Supporting Information

Pyridinium/urea based anion receptor: methine formation in the presence of basic anions

Greta Bergamaschi, ${ }^{\text {a }}$ Massimo Boiocchi, ${ }^{\text {b }}$ Enrico Monzani ${ }^{\text {a }}$ and Valeria Amendola* ${ }^{\text {a }}$

a Dr. V. Amendola, Dr. G. Bergamaschi, Prof. E. Monzani
Dipartimento di Chimica Generale
Università di Pavia
via Taramelli 12, Pavia
Fax: (+)390382528544
E-mail: valeria.amendola@unipv.it
b Dr. M. Boiocchi
Centro Grandi Strumenti
Università di Pavia

Synthesis of 1

To a solution of alkyne, N -(4-trifluoromethylphenyl)-N'-(4'-ethynylphenyl)urea, ($0.35 \mathrm{~g}, 1.30 \mathrm{mmol}$) and 2-(azidomethyl)pyridine ${ }^{[1-2]}(0.21 \mathrm{~g}, 1.52 \mathrm{mmol})$ in 20 ml methanol/t-butanol 1:1 (v:v) mixture was added a solution of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(13 \mathrm{mg}, 0.065 \mathrm{mmol})$ in 1 ml of water. The reaction mixture was stirred at room temperature. After 18 h stirring, a white precipitate was filtered out (yield $80 \%, 0.45 \mathrm{~g}$). ESI-MS $\left(\mathrm{CH}_{3} \mathrm{CN}\right): m / z(-) 473[\mathrm{M}+\mathrm{Cl}]^{-}$; UV-vis. $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }=282 \mathrm{~nm}, \varepsilon_{282}=52 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. FT-IR (nujol mull), $\mathrm{cm}^{-1}: 3326$ (w), 3264 (w), 3111 (w), 2718 (s), 1684 (s), 1647 (m), 1601 (m), 1543 (br, m), 1342 (m), 1316 (m), 1098 (s). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\delta, \mathrm{ppm}, \mathrm{TMS} ; \mathrm{CD}_{3} \mathrm{CN}\right.$): 8.58 (d, $J_{\mathrm{r}, \mathrm{s}}=4.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-$ s), $8.15(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{m}), 7.81\left(\mathrm{~d}, J_{\mathrm{c}, \mathrm{d}}=8.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-\mathrm{c}\right), 7.80\left(\mathrm{dd}, J_{\mathrm{q}, \mathrm{r}}=7.7 \mathrm{~Hz}, J_{\mathrm{q} \cdot \mathrm{p}}=7.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{q}\right)$, $7.68(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{g}), 7.68\left(\mathrm{~d}, J_{\mathrm{i}, \mathrm{j}}=9.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-\mathrm{i}\right), 7.63\left(\mathrm{~d}, J_{\mathrm{i}, \mathrm{j}}=9.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-\mathrm{j}\right), 7.57\left(\mathrm{~d}, J_{\mathrm{c}, \mathrm{d}}=8.7 \mathrm{~Hz}\right.$, $2 \mathrm{H} ; \mathrm{H}-\mathrm{d}$), $7.54(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{f}), 7.34\left(\mathrm{dd}, J_{\mathrm{r}, \mathrm{s}}=4.7 \mathrm{~Hz}, J_{\mathrm{r}, \mathrm{q}}=7.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{r}\right), 7.32\left(\mathrm{~d}, J_{\mathrm{p}, \mathrm{q}}=7.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\right.$ p), 5.70 (s, 2H; H-n). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\delta, \mathrm{ppm}, \mathrm{TMS} ; \mathrm{CD}_{3} \mathrm{CN}\right.$): 155.4 (C-o), 155.1 (C-u), 149.7 (C-s), 147.4 (C-b), 147.3 (C-1), 143.4 (C-h), 139.4 (C-e), 137.6 (C-q), 127.7 (C-p), 126.2 (C-j), 126.2 (C-c), 124.7 (C-a), 123.5 (C-r), 123.4 (C-k), 121.0 (C-m), 119.5 (C-d), 118.7 (C-i), 55.4 (C-n).
[1] W. S. Brotherton, H. A. Michaels, J. T. Simmons, R. J. Clark, N. S. Dalal, and L. Zhu, Org. Lett., 2009, 11, 4954-4957. D. Urankar, B. Pinter, A. Pevec, F. De Proft, I. Turel, J. Kosmrlj, Inorg. Chem. 2010, 49, 4820-4829
[2] J. Ritschel, F. Sasse and M. E. Maier, Eur. J. Org. Chem. 2007, 78-87.

Compound 1: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in $\mathrm{CD}_{3} \mathrm{CN}$

Synthesis of 2•PF \mathbf{F}_{6}

$1(0.11 \mathrm{~g}, 0.24 \mathrm{mmol})$ was dissolved in a screw capped flask with the minimum amount of $1: 1$ $\mathrm{MeCN} / \mathrm{CHCl}_{3}$ mixture. Methyl iodide ($3 \mathrm{ml}, 48.17 \mathrm{mmol}$) was added to this solution and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 24 h (ESI-MS control). After this time the solvent was removed on a rotary evaporator leaving a brownish solid. The product was dissolved in a $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}$ mixture and a saturated solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added dropwise; solid precipitation occurs. The white product was filtered off and dried. (yield $56 \%, 82 \mathrm{mg}$). ESI-MS $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: m/z (+) 453 [M] ${ }^{+}$. UV-vis. $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda_{\max }=280 \mathrm{~nm}, \varepsilon_{280}=50 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. FT-IR (nujol mull), $\mathrm{cm}^{-1}: 3348(\mathrm{w}), 3149(\mathrm{w}), 3116(\mathrm{w}), 3073$ (w), 2718 (s , 1684 (s), 1637 (m), 1601 (m), 1531 (m), 1327 (m), 1098 (s$), 840$ (br, s). ${ }^{1} \mathrm{H}$-NMR (δ, ppm, TMS; CD ${ }_{3} \mathrm{CN}$): 8.74 (d, $J_{\mathrm{r}, \mathrm{s}}=6.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{s}$), 8.46 (false $\left.\mathrm{t}, J_{\text {obs }}=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{q}\right), 8.25(\mathrm{~s}, 1 \mathrm{H} ;$ $\mathrm{H}-\mathrm{m}$), $8.03(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{g}), 7.99$ (false t, $J_{\text {obs }}=6.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{r}$), $7.89(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{f}), 7.85\left(\mathrm{~d}, J_{\mathrm{c}, \mathrm{d}}=8.7 \mathrm{~Hz}\right.$, $2 \mathrm{H} ; \mathrm{H}-\mathrm{c}), 7.69\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{i}, \mathrm{j}}=8.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-\mathrm{i}\right), 7.63\left(\mathrm{~d}, J_{\mathrm{i}, \mathrm{j}}=8.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-\mathrm{j}\right), 7.61\left(\mathrm{~d}, J_{\mathrm{c}, \mathrm{d}}=8.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-\right.$ d), $7.50\left(\mathrm{~d}, J_{\mathrm{p}, \mathrm{q}}=8.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{p}\right), 6.06(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H}-\mathrm{n}), 4.34(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{H}-\mathrm{t}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta, \mathrm{ppm}, \mathrm{TMS} ;$ $\mathrm{CD}_{3} \mathrm{CN}$): 152.5 (C-u), 152.0 (C-o), 148.2 (C-b), 148.2 (C-l), 147.7 (C-s), $147.0(\mathrm{C}-\mathrm{q}), 143.4$ (C-h), 140.0 (C-e), 128.1 (C-p), 127.9 (C-r), 126.7 (C-j), 126.4 (C-c), 124.9 (C-a), 123.4 (C-k), 121.9 (C-m), 119.5 (C-d), 118.8 (C-i), 50.2 (C-n), 46.4 (C-t).

Figure S1. (a)Absorption spectra taken over the course of the titration of a solution of $\mathbf{1}\left(3.0 \times 10^{-4} \mathrm{M}\right)$ in acetonitrile, with a $2.0 \times 10^{-2} \mathrm{M}$ solution of the TBA-Cl $(1=0.1 \mathrm{~cm})$; (b) distribution of the species present at the equilibrium. Blue line: free receptor; red line: bound receptor; black triangles: superimposed plots of Molar Absorbance (at 290 nm) vs. eqv. of TBA-Cl. $\mathrm{T}=25^{\circ} \mathrm{C}$.

Figure S2. (a)Absorption spectra taken over the course of the titration of a solution of $2\left(3.0 \times 10^{-4} \mathrm{M}\right)$ in acetonitrile, with a $2.0 \times 10^{-2} \mathrm{M}$ solution of the TBA- $\mathrm{Cl}(\mathrm{l}=0.1 \mathrm{~cm})$; (b) distribution of the species present at the equilibrium. Blue line: free receptor; red line: bound receptor; black triangles: superimposed plots of Molar Absorbance (at 290 nm) vs. eqv. of TBA-Cl. $\mathrm{T}=25^{\circ} \mathrm{C}$.

Figure S3. (a)Absorption spectra taken over the course of the titration of a solution of $\mathbf{1}\left(1.7 \times 10^{-4} \mathrm{M}\right)$ in acetonitrile, with a $2.7 \times 10^{-2} \mathrm{M}$ solution of the $\mathrm{TBA}-\mathrm{H}_{2} \mathrm{PO}_{4}(\mathrm{l}=0.1 \mathrm{~cm})$; (b) distribution of the species present at the equilibrium. Blue line: free receptor; red line: bound receptor; superimposed plots of Molar Absorbance (at 292 nm , red triangles; at 270 nm , white triangles) vs. eqv. of TBA- $\mathrm{H}_{2} \mathrm{PO}_{4} . \mathrm{T}=25^{\circ} \mathrm{C}$.

Figure S4. Absorption spectra taken over the course of the titration of a solution of $2\left(1.7 \times 10^{-4} \mathrm{M}\right)$ in acetonitrile, with a $2.7 \times 10^{-2} \mathrm{M}$ solution of the $\operatorname{DBU}(1=0.1 \mathrm{~cm})$. Inset figure: plot of Molar Absorbance at 400 nm (black triangles) vs. eqv. of $\mathrm{DBU} . \mathrm{T}=25^{\circ} \mathrm{C}$.

Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra taken over the course of the titration of a $5.2 \times 10^{-3} \mathrm{M}$ solution of 1 in $\mathrm{CD}_{3} \mathrm{CN}$, with a 0.13 M solution of the TBA-Cl. Spectra 1-7 correspond to the addition of $0,0.5,1.0,1.5,2.0,3.0,5.0$ eqv. of TBA-Cl, respectively.

Figure S6. (a) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra taken over the course of the titration of a $9.7 \times 10^{-3} \mathrm{M}$ solution of 1 in $\mathrm{CD}_{3} \mathrm{CN}$, with a 0.069 M solution of the $\mathrm{TBA}-\mathrm{H}_{2} \mathrm{PO}_{4}$. Spectra $1-9$ correspond to the addition of $0,0.2,0.4,0.6,0.8,0.9$, $1.0,2.5$ and 4.5 eqv. of TBA- $\mathrm{H}_{2} \mathrm{PO}_{4}$, respectively. (b) Plot of $\Delta \delta \mathrm{H}_{5}$ vs. eqv. of the added TBA- $\mathrm{H}_{2} \mathrm{PO}_{4}$.

Figure S7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra taken over the course of the titration of a $3.5 \times 10^{-3} \mathrm{M}$ solution of 2 in $\mathrm{CD}_{3} \mathrm{CN}$, with a 0.13 M solution of the TBA-Cl. Spectra $1-5$ correspond to the addition of $0,0.5,1.0,1.5$ and 2.0 eqv. of TBACl , respectively.

Mol Abs $\times 10^{-3}(400 \mathrm{~nm})$

Figure S8. (a) Family of UV-vis. spectra taken over the course of the pH -spectrophotometric titration of 2 in $\mathrm{CH}_{3} \mathrm{CN} /$ water mixture $(9 / 1 \mathrm{v} / \mathrm{v})$. (b) Distribution diagram with the superimposed pH -spectrophotometric profile (at 400 nm).

Figure S9. A simplified sketch of overlapping receptors 1 forming rows parallel to the direction of the a crystallographic axis. These rows are maintained by weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ urea-urea interactions (atom names identify the independent $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction). Features of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions are: $\mathrm{N}(1) \cdots \mathrm{O}(1)^{\prime} 3.18(1) \AA$, $\mathrm{H}(1 \mathrm{~N}) \cdots \mathrm{O}(1)^{\prime} 2.37(3) \AA \AA, \mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N}) \cdots \mathrm{O}(1)^{\prime} 142.3(23)^{\circ}$; symmetry code: $\left({ }^{\prime}\right)=x-1 / 2,1 / 2-y, z$.

