E)-1-chloro-4-(2-nitrovinyl)benzene (46 mg, 0.25 mmol) to provide the title compound as a white solid (66 mg, 94% yield) after silica gel chromatography (EtOAc : hexane = 1 : 9); white liquid; $[\alpha]_D{}^{20}$ = -48.9 (c = 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.36 (m, 1H), 7.28 - 7.17 (m, 3H), 4.94 - 4.85 (m, 1H), 4.26 - 4.32 (m, 1H), 2.92 (td, *J* = 12.0, 5.1 Hz, 1H), 2.52 - 2.44 (m, 1H), 2.35 - 2.43 (m, 1H), 2.07 - 2.13 (m,1H), 1.58 - 1.83 (m, 4H), 1.31 - 1.38 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 211.6, 135.5, 134.5, 130.4, 128.9, 127.4, 77.2, 51.7, 42.8, 33.1, 29.7, 28.5, 25.3; HPLC analysis (Chiralpak AS-H column, hexane: 2-propanol = 85:15, flow rate = 1.0 mL/min, wavelength = 230 nm): Rt = 14.01 (minor) and 19.31 min (major) syn/anti = 99/1, 96% ee.

(S)-2-((R)-1-(2-BromophenyI)-2-nitroethyI)cyclohexanone

3h^[7]: prepared according to the general procedure from (E)-1-bromo-2-(2-nitrovinyl)benzene (57 mg, 0.25 mmol) to provide the title compound as a white solid (74 mg, 91% yield) after silica gel chromatography (EtOAc : hexane = 1 : 9); white solid; m.p. 80.3 °C (solvent: EtOAc : hexane = 1 : 9); $[\alpha]_D^{20} = -48.6$ (c = 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.30 (td, *J* = 7.6, 1.2 Hz, 1H), 7.22 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.13 (td, *J* = 8.0, 1.8 Hz, 1H), 4.97 - 4.84 (m, 2H), 4.31 (m, 1H), 2.90 (br. s, 1H), 2.51 - 2.44 (m, 2H), 2.37 (tdd, *J* = 12.8, 5.9, 0.9 Hz, 1H), 2.10 (m, 1H), 1.86 - 1.53 (m, 4H), 1.40 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 211.5, 137.3, 133.7, 129.1, 128.0, 77.3, 52.1, 42.8, 33.0, 28.5, 25.3; HPLC analysis (Chiralpak AS-H column, hexane: 2-propanol = 85:15, flow rate = 1.0 mL/min, wavelength = 230 nm): Rt = 14.97 (minor) and 20.12 min (major) syn/anti = 99/1, 96% ee.

 $3i^{[8]}$: prepared according to the general procedure from (E)-2-(2-nitrovinyl)furan (35 mg, 0.25 mmol) to provide the title compound as a white solid (55 mg, 93% yield) after silica gel chromatography (EtOAc : hexane = 1 : 9); yellow liquid; $[\alpha]_D^{20} = -10.5$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (m, 1H), 6.29 (m, 1H), 6.21 - 6.10 (m, 1H), 5.07 - 4.53 (m, 2H), 3.97 (td, *J* = 9.1, 4.8 Hz, 1H), 2.86 - 2.71 (m, 1H), 2.51 - 2.30 (m, 2H), 2.20 - 2.04 (m, 1H), 1.96 - 1.58 (m, 5H), 1.36 - 1.24 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 210.9, 151.0, 142.3, 110.3, 109.0, 76.7, 51.1, 42.6, 37.6, 32.5, 28.2, 25.1; HPLC analysis (Chiralpak AS-H column, hexane: 2-propanol = 85:15, flow rate = 1.0 mL/min, wavelength = 254 nm): Rt = 12.75 (minor) and 15.28 min (major), syn/anti = 82/18, 91% ee.

(*S*)-3-((*R*)-Nitro(phenyl)methyl)dihydro-2*H*-thiopyran-4(3*H*)-one

3j^[9]: To a solution of *trans*-nitrostyrene (38 mg, 0.25 mmol) and tetrahydrothiopyran-4-one **1b** (290 mg, 2.5 mmol) was added catalyst **4** (0.0125 mmol) in the presence of 10 mmol % 4-NO₂C₆H₄COOH and 50 μ L 1 mol/L KOH. The resulting mixture was stirred at room temperature (30 °C). After the reaction was complete (monitored by TLC), the resulting residue was then purified by flash chromatography (hexane/EtOAc = 10/1) to give the product as white solid (84 mg, 87% yield). white solid; m.p. 121.3 °C (solvent: EtOAc : hexane = 1 : 10); $[\alpha]_D^{20} = -27.3$ (c = 1.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.45 - 6.96 (m, 5H), 4.62 (ddd, *J* = 22.3, 12.6, 7.2 Hz, 2H), 3.91 (td, *J* = 10.2, 4.6 Hz, 1H), 3.21 - 2.64 (m, 5H), 2.59 - 2.51 (m, 1H), 2.39 (dd, *J* = 13.9, 9.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 209.5, 136.5, 129.3, 128.3, 128.2, 78.6, 55.0, 44.5, 43.5, 35.1, 31.6; HPLC analysis (Chiralpak AS-H column, hexane: 2-propanol = 85:15, flow rate = 1.0 mL/min, wavelength = 254 nm): Rt = 18.79(minor) and 24.78min (major), syn/anti = 95/5, 85% ee.

(S)-7-((R)-2-Nitro-1-phenylethyl)-1,4-dioxaspiro[4.5]decan-8-one

3k^[10]: To a solution of *trans*-nitrostyrene (38 mg, 0.25 mmol) and tetrahydrothiopyran-4-one **1c** (390 mg, 2.5 mmol) was added catalyst **4** (0.0125 mmol) in the presence of 10 mmol % 4-NO₂C₆H₄COOH and 50 µL 1 mol/L KOH. The resulting mixture was stirred at room 30 °C. After the reaction was complete (monitored by TLC), the resulting residue was then purified by flash chromatography (hexane/EtOAc = 10/1) to give the product as white solid (70 mg, 90% yield). Crystals; m.p. 110 °C (solvent: EtOAc : hexane = 1 : 10); $[\alpha]_D^{20} = -$ 9.8 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.14 (m, 3H), 7.09 (d, *J* = 7.0 Hz, 2H), 5.05 - 4.71 (m, 1H), 4.54 (dd, *J* = 12.4, 9.9 Hz, 1H), 4.03 - 3.55 (m, 5H), 2.99 (ddd, *J* = 12.8, 10.0, 5.5 Hz, 1H), 2.63 (td, *J* = 13.5, 6.5 Hz, 1H), 2.39 (ddd, *J* = 13.8, 5.0, 3.6 Hz, 1H), 2.04 - 1.80 (m, 2H), 1.61 (ddd, *J* = 13.3, 5.4, 3.4 Hz, 1H), 1.55 - 1.42 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 210.3, 137.3, 129.0, 128.2, 127.9, 107.0, 78.9, 64.8, 64.5, 48.2, 43.4, 39.4, 38.6, 35.1; HPLC analysis (Chiralpak AS-H column, hexane: 2-propanol = 85:15, flow rate = 1.0 mL/min, wavelength = 210 nm): Rt = 18.04 (minor) and 26.60 min (major), syn/anti = 90/10, 85% ee.

2.3 ¹H NMR and ¹³C NMR Spectra of all compounds 2.3.1 The spectra of compound 3SR

2.3.2 The spectra of compound 4

2.3.4 The spectra of compound 3a

2.3.5 The spectra of compound 3b

2.3.6 The spectra of compound 3c

2.3.7 The spectra of compound 3d

2.3.8 The spectra of compound 3e

2.3.9 The spectra of compound 3f

2.3.10 The spectra of compound 3g

2.3.11 The spectra of compound 3h

2.3.12 The spectra of compound 3i

2.3.13 The spectra of compound 3j

2.3.14 The spectra of compound 3k

2.4 The X-ray data of compound 5 Table 1. Crystal data and structure refinement for 5.

Empirical formula	C26 H25 N2 O4 P S
Formula weight	492.13
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, 2/mB
Unit cell dimensions	a = 8.494(2) A alpha = 90 deg.
	b = 11.250(3) A beta = 93.010(4) deg.
	c = 14.974(4) A gamma = 90 deg.
Volume	1429.0(6) A^3
Z, Calculated density	3, 1.504 Mg/m^3
Absorption coefficient	0.291 mm^-1
F(000)	675
Crystal size	0.90 x 0.33 x 0.09 mm
Theta range for data collection	1.36 to 28.34 deg.
Limiting indices	-11<=h<=10, -14<=k<=14, -19<=l<=19
Reflections collected / unique	12400 / 6483 [R(int) = 0.0350]
Completeness to theta $= 25$	95.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9743 and 0.7797
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6483 / 1 / 307
Goodness-of-fit on F^2	1.716
Final R indices [I>2sigma(I)]	R1 = 0.1423, $wR2 = 0.3780$
R indices (all data)	R1 = 0.1469, WR2 = 0.3844
Absolute structure parameter	0.1(2)
Largest diff. peak and hole	4.565 and -0.774 e.A^-3

$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(1)-O(6)	1.485(5)	C(8)-C(12)-P(1)	110.7(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(1)-C(1)	1.783(6)	O(2)-C(12)-H(12A)	108.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(1)-C(9)	1.786(6)	C(8)-C(12)-H(12A)	108.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(1)-C(12)	1.812(6)	P(1)-C(12)-H(12A)	108.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S(2)-O(4)	1.399(5)	C(31)-C(13)-C(1)	119.8(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S(2)-O(5)	1.425(6)	C(31)-C(13)-H(13A)	120.1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S(2)-N(3)	1.602(6)	C(1)-C(13)-H(13A)	120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(2)-C(7)	1.747(8)	C(30)-C(14)-C(15)	117.3(13)
$\begin{array}{ccccccc} C(1)-C(11) & 1.401(10) & C(15)-C(14)-C(25) & 119.4(10) \\ O(2)-C(12) & 1.405(7) & N(16)-C(15)-C(14) & 123.7(9) \\ O(2)-H(2A) & 0.8200 & N(16)-C(15)-C(7) & 119.1(7) \\ N(3)-C(26) & 1.427(9) & C(14)-C(15)-C(7) & 117.2(9) \\ N(3)-C(8) & 1.487(9) & C(27)-N(16)-C(15) & 119.1(11) \\ C(7)-C(19) & 1.354(11) & C(18)-C(17)-C(9) & 117.8(8) \\ C(7)-C(15) & 1.447(10) & C(18)-C(17)-H(17A) & 121.1 \\ C(8)-C(10) & 1.529(9) & C(9)-C(17)-H(17A) & 121.1 \\ C(8)-C(12) & 1.531(8) & C(22)-C(18)-H(18A) & 117.8 \\ C(9)-C(20) & 1.396(9) & C(17)-C(18)-H(18A) & 117.8 \\ C(9)-C(20) & 1.396(9) & C(17)-C(18)-H(18A) & 117.8 \\ C(9)-C(17) & 1.399(10) & C(7)-C(19)-H(19A) & 119.8 \\ C(10)-H(10A) & 0.9700 & C(21)-C(19)-H(19A) & 119.8 \\ C(10)-H(10B) & 0.9700 & C(33)-C(20)-H(20A) & 120.1 \\ C(11)-C(28) & 1.374(11) & C(33)-C(20)-H(20A) & 120.1 \\ C(12)-H(12A) & 0.9800 & C(25)-C(21)-H(21A) & 118.1 \\ C(13)-H(13A) & 0.9300 & C(9)-C(21)-H(21A) & 118.1 \\ C(13)-H(13A) & 0.9300 & C(19)-C(21)-H(21A) & 118.1 \\ C(14)-C(30) & 1.373(18) & C(18)-C(22)-H(22A) & 120.7 \\ C(14)-C(25) & 1.467(18) & C(33)-C(22)-H(22A) & 120.7 \\ C(15)-N(16) & 1.328(12) & C(31)-C(24)-H(24A) & 120.1 \\ C(17)-C(18) & 1.352(11) & C(28)-C(22)-H(22A) & 120.7 \\ C(14)-C(25) & 1.467(18) & C(33)-C(22)-H(22A) & 120.7 \\ C(14)-C(25) & 1.330(14) & C(21)-C(25)-H(25A) & 120.5 \\ C(18)-H(18A) & 0.9300 & C(21)-C(25)-H(25A) & 120.5 \\ C(18)-H(22) & 1.407(15) & N(3)-C($	C(1)-C(13)	1.383(10)	C(30)-C(14)-C(25)	122.9(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(1)-C(11)	1.401(10)	C(15)-C(14)-C(25)	119.4(10)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(2)-C(12)	1.405(7)	N(16)-C(15)-C(14)	123.7(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(2)-H(2A)	0.8200	N(16)-C(15)-C(7)	119.1(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(3)-C(26)	1.427(9)	C(14)-C(15)-C(7)	117.2(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(3)-C(8)	1.487(9)	C(27)-N(16)-C(15)	119.1(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)-C(19)	1.354(11)	C(18)-C(17)-C(9)	117.8(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(7)-C(15)	1.447(10)	C(18)-C(17)-H(17A)	121.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)-C(10)	1.529(9)	C(9)-C(17)-H(17A)	121.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)-C(12)	1.531(8)	C(22)-C(18)-C(17)	124.3(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)-H(8A)	0.9800	C(22)-C(18)-H(18A)	117.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)-C(20)	1.396(9)	C(17)-C(18)-H(18A)	117.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)-C(17)	1.399(10)	C(7)-C(19)-C(21)	120.4(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)-C(29)	1.458(11)	C(7)-C(19)-H(19A)	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)-H(10A)	0.9700	C(21)-C(19)-H(19A)	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)-H(10B)	0.9700	C(33)-C(20)-C(9)	119.8(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)-C(28)	1.374(11)	C(33)-C(20)-H(20A)	120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)-H(11A)	0.9300	C(9)-C(20)-H(20A)	120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)-H(12A)	0.9800	C(25)-C(21)-C(19)	123.8(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)-C(31)	1.383(10)	C(25)-C(21)-H(21A)	118.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)-H(13A)	0.9300	C(19)-C(21)-H(21A)	118.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)-C(30)	1.373(18)	C(18)-C(22)-C(33)	118.6(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)-C(15)	1.421(14)	C(18)-C(22)-H(22A)	120.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)-C(25)	1.467(18)	C(33)-C(22)-H(22A)	120.7
$\begin{array}{ccccccc} N(16)-C(27) & 1.264(12) & C(31)-C(24)-H(24A) & 120.1 \\ C(17)-C(18) & 1.352(11) & C(28)-C(24)-H(24A) & 120.1 \\ C(17)-H(17A) & 0.9300 & C(21)-C(25)-C(14) & 119.1(10) \\ C(18)-C(22) & 1.330(14) & C(21)-C(25)-H(25A) & 120.5 \\ C(18)-H(18A) & 0.9300 & C(14)-C(25)-H(25A) & 120.5 \\ C(19)-C(21) & 1.407(15) & N(3)-C(26)-C(29) & 102.3(6) \\ \end{array}$	C(15)-N(16)	1.328(12)	C(31)-C(24)-C(28)	119.7(7)
$\begin{array}{cccccc} C(17)-C(18) & 1.352(11) & C(28)-C(24)-H(24A) & 120.1 \\ C(17)-H(17A) & 0.9300 & C(21)-C(25)-C(14) & 119.1(10) \\ C(18)-C(22) & 1.330(14) & C(21)-C(25)-H(25A) & 120.5 \\ C(18)-H(18A) & 0.9300 & C(14)-C(25)-H(25A) & 120.5 \\ C(19)-C(21) & 1.407(15) & N(3)-C(26)-C(29) & 102.3(6) \\ \end{array}$	N(16)-C(27)	1.264(12)	C(31)-C(24)-H(24A)	120.1
$\begin{array}{ccccccc} C(17)-H(17A) & 0.9300 & C(21)-C(25)-C(14) & 119.1(10) \\ C(18)-C(22) & 1.330(14) & C(21)-C(25)-H(25A) & 120.5 \\ C(18)-H(18A) & 0.9300 & C(14)-C(25)-H(25A) & 120.5 \\ C(19)-C(21) & 1.407(15) & N(3)-C(26)-C(29) & 102.3(6) \\ \end{array}$	C(17)-C(18)	1.352(11)	C(28)-C(24)-H(24A)	120.1
C(18)-C(22)1.330(14)C(21)-C(25)-H(25A)120.5C(18)-H(18A)0.9300C(14)-C(25)-H(25A)120.5C(19)-C(21)1.407(15)N(3)-C(26)-C(29)102.3(6)	C(17)-H(17A)	0.9300	C(21)-C(25)-C(14)	119.1(10)
C(18)-H(18A)0.9300C(14)-C(25)-H(25A)120.5C(19)-C(21)1.407(15)N(3)-C(26)-C(29)102.3(6)	C(18)-C(22)	1.330(14)	C(21)-C(25)-H(25A)	120.5
C(19)-C(21) 1.407(15) N(3)-C(26)-C(29) 102.3(6)	C(18)-H(18A)	0.9300	C(14)-C(25)-H(25A)	120.5
	C(19)-C(21)	1.407(15)	N(3)-C(26)-C(29)	102.3(6)

Table 2. Bond lengths [A] and angles [deg] for sad.

Figure. ORTEP drawing showing 50% probability displacement ellipsoids of compound 5

Figure. The cell crystal structure of compound 5

2.5 The HPLC Spectra of all compounds 3a~3k 2.5.1 The HPLC Spectra of compound 3a

2.5.2 The HPLC Spectra of compound 3b^[11]

The affected result of this overlapping peaks at ESI 2.6.2 will underestimate the area of the main peak at 16.91 min in our calculation(see: the cut line is upon the base line in the picture), which will also result in a little underestimate of the ee value of this case. That means the real ee value will exceed 91.7% if the two peaks is separated well enough.

2.5.3 The HPLC Spectra of compound 3c

172.56

Total

4215.33

100

Total

2.5.4 The HPLC Spectra of compound 3d

79.42

Total

2.5.5 The HPLC Spectra of compound 3e

2989.19

100

2.5.6 The HPLC Spectra of compound 3f

Total

531.33

2.5.7 The HPLC Spectra of compound 3g

18856.74

100

2.5.8 The HPLC Spectra of compound 3h

Total

73.64

1702.85

100

2.5.11 The HPLC Spectra of compound 3k

653.07

Total

29714.7

100

3 Cartesian Coordinates of Intermediates and Transition States

Table S1. Total energies using the B3LYP/6-31G(d) and imaginary frequencies using the DFTB-D method for all structures of the reaction pathways.

name	Total energy ^a	imaginary	⊿H
	(hartree)	freq [cm-1]	(kcal.mol ⁻¹)
4	-1206.070129		
cyclohexanone	-309.739549		
H ₂ O	-76.387785		
anti-enamine	-1439.391577		19.0
anti-SRts	-1953.398429	-290.24	4.9
anti-SR	-1953.410084		-7.3
anti-SSts	-1953.39171	-299.42	9.1
anti-SS	-1953.396587		-3.1
syn-enamine	-1439.394387		17.3
syn-RRts	-1953.393229	-313.23	10.0
syn-RR	-1953.381791		7.2
syn-RSts	-1953.38038	-255.53	18.0
syn-RS	-1953.366831		8.5

a Sum of electronic and zero-point Energies

Figure S1 the transiton structure of anti-SRts

Figure S2 the transiton structure of anti-SSts

Figure S3 the transiton structure of Syn-RRts

Figure S4 the transiton structure of Syn-RSts

Table S2. Cartesian coordinates in [Å] for the Optimized structures using the B3LYP/6-31G(d).

Cartesian coordinates of compound 4

Charge = 0 Multiplicity = 1 P,0,-0.0420130186,-0.0192336881,0.0569066365 C,0,0.0729128502,0.0519297117,1.8839703438 O,0,2.6754514174,0.1438948274,0.008466003 N,0,3.2584245033,-2.2804699444,-1.0105887056 O,0,-1.1446315823,-0.9384500149,-0.4015864326 C,0,1.8496793856,-2.0601810621,-0.5933582998 C,0,-0.2737788965,1.6999417296,-0.526108676 C,0,1.7915477238,-2.7306006854,0.7867200401 C,0,-0.9223283271,-0.6364738616,2.5924810087 C,0,1.6096226287,-0.5335844499,-0.6342488056 C,0,1.0492179691,0.7744718014,2.5878162154 C,0,0.7651117519,2.6404473394,-0.60669999

C,0,0.4982938869,3.9353115418,-1.053371504 C,0,-1.5720056724,2.0670134363,-0.9082494538 C.0.-0.7990316659.4.2997947287.-1.4207943153 C,0,0.0347946706,0.1084113179,4.6834698079 C,0,3.8090072204,-3.4671210649,-0.3048516526 C.0.-0.9404930474,-0.6073997338,3.9877614521 C,0.2.6647645325,-3.9787067019,0.5912166657 C,0,1.0282753529,0.7967744195,3.9822655168 C,0,-1.8327843692,3.3639899579,-1.3512323448 H,0,3.4513166039,-0.4139880081,-0.2342736595 H,0,1.1271286289,-2.5416882966,-1.2661527267 H,0,2.2304205827,-2.06666674433,1.5397738662 H.0.0.7656323688,-2.9572739073,1.0864735227 H.0.-1.6742679298.-1.1883886705.2.0360566481 H,0,1.5516804736,-0.2368460766,-1.6974356138 H.0,1.8296549878,1.3011396872,2.0509164128 H.0,1.7788940593,2.3549397491,-0.3421397275 H,0,1.306108176,4.6596576348,-1.1186169826 H,0,-2.3634847744,1.3242858686,-0.8690411035 H.0,-1.0019193605,5.3098660677,-1.767446784 H,0,0.0216202212,0.1322224274,5.770168614 H,0,4.6760400087,-3.1657860724,0.2968621719 H.0.4.1557443979,-4.2282213748,-1.0138576529 H,0,-1.7159575278,-1.1423403141,4.5297966296 H.0.2.0927864859.-4.7564747732.0.0703389513 H,0,3.0257015458,-4.4067673541,1.5317413279 H,0,1.7889150606,1.3539123945,4.5230620829 H.0.-2.8410471174.3.6419634935.-1.6467801697 H.0.3.3348114279,-2.3720227737,-2.0193105908

Cartesian coordinates of anti-enamine

Charge = 0 Multiplicity = 1

P,0,0.0990305924,0.1513855227,0.0345213114 C,0,-0.0498226715,0.0031651967,1.8541396267 O,0,2.7879386299,0.0056255588,0.4070416265 N,0,3.2571508637,-2.3698277216,-1.0024079756 O,0,-0.9974315865,-0.5910704753,-0.6840841903 C,0,1.8631736214,-1.9782061935,-0.6896897832 C,0,0.1047092278,1.9406689211,-0.349128634 C.0.1.5422734314.-2.7748979885.0.590222714 C,0,-1.176083734,-0.6847016945,2.327905018 C,0,1.7882216273,-0.4422093545,-0.497994442 C,0,0.8549205405,0.5632759964,2.7695176953 C,0,1.2234914903,2.7693927983,-0.1716881418 C,0,1.1395410932,4.1281129301,-0.4784239218 C,0,-1.0885116435,2.4844265975,-0.8457113156 C,0,-0.0549841547,4.6673811595,-0.9613812757 C,0,-0.4878353068,-0.2636255667,4.6067324728 C,0,3.700956001,-3.4922157094,-0.1528634019 C,0,-1.3933853715,-0.8166433202,3.7003005193 C,0,2,4103740448,-4.0302479686,0.473308272 C.0.0.6349548833.0.4247656364.4.1397168234 C,0,-1.1671619345,3.8441788466,-1.1477926488 H.0.3.5788432191,-0.5172574456,0.1656671664 H.0,1.1632102687,-2.2563599311,-1.4864659672 H,0,1.8414083302,-2.1945008933,1.4692563521 H.0.0.472540768,-2.9827233629,0.668505805 H.0,-1.8719815018,-1.1083949917,1.609736124 H,0,1.9262090469,0.0371228861,-1.4787492538 H,0,1.7332489753,1.0902694425,2.4149599512 H.0,2.159024739,2.3500550618,0.1866651075 H,0,2.0095043441,4.7656612279,-0.3438490601 H,0,-1.9407320833,1.8303298475,-1.0052901695 H,0,-0.1161916655,5.7264094076,-1.1983417386 H,0,-0.6560200448,-0.3660692619,5.6757487701 H.0.4.4102942184.-3.1588163012.0.6197914822 H.0.4.2157549723,-4.2373289597,-0.7689288016 H,0,-2.2692889316,-1.3500373514,4.0601675636 H,0,1.9444917864,-4.7564002442,-0.2039830411 H.0,2.5802886778,-4.5274202643,1.433707972 H,0,1.3407967532,0.856335282,4.8445946818 H,0,-2.0945414899,4.2594407268,-1.533366352 C,0,3.8823038671,-2.1687013796,-2.2550247791 C.0.3.045827984,-1.5947754035,-3.3890798168 C,0,5.1807699284,-2.4894149164,-2.4462139685 C,0,3.6781934253,-1.8445279455,-4.766382301

H,0,2.9131699713,-0.5117531223,-3.2524862456 H,0,2.0378516082,-2.0248607485,-3.3702512096 C,0,5.9218491494,-2.3350111072,-3.751951446 H,0,5.7589627505,-2.8859731693,-1.6149867081 C,0,5.1615094443,-1.4672813486,-4.7622789779 H,0,3.129017335,-1.2747891998,-5.5258683284 H,0,3.5734705278,-2.9065536648,-5.0281615917 H,0,6.9153054763,-1.9040472936,-3.5621806682 H,0,6.1163495129,-3.3266570405,-4.1941315648 H,0,5.5945495807,-1.5778960746,-5.7639986072 H,0,5.2618587789,-0.4078749453,-4.4872444224

Cartesian coordinates of syn-enamine

Charge = 0 Multiplicity = 1

P,0,0.1271428135,0.094127592,-0.011988123 C,0,-0.0593904358,-0.0118356579,1.8072727243 O.0.2.820009973.-0.0103212346.0.3743870515 N,0,3.2907433387,-2.4290167078,-0.9315521227 O,0,-0.9589276088,-0.6611807495,-0.7333851522 C,0,1.9005009563,-2.0655195417,-0.567956329 C,0,0.145773207,1.8737845501,-0.4390855669 C,0,1.6811374092,-2.7962389077,0.7648144126 C,0,-1.2087978059,-0.6663562551,2.272966595 C,0,1.8164925756,-0.5253981033,-0.4932527467 C,0,0.8408191956,0.5457444098,2.7286608461 C,0,1.2597687774,2.7073326598,-0.2542944052 C,0.1.1835583072,4.0577446514,-0.5975750318 C,0,-1.0343244468,2.4043772625,-0.9795261247 C,0,0.0018964401,4.5842302945,-1.1241900977 C,0,-0.5540431899,-0.2151439711,4.5558790642 C,0,3.7053075987,-3.6638990007,-0.2095885755 C.0.-1.4543591966.-0.7666591479.3.6432794065 C,0,2.457153412,-4.1027012988,0.5712463907 C,0,0.5922387919,0.4391233762,4.0969904234 C,0,-1.1052135302,3.755974287,-1.317994593 H.0.3.5989763866,-0.5714453142,0.1798946276 H,0,1.1675620452,-2.4238663823,-1.3028900691 H,0,2.1094924075,-2.2093012478,1.5843491123

H,0,0.6194969795,-2.9483389172,0.9732418429 H,0,-1.899764306,-1.0897299591,1.5497801903 H,0,1.9616468127,-0.1315886194,-1.5109607134 H,0,1.7376006047,1.045027529,2.3799318831 H,0,2.1861674162,2.296603624,0.1354639567 H,0,2.0501195483,4.6988224081,-0.4575596995 H,0,-1.8821053038,1.7458431242,-1.1443756097 H,0,-0.0530314727,5.6369197998,-1.3894562925 H,0,-0.7445562533,-0.2924951611,5.623282238 H.0.4.5443681266,-3.4514658963,0.4662437119 H,0,4.0337252052,-4.4380181134,-0.9119651431 H,0,-2.3482001527,-1.2740549723,3.9967008684 H.0,1.8669229493,-4.8032466606,-0.0314975997 H,0,2.7069853518,-4.6024896201,1.5124888788 H,0,1.2942456373,0.8688426214,4.8068687934 H.0,-2.022381948,4.1607790903,-1.7376886952 C.0.3.7585946507.-2.2439130369.-2.2595211012 C,0,2.9666807358,-1.9235639958,-3.3005265216 C,0.5.2683631658,-2.3270988498,-2.4060436736 C.0.3.4775172604,-1.5955694584,-4.6836582645 H,0,1.8887687663,-1.8804257013,-3.1710429303 C,0,5.7237584233,-2.3835537723,-3.8708198405 H.0.5.7152675514,-1.4538384661,-1.9051763846 H,0,5.6544675688,-3.2011797663,-1.8669083607 C,0,4.9891682166,-1.3326475562,-4.707764714 H,0,2.9379919436,-0.7238414898,-5.0798446991 H,0,3.2355207383,-2.42340778,-5.3701484519 H.0.6.8098466352.-2.2401441783.-3.9242705544 H.0.5.5160078331,-3.3821674326,-4.2799363838 H,0,5.3583061318,-1.3287529544,-5.7405853135 H,0,5.193805587,-0.335472155,-4.2931808747

Cartesian coordinates of anti-SRts

Charge = 0 Multiplicity = 1 P,0,2.8530089712,0.1356441389,0.7363712867 C,0,4.1796048808,-0.8845175721,-0.0018564316 O,0,1.5643999934,0.0037059607,-1.6211890422 N,0,-0.8461608281,-1.4917261131,0.0558566465

O,0,2.6272030569,-0.2111509987,2.1908739773 C.0.0.6567021874.-1.4994517963.0.1576187675 C.0.3.3313149253,1.8729380208,0.420897929 C,0,1.0995579452,-2.674513575,-0.7395794383 C,0,4.7971813385,-1.833688527,0.8246921813 C,0,1.2954290823,-0.139566926,-0.2441997332 C,0,4.5913114151,-0.7523451275,-1.3378203707 C,0,2.5019941077,2.7929733826,-0.2382134123 C,0,2.908165463,4.1216695339,-0.379899759 C.0.4.5656749286.2.3054696493.0.9333976785 C,0,4.1355332046,4.5431518403,0.1317361315 C,0,6.2205155124,-2.5124585087,-1.0079463557 C,0,-1.2604086409,-2.4272675975,-1.0124163797 C,0,5.81688516,-2.6441182312,0.3216991068 C,0,-0.1707488125,-3.4990825936,-0.9797238229 C,0,5.6065355113,-1.5683707994,-1.835865208 C.0.4.9649711012.3.6325609646.0.790896017 H,0,0.7749181448,0.4119133804,-2.0592936076 H.0,0.9133401712,-1.697846597,1.2006200082 H.0.1.4748948714,-2.2704689719,-1.6830675849 H,0,1.9031221424,-3.2475775004,-0.2704210452 H,0,4.4722869643,-1.920048666,1.8576947022 H.0.0.6215262437.0.6543060582.0.0926019423 H.0.4.1088513961.-0.0250325062.-1.9818088196 H,0,1.545445018,2.4894062929,-0.6500935412 H,0,2.2603235423,4.8261017038,-0.8945056113 H,0,5.2145384275,1.6012842011,1.4476426763 H.0.4.4468058956.5.5783143809.0.0173906822 H.0.7.0145343229,-3.1430607983,-1.3999853395 H,0,-1.2600636413,-1.8971396692,-1.9715931628 H,0,-2.2600981216,-2.8182603031,-0.822388314 H.0.6.2963113536,-3.3750683982,0.9677518927 H,0,-0.3582395381,-4.1935941812,-0.1518681829 H,0,-0.1350995164,-4.0777275195,-1.9077161507 H.0.5.9212229919,-1.4661677826,-2.871140507 H.0.5.9219819019.3.9556651123.1.1919067686 C,0,-1.6715010971,-0.8948225938,0.9345714087 C,0,-1.0726080776,-0.0839465846,2.0749393072

C,0,-3.0865534946,-0.9357946884,0.8029426817 C.0.-1.9036084705.-0.1665920156.3.365053572 H.0.-1.0393247426.0.96034309.1.7389723504 H,0,-0.0390460512,-0.3651834818,2.2842557546 C,0,-3.9463350603,-0.790401698,2.0525992786 H,0,-3.4813179655,-1.6715479441,0.1095255245 C.0.-3.3691092549.0.1733285686.3.0935817705 H,0,-1.4683185253,0.5144138132,4.1051741036 H,0,-1.8321988428,-1.17849504,3.7878709133 H.0.-4.9598987546.-0.4874025716.1.768815382 H,0,-4.0548600676,-1.7845500999,2.5158447689 H,0,-3.9598342069,0.1210627637,4.0161770381 H.0.-3.4412477583,1.2087025633,2.7313623346 C,0,-2.8299086358,0.5724943281,-1.6974997771 C,0,-5.0775044374,0.4735317622,-0.6384316304 C.0.-5.9435709573.1.3164073119.0.078015348 C,0,-5.6436760697,-0.5249132894,-1.4509514262 C,0,-7.328063388,1.1794358416,-0.0252681568 H.0.-5.5238640964,2.0961936714,0.7086576933 C,0,-7.025468467,-0.6656194957,-1.5510317236 H,0,-4.9971753476,-1.1999979898,-2.0054457415 C,0,-7.8743249359,0.1875801216,-0.8402167598 H.0.-7.9782438482,1.8486887187,0.5315992119 H,0,-7.4424618733,-1.4434216721,-2.1851215326 H.0.-8.9521481117.0.0768130632.-0.9202094361 C,0,-3.6133505944,0.6793641834,-0.5369496225 H,0,-3.3012742611,1.4548073253,0.1549558804 H.0.-3.1195023307.0.039363887.-2.5904320105 N.0.-1.5470622814.1.0403385392.-1.7172196603 O,0,-0.821807246,0.7725147803,-2.7313490393 O,0,-1.0937184019,1.7107930711,-0.7447291797

Cartesian coordinates of anti-SR

Charge = 0 Multiplicity = 1 P,0,-1.286327432,0.6335114529,-0.7171337385 C,0,-2.6865881178,-0.5130110797,-0.977098662 O,0,-0.5853986253,-0.7838971542,1.5036564999 N,0,2.1701057725,-1.3862788527,0.1412655239

O,0,-0.6480299682,1.0504406267,-2.0242132687 C.0.0.8092148494.-1.2039305997.-0.4945970925 C,0,-1.946789159,1.990711463,0.3155611244 C,0,0.2062276542,-2.627009703,-0.5435252527 C,0,-3.0270289645,-0.8354589478,-2.2980994102 C,0,-0.0212763561,-0.2043612982,0.3534297348 C,0,-3.414198061,-1.0730732974,0.0858892704 C,0,-1.2819498348,2.4719265809,1.4552012487 C,0,-1.8038162616,3.5613142701,2.1561013336 C,0,-3.1323637583,2.6164874186,-0.1042719309 C,0,-2.979968663,4.1792272507,1.730631023 C,0,-4.8058371329,-2.2640336174,-1.4975995605 C,0.2.1264100202,-2.6655282897,0.9017377005 C.0.-4.0869776384.-1.7070413902.-2.5564794171 C,0,1.3034360197,-3.5678365394,-0.0144318512 C,0,-4.4670152924,-1.9486547099,-0.1785130417 C,0,-3.6445061325,3.7061640092,0.5968666118 H,0,-0.0155829164,-0.5381629485,2.2927005549 H.0.0.9521260936,-0.7914000286,-1.4932220611 H.0.-0.6636376638.-2.658963593.0.1145165483 H,0,-0.1141432306,-2.8853606772,-1.5556312405 H,0,-2.4573160158,-0.3922268529,-3.1099963264 H.0.0.6565431323,0.6066125247,0.6411218099 H,0,-3.1444761714,-0.8335866213,1.1090980701 H,0,-0.366340012,2.0121314613,1.8152313414 H,0,-1.2861717113,3.9225581097,3.0404346413 H,0,-3.6571218748,2.2487820899,-0.982132616 H.0.-3.380415993.5.0261624059.2.2819527852 H.0.-5.6311395818,-2.9426005022,-1.6980865527 H,0,1.6050407552,-2.4609727847,1.8425227765 H,0,3.1249486889,-3.0385148939,1.1171310382 H.0.-4.3514166894,-1.948959746,-3.5826575744 H,0,1.933833042,-3.944726712,-0.82860461 H,0,0.8996746844,-4.4284090333,0.5260844325 H.0.-5.0267444257.-2.3831455986.0.6456288132 H.0.-4.5619781112,4.1825732668,0.2616068712 C,0,3.155874191,-0.5280238217,0.0743029457 C,0,3.0491004011,0.7291498414,-0.7589095997

C,0,4.4726146737,-0.7811920125,0.774600817 C.0.4.2527697397.0.919253297.-1.7025431685 H,0,3.0340924042,1.5500379977,-0.0332513938 H,0,2.1100950516,0.7890836934,-1.3096449274 C,0,5.6649392747,-0.4749290827,-0.1734963955 H.0.4.5448325337,-1.8396837286,1.0289439789 C.0.5.5633887939.0.8588266067.-0.9171034517 H,0,4.137177864,1.8814015666,-2.2134934152 H,0,4.2485998067,0.1453302731,-2.4827457319 H.0.6.5870114227,-0.5289373143,0.4124598933 H,0,5.7221224321,-1.2833286773,-0.9165642444 H,0,6.4226940705,0.9698560055,-1.5893884449 H.0.5.6080417457,1.6965998374,-0.2082904055 C.0.3.4214254551.-0.4268615015.3.0776524712 C,0,5.8967490656,-0.3107015258,2.8578219702 C.0.6.7975984518.0.7336901466.3.1032481886 C,0.6.2588485984,-1.6058288819,3.2591123227 C,0,8.0220584877,0.4962139798,3.7305465571 H.0,6.5316705308,1.7459743585,2.8080226918 C,0,7,4815579017,-1.8480439395,3.8850414582 H.0.5.5758192727.-2.4358247682.3.091916735 C,0,8.3693631066,-0.7967251748,4.1226588885 H.0,8.702383616,1.323767226,3.9136948938 H.0.7.7392609444.-2.8586683339.4.1910488224 H,0,9.321599629,-0.984404531,4.6111981088 C,0,4.5575221595,-0.0249549382,2.1946646583 H,0,4.482130166,1.047930951,1.9928343525 H.0.3.483091374.-1.21625173.3.8124593044 N.0,2.2231575427,0.1017121756,2.8802893082 O,0,1.1800026738,-0.355905163,3.4941890423 O,0,2.0873974115,1.0650099295,2.0240762027

Cartesian coordinates of anti-SSts

Charge = 0 Multiplicity = 1 P,0,-2.6968089421,0.3204601388,-0.8205647802 C,0,-4.2171212819,-0.5351391156,-0.2684400851 O,0,-1.6183723337,-0.2558061365,1.6106657022 N,0,0.6569809795,-1.9110518309,-0.0489974244

O,0,-2.4077477117,0.0636825371,-2.2827464597 C.0.-0.8109306332.-1.6696902945.-0.2700664346 C.0.-2.8880458622.2.0988513139.-0.4468331703 C,0,-1.5103557876,-2.8411720408,0.4547767173 C,0,-4.9223884128,-1.2485258072,-1.2487713279 C,0,-1.2761451661,-0.2731705657,0.2472898924 C.0.-4.7046145797,-0.4984173982,1.047879307 C,0,-2.7663426171,2.6498466611,0.8385091654 C,0,-2.9311621761,4.0227404473,1.0247420001 C.0.-3.166137633,2.9369322512,-1.5374006138 C,0,-3.2209269044,4.8510639567,-0.0615161074 C,0,-6.5824035336,-1.8793086653,0.3913480772 C.0.0.8260076498,-2.9513217339,0.9857389827 C.0.-6.1021633147.-1.9173648646.-0.9184605664 C,0,-0.3963126927,-3.8446631744,0.783933303 C.0.-5.8820455179,-1.1718178555,1.37204702 C.0.-3.3356996517.4.3077022288.-1.3425378994 H,0,-0.8834394213,0.2215326474,2.0959886852 H.0.-0.9933964207,-1.7121651349,-1.3455777465 H.0.-1.9598505702.-2.4625434941.1.3749518752 H,0,-2.3021115812,-3.2696757794,-0.1646081558 H,0,-4.5364324871,-1.2664035771,-2.2637916936 H.0.-0.481813955.0.457079327.0.0520707587 H.0.-4.1593716766.0.0374074396.1.8164032353 H,0,-2.5217951419,2.014311094,1.6819380192 H,0,-2.8265597727,4.4449281172,2.0204650553 H,0,-3.2327138393,2.5057486806,-2.5318822506 H,0,-3.350305025,5.9196772312,0.0896335728 H.0.-7.5015420256.-2.3990862688.0.6494209076 H,0,0.834894413,-2.4452100497,1.9605082308 H,0,1.7715928801,-3.4772083771,0.8528307384 H.0.-6.6455868321,-2.4653963905,-1.6837595479 H,0,-0.2217865577,-4.5338974952,-0.0512483138 H,0,-0.615510828,-4.4412650916,1.6740764592 H.0.-6.2540340074.-1.1435733444.2.3927831306 H.0.-3.5520537666.4.9513273324.-2.1911954747 C,0,1.6418065362,-1.3409076965,-0.7343176685 C,0,1.311431956,-0.3249397585,-1.8033137821

C,0,3.0331955811,-1.5308393732,-0.4131775027 C.0.2.2187541125.-0.4640696155.-3.038396155 H,0,1.4762205242,0.6650672406,-1.3450424054 H,0,0.2627751814,-0.3514443743,-2.1031843788 C,0,4.0116202735,-1.4842362664,-1.5910301174 H.0.3.2286163794,-2.3965244999,0.2142031612 C,0,3.6937213259,-0.4149341557,-2.6414218042 H,0,1.9729985321,0.3355933645,-3.7462491513 H,0,1.994870388,-1.4123360445,-3.5462427329 H,0,5.0301867315,-1.3516402441,-1.2136858125 H,0,3.9977866316,-2.4726763412,-2.0775557116 H,0,4.3345136657,-0.560505519,-3.519583099 H.0.3.9307693686.0.5780819446.-2.2417883774 C.0.2.426725428.0.7417470053.1.3432250078 C,0,3.4797770549,-0.1679207693,1.0341537343 C.0.4.8156857357.0.3827666965.0.6664091126 C.0.5.9702594213,-0.3292493726,1.0336348914 C,0,4.9832400097,1.6148268375,0.0107710043 C,0,7.2444813321,0.1664608512,0.7578933077 H.0,5.863480448,-1.2783575195,1.5541293111 C,0,6.255097346,2.1114528391,-0.2685197019 H,0,4.1134901749,2.2002200777,-0.2720611329 C,0,7.3920137276,1.3895539759,0.1023924655 H,0,8.1207047337,-0.4005728468,1.0607659345 H,0,6.3585902744,3.0693490358,-0.7712868907 H,0,8.3827412949,1.7805452296,-0.1122511958 N,0,1.4518938413,0.3851554279,2.220425578 O.0.1.5148066498.-0.6897664654.2.8845362359 0.0.04519402703.1.1829266552.2.3690578454 H,0,3.5446664612,-0.9409661437,1.794571256 H,0,2.2718353667,1.7060462261,0.8830546437

Cartesian coordinates of anti-SS

Charge = 0 Multiplicity = 1 P,0,2.7374662675,0.1617155666,0.6287662655 C,0,4.1088282127,-1.0210620066,0.3794103791 O,0,1.4781526478,-1.0829029785,-1.4561212566 N,0,-0.9260154056,-1.6746867804,0.4676975045

O,0,2.4737391653,0.4251628325,2.0946774216 C.0.0.5440042495.-1.5520642559.0.7862550877 C.0.3.1397923496,1.6795787937,-0.3047521978 C,0,1.0921601265,-2.9880642349,0.6546451893 C,0,4.7538490646,-1.4937227159,1.531416373 C,0,1.2089325192,-0.5398864176,-0.192743216 C,0,4.5409396602,-1.4504483386,-0.8855957951 C,0,2.8601719745,1.8550048381,-1.6689072857 C,0,3.2017285205,3.0530047648,-2.2986862444 C.0.3.7504694047.2.7161574435.0.4183765994 C,0,3.8234358508,4.0751837303,-1.5793296523 C,0,6.2446259253,-2.8151920462,0.1622624174 C,0,-1.1707599441,-3.0213553958,-0.1296905219 C,0,5.8198359014,-2.3881604999,1.421304825 C,0,-0.1491422286,-3.890190248,0.6001564402 C,0,5.6038861916,-2.3473217577,-0.9882841228 C,0,4.0946872804,3.9072082435,-0.2194789098 H,0,0.778478307,-0.7073437714,-2.089145329 H.0.0.6478360435,-1.1811677823,1.8063690872 H.0.1.6505225941,-3.0646697962,-0.2809202986 H,0,1.763642892,-3.2308109562,1.4815878177 H,0,4.4125033805,-1.1489002252,2.503239255 H.0.0.5448567163.0.3296130932.-0.290346129 H.0.4.0390239899.-1.0986303309.-1.7799309129 H,0,2.3600248395,1.0740140712,-2.2305052122 H,0,2.9740498396,3.1867715105,-3.3526272563 H,0,3.9341371287,2.5872686576,1.4811104828 H,0,4.0887042164,5.0051809891,-2.075600641 H.0,7.0753830699,-3.510859433,0.075592597 H,0,-0.9800266333,-2.9400298648,-1.2013701681 H,0,-2.2042415457,-3.3242115248,0.0295506451 H.0.6.3186360187,-2.7486432555,2.3171969769 H,0,-0.5076717928,-4.1369410459,1.6072485362 H,0,0.0306452324,-4.8277937037,0.0665956397 H.0.5.9338230499,-2.6806521158,-1.968611537 H.0,4.5677850405,4.7059095095,0.3457625566 C,0,-1.8062536529,-0.7392772891,0.6892473236 C,0,-1.5108377792,0.4137213477,1.6112501396

C,0,-3.2415104571,-0.8422220022,0.2165705776 C.0.-2.3829164909.0.2189471881.2.8820799164 H.0.-1.812129369,1.3410804983,1.1190029966 H,0,-0.4570859373,0.5088531772,1.8737729913 C,0,-4.1818849955,-0.8719173299,1.4519156996 H.0.-3.3599096901,-1.7802377587,-0.3195125433 C.0.-3.873456535,0.1853661153,2.5242374937 H,0,-2.1657173024,1.0385968273,3.5759780409 H,0,-2.0852290685,-0.7098531579,3.3883715974 H,0,-5.2187330247,-0.7770887895,1.1126246488 H,0,-4.0960073632,-1.8699435825,1.9066356212 H,0,-4.4685354046,-0.0263768078,3.4211072429 H.0.-4.1786738154,1.1751350753,2.1706813891 C,0,-2.2080394212,0.7295616142,-1.5309848875 C,0,-3.506898284,0.2752137986,-0.923007311 C,0,-4.42012344,1.4283208902,-0.5283320151 C,0,-5.8099900263,1.2486761669,-0.6216049648 C,0,-3.9558172405,2.6840255961,-0.1050728742 C.0.-6.7022993532.2.2655057769.-0.2816946743 H.0.-6.1968255076.0.2985915458.-0.9835537425 C,0,-4.8437796074,3.7068498851,0.2340179398 H,0,-2.8900011723,2.8823228355,-0.0481994434 C.0.-6.2212889139.3.5011319231.0.1531958887 H,0,-7.7721954704,2.0950382367,-0.3686509874 H,0,-4.4542365455,4.6696379719,0.5544243021 H,0,-6.9114648796,4.2989013599,0.4136956068 N,0,-1.4846032798,-0.1335181008,-2.2400304286 O.0.-1.8742136365,-1.3413738031,-2.3906255028 O.0.-0.3443292191.0.2451188221.-2.7439694438 H,0,-4.0465440566,-0.298707322,-1.6871137502 H,0,-1.853024181,1.7481497283,-1.5373442573

Cartesian coordinates of syn-RRts

Charge = 0 Multiplicity = 1 P,0,-2.1426228729,0.4719031389,-0.7267028873 C,0,-3.8387944442,-0.1140735197,-0.3725473745 O,0,-1.3949926906,-0.5982176245,1.6390902424 N,0,0.7069223266,-2.4594927955,0.1234738364

O,0,-1.8005863925,0.3672780577,-2.1927473379 C.0.-0.5650400629.-1.8278805064.-0.3685806157 C,0,-2.0026638251,2.1915483136,-0.1128665142 C,0,-1.6470168897,-2.9134597856,-0.1128546485 C,0,-4.6112033599,-0.4736642052,-1.4868705493 C,0,-0.9186184836,-0.4863191936,0.3163464215 C,0,-4.3972720957,-0.1947218185,0.91343199 C,0,-1.9432371371,2.5434576172,1.2457880831 C,0,-1.8252792446,3.8845212248,1.6133033999 C,0,-1.9365219171,3.1950872464,-1.0911594365 C,0,-1.7699511014,4.8805299595,0.6353732029 C,0,-6.4780661857,-0.9864838816,-0.0391277999 C.0.0.3569541429.-3.5560151321.1.045119443 C,0,-5.9270948893,-0.9073040469,-1.3187776674 C,0,-0.8988480333,-4.1523987855,0.4132883688 C,0,-5.7115123011,-0.6326849276,1.0743625976 C.0.-1.8235516778.4.5347156666.-0.7163272915 H,0,-0.6283440686,-0.697583955,2.2674094059 H.0.-0.4346857032,-1.6245023929,-1.4345433058 H.0.-2.3380108067.-2.5486403101.0.6495658114 H,0,-2.2186571225,-3.1179750819,-1.0215775126 H,0,-4.168475267,-0.4075770143,-2.4763020772 H.0.-0.0269517352,0.1474976026,0.2778511222 H,0,-3.8030123186,0.0614513558,1.7827935448 H,0,-1.96807475,1.7714183465,2.0077771582 H,0,-1.7742296233,4.1510244755,2.6656054854 H,0,-1.963948243,2.9107222676,-2.1389222686 H,0,-1.681221309,5.9237471603,0.9272604276 H.0,-7.502993303,-1.3237153993,0.0923698385 H,0,0.1615300179,-3.1037508834,2.0278329135 H,0,1.1789856413,-4.2552443615,1.1704020103 H.0.-6.5204792618,-1.1822447053,-2.1868316347 H,0,-0.6165503751,-4.8220313476,-0.4081829744 H,0,-1.4920651945,-4.7282341906,1.1295392168 H.0.-6.1380988963.-0.6976271775.2.0717948311 H.0,-1.776924252,5.3071465243,-1.4795940736 C,0,1.9292576831,-2.2361490066,-0.382965064 C,0,2.268687904,-0.9758102426,-0.9596160166

C,0,3.0065153149,-3.3066985807,-0.2893321296 C.0.3.3469512008.-0.9259964709.-2.0372703229 H,0,1.4280902191,-0.3243445675,-1.1856488336 C,0,3.9289877498,-3.3114366568,-1.5212457823 H,0,3.593963154,-3.1316788214,0.6186138689 H,0,2.5513103784,-4.2946555923,-0.1829207666 C.0.4.490176939,-1.9174572698,-1.8024932703 H,0,3.7319343731,0.0948991097,-2.1232846049 H,0,2.8728355706,-1.1488413585,-3.0055088462 H.0.4.7359622424,-4.0345127297,-1.3527627346 H,0,3.368927449,-3.6630785053,-2.3991342845 H,0,5.1517016592,-1.9368903634,-2.6769535201 H.0.5.1057796796,-1.5934313265,-0.9518573684 C.0.1.9752410596.0.0906784384.1.6883686266 C,0,2.9534250054,0.0776916258,0.6618821586 C.0.3.326855069.1.3917042118.0.0659873566 C.0.4.682320529,1.7040574048,-0.1270870035 C,0,2.3651060211,2.3508178606,-0.295502458 C,0.5.0674090605,2.9386289873,-0.6503478614 H.0.5.4408159388.0.9760929258.0.1504378952 C,0,2.74833627,3.5822692825,-0.8222129146 H,0,1.3070582848,2.1385866851,-0.1695706512 C,0,4.1011351419,3.8824330391,-1.0007165477 H,0,6.1227379871,3.1614938401,-0.7830542043 H.0.1.9853064025.4.3066014567.-1.0935765533 H,0,4.3985296987,4.8433242663,-1.4116732942 H,0,3.7988498357,-0.5742791307,0.864212154 H,0,1.2875675023,0.9053044939,1.8588148093 N.0,1.7837143288,-0.994808657,2.4947156347 O,0,2.5861643799,-1.9633851586,2.4699747255 O,0,0.7591899138,-1.0185135047,3.266966682

Cartesian coordinates of syn-RR

Charge = 0 Multiplicity = 1 P,0,-2.3608730857,0.445823725,-0.8870080203 C,0,-3.857900953,-0.2278282552,-0.0774303985 O,0,-0.9100409329,-0.7971697932,1.0785466379 N,0,0.5352999741,-2.5697499186,-0.5264623566

O,0,-2.4611864053,0.4065010284,-2.3918957414 C.0.-0.574259787.-1.7431564402.-1.1498807408 C,0,-2.0995250505,2.1325276093,-0.2356190704 C,0,-1.7636552072,-2.7209290506,-1.2129670769 C,0,-4.9544531701,-0.4685175887,-0.919111481 C.0.-0.8500902296.-0.4858647824.-0.2881081376 C.0.-3.9755006062,-0.4696643369,1.3013179727 C,0,-1.7072166727,2.4025575946,1.0859420305 C,0,-1.5212755556,3.7218805025,1.4992516711 C.0.-2.2991627623,3.1919366591,-1.1323907115 C,0,-1.7296416249,4.7747362477,0.6048070372 C,0,-6.2681928759,-1.182767247,0.9802417736 C,0,0.0062185804,-3.9195810911,-0.1744001874 C.0.-6.1554766324.-0.9426889432.-0.3900731612 C,0,-1.1421863474,-4.1155422621,-1.1584411767 C.0.-5.1776677702,-0.9491375683,1.8218829698 C,0,-2.1172781167,4.5095309899,-0.70975545 H,0,0.0326534749,-0.600585788,1.4113335751 H.0.-0.2610796129.-1.4477995843.-2.1546543001 H.0.-2.3980974694.-2.5716516353.-0.3346515582 H,0,-2.3656230004,-2.5338870116,-2.103952858 H,0,-4.8507273943,-0.2820629929,-1.9839996534 H.0.-0.0450128789.0.2369321383.-0.466827504 H,0,-3.1272736706,-0.3095689407,1.9564282521 H,0,-1.5277449093,1.5900991125,1.7826948273 H,0,-1.2086195449,3.9253186011,2.5195693524 H,0,-2.5865964783,2.9699691579,-2.155936185 H.0.-1.5848458632.5.8008536126.0.9323987226 H.0.-7.2035351946.-1.5517098256.1.3931405204 H,0,-0.3487644436,-3.8866432601,0.8615524209 H,0,0.7889472524,-4.6705743087,-0.2681723949 H.0,-7.0014252185,-1.1240135255,-1.0478678328 H,0,-0.7511603401,-4.4194512294,-2.1367797626 H,0,-1.8404801125,-4.8850502657,-0.8181484909 H.0.-5.2622997831.-1.1393288172.2.8884812542 H.0,-2.275229438,5.3273835753,-1.4078843783 C,0,1.7523419564,-2.1789758933,-0.2575885592 C,0,2.3572059888,-0.9041618683,-0.8036515323

C,0,2.7060354125,-3.0505689822,0.5000593977 C,0,3.5396088294,-1.3181751141,-1.7302689953 H,0,1.6273997593,-0.3805626668,-1.4235103037 C,0,3.9166779839,-3.4358498204,-0.3903672735 H,0,3.0413285274,-2.4499979124,1.3655472789 H.0.2.2301670234,-3.941781178,0.908861655 C.0,4.5750952444,-2.2052937915,-1.0259357635 H,0,4.0029918887,-0.398874903,-2.1044534033 H,0,3.139158712,-1.8488785184,-2.6059473566 H.0.4.6347851196,-3.9881468237,0.2252373409 H,0,3.5801667609,-4.1239502011,-1.1794405723 H,0,5.3375256553,-2.5227821795,-1.7475281472 H.0.5.0992305605,-1.6317918749,-0.2530931154 C,0,1.7474304366,0.1429325895,1.4799307254 C,0,2.7952332129,0.0447429635,0.3696852451 C,0,3.2249649084,1.402607609,-0.1727152008 C,0,4.537445164,1.8542374272,0.0299059824 C,0,2.3377416456,2.2490038176,-0.8569828919 C,0,4.9513401529,3.1053826812,-0.4305873598 H.0,5.2396426367,1.2219448783,0.5682950902 C,0,2.7466014398,3.4994757632,-1.3200340974 H,0,1.3069040185,1.9444605587,-1.0209085332 C,0,4.0572979473,3.9328246349,-1.1104969202 H,0,5.9731814442,3.432319256,-0.2555874387 H.0.2.036366026.4.1367759045.-1.8402919285 H,0,4.376400309,4.907279627,-1.4705093962 H,0,3.6709102825,-0.4040621253,0.8447748328 H,0,1.2385248268,1.0987024671,1.5803685464 N.0.2.1545951772,-0.2878686289,2.7506849163 O,0,3.1178613167,-1.1083998041,2.8679535829 O,0,1.5157154894,0.0978290165,3.7515468058

Cartesian coordinates of syn-RSts

Charge = 0 Multiplicity = 1 P,0,-2.7873161462,-0.2068909781,-0.7130971583 C,0,-4.0095010864,-0.7598052857,0.5344139076 O,0,-1.1305230563,-0.3535646052,1.511151131 N,0,1.0727324946,-1.7222433924,0.0670069061

O,0,-2.8587884004,-1.036964848,-1.9739705673 C.0.-0.3325356392.-1.5121602981.-0.4672661376 C,0,-3.1358158013,1.5610318915,-1.0146919146 C,0,-1.0506819102,-2.8507373329,-0.1184740646 C,0,-4.8081687048,-1.8602612254,0.1945034653 C,0,-1.0689716291,-0.2884366769,0.1033009011 C,0,-4.2026292065,-0.1199593431,1.7677522837 C,0,-2.6242148275,2.610397221,-0.2370955427 C,0,-2.9759424397,3.9282092943,-0.5377537586 C,0,-3.986494061,1.8456452688,-2.0953552218 C,0,-3.8331765603,4.2061963738,-1.6027418827 C,0,-5.9658992228,-1.6867659899,2.3093158798 C,0,1.0165410341,-2.8249288599,1.0483504003 C,0,-5.783611136,-2.3219495871,1.0803014994 C,0,0.0254780372,-3.8029221331,0.4265532325 C.0.-5.1757474188.-0.5856179172.2.6506679446 C.0.-4.33569433.3.1632448559.-2.3850447103 H,0,-0.7873687603,0.5086336068,1.8594061107 H.0.-0.2445730554,-1.3885769511,-1.5480120897 H.0,-1.792468571,-2.6635988646,0.6623118306 H,0,-1.5758941942,-3.2324388055,-0.994789883 H,0,-4.6596614966,-2.3377969745,-0.7696868735 H.0.-0.5635987788.0.6206991732.-0.2320853574 H,0,-3.5967282202,0.7378827397,2.0389561039 H,0,-1.9254709018,2.4324869331,0.575341472 H,0,-2.5632191421,4.7367641531,0.0589865711 H,0,-4.35313272,1.0295126385,-2.711203537 H,0,-4.1012381694,5.2347534158,-1.8311397377 H.0.-6.7256604901.-2.0442351406.2.9997995926 H,0,0.6052400757,-2.3958937395,1.9689971528 H,0,2.0068158389,-3.2241736724,1.2631203097 H.0.-6.4022944532.-3.1733553736.0.8084115513 H,0,0.5107242767,-4.3674094967,-0.379516208 H,0,-0.3718234335,-4.5189957339,1.1518362568 H,0,-5.3194547263,-0.0873428186,3.6057699327 H.0,-4.9930167548,3.376735112,-3.2240244049 C,0,2.1904002673,-1.3582107041,-0.5768597167 C,0,2.3080702716,-0.0590112697,-1.1664997272

C,0,3.3850889791,-2.2900420791,-0.632405557 C,0,3.2005998072,0.1029572508,-2.3992319128 H,0,1.3646194024,0.4730960383,-1.2832302601 C,0,4.0217281427,-2.2575743307,-2.0393091348 H,0,4.1395193275,-1.9956349806,0.107683525 H,0,3.0848322959,-3.3147555948,-0.3998920304 C.0.4.4158736285,-0.8346681611,-2.4376517929 H,0,3.521248977,1.1486706757,-2.4836296338 H,0,2.5750895787,-0.0843994388,-3.2842577902 H,0,4.8952585985,-2.9200802639,-2.0443949878 H,0,3.3083947232,-2.6687635326,-2.7668671742 H,0,4.8492731651,-0.8294019701,-3.4450921828 H.0.5.1937998785,-0.4739283661,-1.756405216 C.0.1.9368415186.1.2381379566.1.2590684161 C,0,2.9311966291,1.1013674413,0.2418326712 N.0.0.846075964.2.013024367.1.0340090996 O.0.-0.0567198115,2.0821819221,1.9494914975 O,0,0.6994280523,2.6244500834,-0.0610754761 C.0.4.3150430809.0.7712170774.0.7049997865 C,0.5.4113877154,1.4315402695,0.1269122051 C,0,4.5685522271,-0.127109007,1.7567819525 C,0,6.7132867435,1.1953968005,0.5700326891 H,0,5.2378018694,2.1516216003,-0.668779465 C,0,5.8683870789,-0.3659400554,2.2013426543 H.0.3.7407138097.-0.6390318693.2.2401991137 C,0,6.9478002571,0.2919775286,1.6073283808 H,0,7.5427331468,1.7251802629,0.1093630443 H.0.6.0375716578.-1.0618527735.3.0188095543 H.0,7.9600370614,0.1088070864,1.9567823517 H,0,2.9151938248,1.9534482459,-0.4370067317 H,0,1.9661340788,0.7681937565,2.2294471025

Cartesian coordinates of syn-RS

Charge = 0 Multiplicity = 1

P,0,-2.3899525243,0.4778487038,-0.8760311346 C,0,-3.8375990198,-0.1548923879,0.0563720148 O,0,-1.0234270308,-0.9004124557,1.0788763335 N,0,0.4750268432,-2.590393192,-0.5820028933

O,0,-2.5523754375,0.2801030699,-2.3654603859 C.0.-0.5230996987.-1.6108105905.-1.2023157405 C,0,-2.2019081027,2.2264135304,-0.4125981274 C,0,-1.7379690198,-2.5055385577,-1.5277284104 C,0,-4.9147773113,-0.6263251153,-0.7080197065 C.0.-0.8529139405.-0.4336229036.-0.2411746877 C.0.-3.9392607018.-0.1333887622.1.4563492538 C,0,-1.6640756651,2.6560095,0.8073252906 C,0,-1.5883429408,4.021117741,1.0848238692 C.0.-2.6579179036.3.1675854305.-1.3497742145 C,0,-2.0551514045,4.9557994429,0.1602287613 C,0,-6.1713952711,-1.0622669798,1.3099317217 C,0,-0.1755908503,-3.9303132188,-0.4598396693 C.0.-6.0777668633.-1.0784076556.-0.0824356437 C,0,-1.2022741839,-3.931805729,-1.5834238592 C,0,-5.1022307588,-0.5901043805,2.0759345444 C.0.-2.5886389146.4.5289504846.-1.0588569887 H,0,-0.130903283,-0.7741875914,1.5079182813 H,0,-0.0703447504,-1.2289059253,-2.1210968389 H.0.-2.4667495652,-2.4266670411,-0.715207236 H,0,-2.2187545546,-2.1624753793,-2.4427898891 H,0,-4.8288924966,-0.6261284361,-1.7908198011 H.0,-0.0558358872,0.31714173,-0.2800604074 H,0,-3.1121018743,0.2254604766,2.0577134569 H.0.-1.2642824126.1.9605350434.1.5379124523 H,0,-1.139665843,4.3410692734,2.0203960224 H,0,-3.0495844518,2.8225366086,-2.3020449848 H.0.-1.9927362536.6.0183374807.0.3823624222 H.0.-7.0771138437.-1.4121359351.1.7989418904 H,0,-0.6549068492,-3.9737226015,0.5244893515 H,0,0.5577038248,-4.7281593938,-0.5471644153 H.0.-6.9102822184,-1.4377102407,-0.6820156975 H,0,-0.7110798046,-4.1435861148,-2.5410147232 H,0,-1.9749416587,-4.6891448713,-1.4240955488 H,0,-5.1746298037,-0.5740974959,3.1602239919

H,0,-2.941733123,5.2556591313,-1.7861015965 C.0.1.7142232227.-2.3652094364.-0.2447062745 C,0,2.4352705275,-1.0720749686,-0.5116811673 C,0,2.6008669781,-3.4774629905,0.2409960259 C,0,3.5353080595,-1.3758041556,-1.5804537236 H,0,1.7433599497,-0.3629829947,-0.9662391966 C.0.3.5783342473,-3.833294423,-0.9135190726 H,0,3.1933478726,-3.1026412551,1.0782284591 H,0,2.0571006235,-4.3517138929,0.595681525 C,0,4.4136232968,-2.604812953,-1.2948330677 H,0,4.155593735,-0.4791716586,-1.6889245328 H,0,3.0301790241,-1.5168951905,-2.5463883278 H.0,4.2224831346,-4.6567954844,-0.586027508 H.0.3.0067489743.-4.1987824554.-1.7783268656 H,0,5.0195972061,-2.8281327875,-2.1814532433 H,0,5.1124016852,-2.3847381216,-0.4830038504 C.0.1.7718640824.-0.1257218363.1.797092148 C,0,2.9088515825,-0.2991027819,0.8037630814 N.0,1.204856475,1.1367903735,1.8183922555 O.0.0.537746449.1.5040306444.2.8220535847 O,0,1.2990617052,1.8769623511,0.7890638665 C,0,4.2217378839,-0.7244940528,1.4559465715 C,0,5.4231163847,-0.1514781551,1.0046486707 C,0,4.2997145374,-1.6040972888,2.5495155353 C,0,6.6501745744,-0.4699635571,1.5876764875 H,0,5.3924624709,0.5714458042,0.1929900616 C,0,5.5242754208,-1.9287424899,3.1364965927 H.0.3.3916418696.-2.0246040834.2.9724432734 C,0.6.70752444,-1.3686360921,2.6540037315 H,0,7.5593362548,-0.0034334388,1.2171824616 H,0,5.5487883534,-2.6096095773,3.9834519953 H,0,7.6600308608,-1.6146578654,3.1152946492 H,0,3.0892760494,0.7019002499,0.3937912363 H,0,1.8774397781,-0.5107096385,2.804541439

4 Reference

[1] a) Y. J. Jang, Y. K. Shih, J. Y. Liu, W. Y. Kuo and C. F. Yao, *Chem.-Eur. J.* **2003**, *9*, 2123-2128; b) J. T. Liu and C. F. Yao, *Tetrahedron Lett.* **2001**, *42*, 6147-6150.

[2] B. List, P. Pojarliev and H. J. Martin, Org. Lett. 2001, 3, 2423-2425.

[3] T. Ishii, S. Fujioka, Y. Sekiguchi and H. Kotsuki, J Am Chem Soc 2004, 126, 9558-9559.

[4] Vishnumaya and V. K. Singh, Org. Lett. 2007, 9, 1117-1119.

[5] Vishnumaya and V. K. Singh, Org. Lett. 2007, 9, 1117-1119.

[6] S. Luo, X. Mi, L. Zhang, S. Liu, H. Xu and J.-P. Cheng, Angew. Chem. Int. Ed. 2006, 45, 3093-3097.

[7] J. R. Chen, Y. J. Cao, Y. Q. Zou, F. Tan, L. Fu, X. Y. Zhu and W. J. Xiao, Org. Biomol. Chem. 2010, 8, 1275-1279.

[8] N. Mase, K. Watanabe, H. Yoda, K. Takabe, F. Tanaka and C. F. Barbas, J. Am. Chem. Soc. 2006, 128, 4966-4967.

[9] S. V. Pansare and K. Pandya, J. Am. Chem. Soc. 2006, 128, 9624-9625.

[10] B. Tan, X. Zeng, Y. Lu, P. J. Chua and G. Zhong, Org. Lett. 2009, 11, 1927-1930.

[11] J. R. Chen, Y. J. Cao, Y. Q. Zou, F. Tan, L. Fu, X. Y. Zhu and W. J. Xiao, Org. Biomol. Chem. 2010, 8, 1275-1279.