Supporting Information

Pyridinium/urea based anion receptor: methine formation in the presence of basic

anions

Greta Bergamaschi,^a Massimo Boiocchi,^b Enrico Monzani^a and Valeria Amendola^{*a}

- a Dr. V. Amendola, Dr. G. Bergamaschi, Prof. E. Monzani Dipartimento di Chimica Generale Università di Pavia via Taramelli 12, Pavia Fax: (+)390382528544 E-mail: <u>valeria.amendola@unipv.it</u>
 b Dr. M. Boiocchi
- Centro Grandi Strumenti Università di Pavia

Synthesis of 1

To a solution of alkyne, N-(4-trifluoromethylphenyl)-N'-(4'-ethynylphenyl)urea, (0.35 g, 1.30 mmol) and 2-(azidomethyl)pyridine^[1-2] (0.21 g, 1.52 mmol) in 20 ml methanol/t-butanol 1:1 (v:v) mixture was added a solution of Cu(OAc)₂·H₂O (13 mg, 0.065 mmol) in 1 ml of water. The reaction mixture was stirred at room temperature. After 18 h stirring, a white precipitate was filtered out (yield 80%, 0.45 g). ESI-MS (CH₃CN): m/z (–) 473 [M + Cl]⁻; UV–vis. (CH₃CN): $\lambda_{max} = 282$ nm, $\varepsilon_{282} = 52 \times 10^4$ M⁻¹ cm⁻¹. FT-IR (nujol mull), cm⁻¹: 3326 (w), 3264 (w), 3111 (w), 2718 (s), 1684 (s), 1647 (m), 1601 (m), 1543 (br, m), 1342 (m), 1316 (m), 1098 (s). ¹H-NMR (δ , ppm, TMS; CD₃CN): 8.58 (d, $J_{r,s} = 4.7$ Hz, 1H; H-s), 8.15 (s, 1H; H-m), 7.81 (d, $J_{c,d} = 8.7$ Hz, 2H; H-c), 7.80 (dd, $J_{q,r} = 7.7$ Hz, $J_{q,p} = 7.9$ Hz, 1H; H-q), 7.68 (s, 1H; H-g), 7.68 (d, $J_{i,j} = 9.3$ Hz, 2H; H-i), 7.63 (d, $J_{i,j} = 9.3$ Hz, 2H; H-j), 7.57 (d, $J_{c,d} = 8.7$ Hz, 2H; H-d), 7.54 (s, 1H; H-f), 7.34 (dd, $J_{r,s} = 4.7$ Hz, $J_{r,q} = 7.7$ Hz, 1H; H-r), 7.32 (d, $J_{p,q} = 7.9$ Hz, 1H; H-p), 5.70 (s, 2H; H-n). ¹³C-NMR (δ , ppm, TMS; CD₃CN): 155.4 (C-o), 155.1 (C-u), 149.7 (C-s), 147.4 (C-b), 147.3 (C-l), 143.4 (C-h), 139.4 (C-e), 137.6 (C-q), 127.7 (C-p), 126.2 (C-j), 126.2 (C-c), 124.7 (C-a), 123.5 (C-r), 123.4 (C-k), 121.0 (C-m), 119.5 (C-d), 118.7 (C-i), 55.4 (C-n).

[1] W. S. Brotherton, H. A. Michaels, J. T. Simmons, R. J. Clark, N. S. Dalal, and L. Zhu, *Org. Lett.*, **2009**, *11*, 4954-4957. D. Urankar, B. Pinter, A. Pevec, F. De Proft, I. Turel, J. Kosmrlj, Inorg. Chem.
2010, 49, 4820–4829

[2] J. Ritschel, F. Sasse and M. E. Maier, Eur. J. Org. Chem. 2007, 78-87.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Compound 1: ¹H-NMR in CD₃CN

Synthesis of 2[•]PF₆

1 (0.11 g, 0.24 mmol) was dissolved in a screw capped flask with the minimum amount of 1:1 MeCN/CHCl₃ mixture. Methyl iodide (3 ml, 48.17 mmol) was added to this solution and the mixture was stirred at 50°C for 24h (ESI-MS control). After this time the solvent was removed on a rotary evaporator leaving a brownish solid. The product was dissolved in a H₂O/MeCN mixture and a saturated solution of NH₄PF₆ was added dropwise; solid precipitation occurs. The white product was filtered off and dried. (yield 56%, 82mg). ESI-MS (CH₃CN): m/z (+) 453 [M]⁺. UV–vis. (CH₃CN): $\lambda_{max} = 280$ nm, $\varepsilon_{280} = 50 \times 10^4$ M⁻¹ cm⁻¹. FT-IR (nujol mull), cm⁻¹: 3348 (w), 3149 (w), 3116 (w), 3073 (w), 2718 (s), 1684 (s), 1637 (m), 1601 (m), 1531 (m), 1327 (m), 1098 (s), 840 (br, s). ¹H-NMR (δ , ppm, TMS; CD₃CN): 8.74 (d, $J_{r,s} = 6.1$ Hz, 1H; H-s), 8.46 (false t, $J_{obs} = 8.0$ Hz, 1H; H-q), 8.25 (s, 1H; H-m), 8.03 (s, 1H; H-g), 7.99 (false t, $J_{obs} = 6.6$ Hz, 1H; H-r), 7.89 (s, 1H; H-f), 7.85 (d, $J_{c,d} = 8.7$ Hz, 2H; H-d), 7.50 (d, $J_{p,q} = 8.1$ Hz, 1H; H-i), 7.63 (d, $J_{i,j} = 8.7$ Hz, 2H; H-j), 7.61 (d, $J_{c,d} = 8.7$ Hz, 2H; H-d), 7.50 (d, $J_{p,q} = 8.1$ Hz, 1H; H-p), 6.06 (s, 2H; H-n), 4.34 (s, 3H; H-t); ¹³C-NMR (δ , ppm, TMS; CD₃CN): 152.5 (C-u), 152.0 (C-o), 148.2 (C-b), 148.2 (C-l), 147.7 (C-s), 147.0 (C-q), 143.4 (C-h), 140.0 (C-e), 128.1 (C-p), 127.9 (C-r), 126.7 (C-j), 126.4 (C-c), 124.9 (C-a), 123.4 (C-k), 121.9 (C-m), 119.5 (C-d), 118.8 (C-i), 50.2 (C-n), 46.4 (C-t).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Compound 2[·]PF₆: ¹H-NMR in CD₃CN

Figure S1. (a)Absorption spectra taken over the course of the titration of a solution of $\mathbf{1}$ (3.0 × 10⁻⁴ M) in acetonitrile, with a 2.0 × 10⁻² M solution of the TBA-Cl (l = 0.1 cm); (b) distribution of the species present at the equilibrium. Blue line: free receptor; red line: bound receptor; black triangles: superimposed plots of Molar Absorbance (at 290 nm) *vs.* eqv. of TBA-Cl. T = 25°C.

Figure S2. (a)Absorption spectra taken over the course of the titration of a solution of $2 (3.0 \times 10^{-4} \text{ M})$ in acetonitrile, with a 2.0×10^{-2} M solution of the TBA-Cl (l = 0.1 cm); (b) distribution of the species present at the equilibrium. Blue line: free receptor; red line: bound receptor; black triangles: superimposed plots of Molar Absorbance (at 290 nm) *vs.* eqv. of TBA-Cl. T = 25°C.

Figure S3. (a)Absorption spectra taken over the course of the titration of a solution of $\mathbf{1}$ (1.7×10^{-4} M) in acetonitrile, with a 2.7×10^{-2} M solution of the TBA-H₂PO₄ (l = 0.1 cm); (b) distribution of the species present at the equilibrium. Blue line: free receptor; red line: bound receptor; superimposed plots of Molar Absorbance (at 292 nm, red triangles; at 270 nm, white triangles) *vs.* eqv. of TBA-H₂PO₄. T = 25°C.

Figure S4. Absorption spectra taken over the course of the titration of a solution of 2 $(1.7 \times 10^{-4} \text{ M})$ in acetonitrile, with a $2.7 \times 10^{-2} \text{ M}$ solution of the DBU (l = 0.1 cm). Inset figure: plot of Molar Absorbance at 400 nm (black triangles) *vs.* eqv. of DBU. T = 25°C.

Figure S5. ¹H-NMR spectra taken over the course of the titration of a 5.2×10^{-3} M solution of **1** in CD₃CN, with a 0.13 M solution of the TBA-Cl. Spectra 1-7 correspond to the addition of 0, 0.5, 1.0, 1.5, 2.0, 3.0, 5.0 eqv. of TBA-Cl, respectively.

Figure S6. (a) ¹H-NMR spectra taken over the course of the titration of a 9.7×10^{-3} M solution of **1** in CD₃CN, with a 0.069 M solution of the TBA-H₂PO₄. Spectra 1-9 correspond to the addition of 0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0, 2.5 and 4.5 eqv. of TBA-H₂PO₄, respectively. (b) Plot of $\Delta\delta$ H₅vs. eqv. of the added TBA-H₂PO₄.

Figure S7. ¹H-NMR spectra taken over the course of the titration of a 3.5×10^{-3} M solution of **2** in CD₃CN, with a 0.13 M solution of the TBA-Cl. Spectra 1-5 correspond to the addition of 0, 0.5, 1.0, 1.5and 2.0 eqv. of TBA-Cl, respectively.

Figure S8. (a) Family of UV-vis. spectra taken over the course of the pH-spectrophotometric titration of **2** in CH₃CN/water mixture (9/1 v/v). (b) Distribution diagram with the superimposed pH-spectrophotometric profile (at 400 nm).

Figure S9. A simplified sketch of overlapping receptors **1** forming rows parallel to the direction of the *a* crystallographic axis. These rows are maintained by weak N-H···O urea-urea interactions (atom names identify the independent N-H···O interaction). Features of the N-H···O interactions are: N(1)···O(1)' 3.18(1) Å, H(1N)···O(1)' 2.37(3) Å, N(1)-H(1N)···O(1)' 142.3(23)°; symmetry code: (') = x-1/2, 1/2-y, z.