# Stereoselective Construction of the Tetracyclic Core of

### Cryptotrione

Song Chen,<sup>a</sup> Chao Rong,<sup>a</sup> Pengju Feng,<sup>a</sup> Songlei Li,<sup>a</sup> and Yian Shi\*<sup>a,b</sup>

<sup>*a*</sup> Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

<sup>b</sup> Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

### **Supporting Information**

#### **Table of Contents**

| General methods                                | S-2  |
|------------------------------------------------|------|
| Experimental Procedures and Spectroscopic Data | S-2  |
| X-ray Structure of Compound 15                 | S-15 |
| Experimental Spectra                           | S-33 |

**General Methods.** All commercially available reagents were used without further purification. All solvents were freshly distilled under nitrogen from appropriate drying agents before use. Tetrahydrofuran was distilled from Sodium-benzophenone. Dichloromethane and acetonitrile were distilled from CaH<sub>2</sub>. *N*,*N*-Dimethylformamide and dimethylsulfoxide were dried over 4 Å molecular sieves (activated at 180 °C in vacuo over 8 h). Column chromatography was performed on silica gel (200-300 mesh). <sup>1</sup>H NMR spectra were recorded on a 400 MHz NMR spectrometer and <sup>13</sup>C NMR spectra were recorded on a 100 MHz NMR spectrometer. IR spectra were recorded on a FT-IR spectrometer. Melting points were uncorrected.

#### **Experimental Procedures and Spectroscopic Data**



*Tert*-buyl 4-(3,4-dimethoxyphenyl)-3-oxobutanoate (17). To a solution of homoveratric acid 16 (3.92 g, 20.0 mmol) in  $CH_2Cl_2$  (40 mL) were added (COCl)<sub>2</sub> (10.15 g, 6.8 mL, 80.0 mmol) and DMF (0.05 mL) at 0 °C under N<sub>2</sub>. Upon stirring at 0 °C for 2 h and at rt for 4 h, the reaction mixture was concentrated. The residue was dissolved in  $CH_2Cl_2$  (5 mL) and was added to a solution of Meldrum's acid (3.17 g, 22.0 mmol) and pyridine (3.16 g, 3.2 mL, 40.0 mmol) in  $CH_2Cl_2$  (35 mL) at 0 °C. Upon stirring at 0 °C for 2 h and at rt overnight, the reaction mixture was washed with

aqueous 3N HCl (20 mL), extracted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL x 3). The combined organic phases were washed with H<sub>2</sub>O (20 mL) and brine (20 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The crude mixture was dissolved in *t*-BuOH (20 mL), refluxed overnight, cooled, concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 5/1) to give compound **17** as yellow solid (3.82 g; 65%). mp. 38-40 °C; IR (film): 1734, 1716, 1517, 1261 cm<sup>-1</sup>; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.82 (d, *J* = 8.4 Hz, 1H), 6.74 (d, *J* = 8.0 Hz, 1H), 6.70 (s, 1H), 3.85 (s, 6H), 3.74 (s, 2H), 3.35 (s, 2H), 1.45 (s, 9H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  201.5, 166.6, 149.3, 148.5, 126.0, 122.0, 112.7, 111.6, 82.2, 56.1, 56.0, 49.7, 49.5, 28.1; HRMS Calcd for C<sub>16</sub>H<sub>23</sub>O<sub>5</sub> (M+H): 295.1540; Found: 295.1542.

*Tert*-butyl 2-diazo-4-(3,4-dimethoxyphenyl)-3-oxobutanoate (18). To a solution of 17 (2.94 g, 10.0 mmol) in MeCN (50 mL) were added 4-acetamidobenzenesulfonyl azide (2.64 g, 11.0 mmol) and Et<sub>3</sub>N (4.05 g, 5.6 mL, 40.0 mmol) at 0 °C under N<sub>2</sub>. Upon stirring at rt for 3 h, the reaction mixture was quenched with saturated NaHCO<sub>3</sub> (25 mL), extracted with EtOAc (25 mL x 3), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 5/1) to give compound 18 as white solid (2.78 g, 87%). mp. 92-94 °C; IR (film): 2134, 1709, 1652, 1262 cm<sup>-1</sup>; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.88-6.82 (m, 2H), 6.80 (d, *J* = 8.4 Hz, 1H), 4.10 (s, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 1.53 (s, 9H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  191.1, 160.6, 149.0, 148.2, 126.9, 122.0, 113.0, 111.3, 83.4, 56.05, 55.96, 45.3, 28.5; Calcd for C<sub>16</sub>H<sub>20</sub>N<sub>2</sub>O<sub>5</sub>: C, 59.99; H, 6.29; N, 8.74; Found: C, 59.85; H, 6.26; N, 8.84.

*Tert*-butyl 5,6-dimethoxy-2-oxo-2,3-dihydro-1H-indene-1-carboxylate (6). A solution of 18 (23.12 g, 72.0 mmol) in  $CH_2Cl_2$  (200 mL) was slowly added to a solution of  $Rh_2(Ac)_4$  (0.32 g, 0.72 mmol) in  $CH_2Cl_2$  (280 mL) via syringe pump over 1.5 h. Upon stirring at rt for 1 h, the reaction mixture was passed through a pad of silic gel, eluted with  $CH_2Cl_2$  (100 mL), and concentrated to give compound 6 as light

6

yellow solid (20.37 g, 97%). mp. 74-76 °C; IR (film): 1649, 1596, 1493, 1156 cm<sup>-1</sup>; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.97 (br, 1H), 7.23 (s, 1H), 6.90 (s, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.47 (s, 2H), 1.64 (s, 9H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  179.6, 168.4, 148.7, 146.2, 133.1, 124.9, 108.8, 106.1, 104.9, 82.0, 56.6, 56.0, 37.6, 28.6; HRMS Calcd for C<sub>16</sub>H<sub>21</sub>O<sub>5</sub> (M+H): 293.1384. Found: 293.1389. U. K. Tambar, D. C. Ebner and B. M. Stoltz, *J. Am. Chem. Soc.*, 2006, **128**, 11752.

 $MeO + CO_2t-Bu + CO_2Et + MeO + CO_2t-Bu +$ 

7

(*R*)-*tert*-butyl 1-(3-ethoxy-3-oxopropyl)-5,6-dimethoxy-2-oxo-2,3-dihydro-1H-indene-1-carboxylate (7). To a solution of 6 (5.85 g, 20.0 mmol) and ethyl acrylate (6.01 g, 6.5 mL, 60.0 mmol) in CHCl<sub>3</sub> (40 mL) was added catalyst 8 (0.90 g, 2.0 mmol) at 25 °C. The reaction mixture was stirred at 25 °C for 60 h, concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 5/1) to give compound 7 as colorless oil (5.62 g, 72%, 90% ee) (the ee was determined by chiral HPLC, chiralcel OD-H column, *i*-PrOH/hexane = 7/93, 0.5 mL/min,  $\lambda$  = 210 nm). [ $\alpha$ ]<sup>20</sup><sub>D</sub> = -24.1 (*c* 1.16, CHCl<sub>3</sub>); IR (film): 1757, 1731, 1506, 1252 cm<sup>-1</sup>; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.82 (s, 1H), 6.73 (s, 1H), 4.07-3.92 (m, 2H), 3.87 (s, 3H), 3.85 (s, 3H), 3.66 (d, *J* = 22.4 Hz, 1H), 3.38 (d, *J* = 22.4 Hz, 1H), 2.52-2.41 (m, 1H), 2.39-2.28 (m, 1H), 2.06 (t, *J* = 8.0 Hz, 2H), 1.30 (s, 9H), 1.15 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  212.4, 172.8, 169.4, 149.9, 149.5, 132.1, 129.5, 107.9, 106.6, 82.5, 65.2, 60.6, 56.3, 56.2, 43.5, 29.6, 28.5, 27.9, 14.3; HRMS Calcd for C<sub>21</sub>H<sub>29</sub>O<sub>7</sub> (M+H): 393.1908. Found: 393.1912.

(a) C. L. Rigby and D. J. Dixon, Chem. Commun., 2008, 3798.

(b) F. Wu, H. Li, R. Hong and L. Deng, Angew. Chem., Int. Ed., 2006, 45, 947.



(*1R*,*2R*)-*tert*-butyl 1-(3-ethoxy-3-oxopropyl)-2-hydroxy-5,6-dimethoxy-2,3dihydro-1H-ind-ene-1-carboxylate (9). To a mixture of 7 (4.86 g, 12.4 mmol) and CeCl<sub>3</sub> • 7H<sub>2</sub>O (6.93 g, 18.6 mmol) in EtOH (62 mL) was added (*n*-Bu)<sub>4</sub>NBH<sub>4</sub> (4.14 g, 16.1 mmol) at -78 °C. Upon stirring at -78 °C for 2 h and warming to rt, the reaction mixture was quenched with saturated NH<sub>4</sub>Cl (20 mL), extracted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL x 3), washed with brine (20 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 5/1 to 2/1) to give **9** as colorless oil (3.54 g, 72%).  $[\alpha]^{20}{}_{D}$ = +30.3 (*c* 0.99, CHCl<sub>3</sub>); IR (film): 3515, 1719, 1504, 1251 cm<sup>-1</sup>; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.99 (s, 1H), 6.73 (s, 1H), 4.80 (dt, *J* = 4.8, 6.8 Hz, 1H), 4.08 (q, *J* = 7.2 Hz, 2 H), 3.88 (s, 3H), 3.85 (s, 3H), 3.19 (dd, *J* = 15.6, 6.8 Hz, 1H), 2.81 (dd, *J* = 15.6, 6.8 Hz, 1H), 2.48 (d, *J* = 4.8 Hz, 1H), 2.31-2.42 (m, 2H), 2.10-2.26 (m, 2H), 1.47 (s, 9H), 1.22 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.7, 173.6, 149.4, 148.4, 133.3, 131.7, 109.1, 108.0, 81.7, 76.8, 61.3, 60.6, 56.2, 56.1, 38.6, 30.3, 28.2, 27.6, 14.3; HRMS Calcd for C<sub>21</sub>H<sub>31</sub>O<sub>7</sub>(M+H): 395.2064; Found: 395.2056.

(a) M. Taniguchi, H. Fujii, K. Oshima and K. Utimoto, *Tetrahedron*, 1993, 49, 11169
(d) J. Gong, G. Lin, W. Sun, C.-C. Li and Z. Yang, *J. Am. Chem. Soc.*, 2010, 132, 16745

(*1R*,2*R*)-*tert*-butyl 2-(tert-butyldimethylsilyloxy)-1-(3-ethoxy-3-oxopropyl)-5,6-dimethoxy-2,3-dihydro-1H-indene-1-carboxylate (5). To a solution of 9 (8.01 g, 20.0 mmol) in DMF (40 mL) were added imidazole (5.45 g, 80.0 mmol) and TBSC1 (4.52 g, 30.0 mmol) under N<sub>2</sub>. Upon stirring at rt for 11 h, the reaction mixture was quenched with water (20 mL), extracted with Et<sub>2</sub>O (50 mL x 3), washed with brine (20 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 8/1) to give compound **5** as colorless oil (9.37 g, 92%).  $[\alpha]^{20}_{D}$ = -15.8 (*c* 1.20, CHCl<sub>3</sub>); IR (film): 1724, 1504, 1252, 1155 cm<sup>-1</sup>; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.76 (s, 1H), 6.66 (s, 1H), 5.05 (t, *J* = 7.6 Hz, 1H), 4.04 (q, *J* = 7.2, 2H), 3.84 (s, 6H), 3.11 (dd, *J* = 15.6, 7.6 Hz, 1H), 2.77 (dd, *J* = 15.2, 7.6 Hz, 1H), 2.42-2.33 (m, 1H), 2.32-2.21 (m, 2H), 2.20-2.10 (m, 1H), 1.46 (s, 9H), 1.20 (t, *J* = 7.2 Hz, 3H), 0.90 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.0, 173.6, 149.4, 148.5, 134.4, 131.8, 108.1, 107.8, 81.1, 77.4, 61.9, 60.3, 56.2, 56.1, 40.6, 30.6, 28.3, 27.9, 26.0, 18.2, 14.4, -4.4, -4.7; HRMS Calcd for C<sub>27</sub>H<sub>45</sub>O<sub>7</sub>Si (M+H): 509.2929; Found: 509.2933.



**3-((15,2R)-2-(tert-butyldimethylsilyloxy)-1-(hydroxymethyl)-5,6-dimethoxy-2,3-dihydro-1H-inden-1-yl)propan-1-ol (10).** To a solution of **5** (3.28 g, 6.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (65 mL) was added DIBAL-H (1 M in hexane) (32.5 mL, 32.5 mmol) at -78 °C under N<sub>2</sub>. Upon stirring at -78 °C for 15 min and at 0 °C for 1 h, the reaction mixture was quenched with MeOH (2 mL) and saturated sodium potassium tartrate (40 mL), stirred at rt for 0.5 h, extracted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL x 3), washed with brine (50 mL), dried over MgSO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 1/5) to give compound **10** as white solid (2.32 g, 90%). mp. 76-78 °C;  $[\alpha]^{20}_{D}$ = -26.4 (*c* 1.00, CHCl<sub>3</sub>); IR (film): 3414, 1503, 1252, 1099 cm<sup>-1</sup>; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.70 (s, 1H), 6.62 (s, 1H), 4.60 (t, *J* = 8.4 Hz, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.78 (d, *J* = 10.8 Hz, 1H), 3.62 (d, *J* = 11.2 Hz, 1H), 3.49 (t, *J* = 6.4 Hz, 2H), 3.01 (dd, *J* = 15.2, 8.0 Hz, 1H), 2.80 (dd, *J* = 15.2, 8.4 Hz, 1H), 1.69-1.42 (m, 5H), 1.38-1.12 (m, 1H), 0.91 (s, 9H), 0.11 (s, 6H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  149.0, 148.7, 135.3, 132.6, 108.5, 107.0, 76.4, 66.9, 63.8, 56.4, 56.1, 55.2, 40.1, 28.3, 27.8, 26.0, 18.1, -4.2, -4.8; HRMS Calcd for C<sub>21</sub>H<sub>37</sub>O<sub>5</sub>Si (M+H): 397.2405; Found: 397.2410.
(*a*) D. L. J. Clive, M. Yu and M. Sannigrahi, *J. Org. Chem.*, 2004, **69**, 4116
(*b*) K.Okura, S. Matsuoka, R. Goto and M. Inoue, *Angew. Chem., Int. Ed.*, 2010, **49**, 329



((1*R*,2*R*)-1-(but-3-enyl)-5,6-dimethoxy-1-vinyl-2,3-dihydro-1H-inden-2-ylox y) (*tert*-butyl)diethylsilane (4). To a solution of (COCl)<sub>2</sub> (3.34 g, 2.6 mL, 26.3 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (100 mL) was slowly added DMSO (4.11 g, 3.7 mL, 52.6 mmol) at -78 °C under N<sub>2</sub>. After the reaction mixture was stirred at -78 °C for 15 min, a solution of 10 (2.61 g, 6.58 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (16 mL) was added. The resulting mixture was stirred at -78 °C for another 45 min. Upon addition of Et<sub>3</sub>N (5.86 g, 8.1 mL, 57.9 mmol), the reaction mixture was warmed to rt over 2 h, quenched with water (50 mL), extracted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL x 3), washed with brine (50 mL), dried over MgSO<sub>4</sub>, filtered, and concentrated. The residue was dissolved in anhydrous Et<sub>2</sub>O (50 mL) and filtered to remove white solids. The filtrate was concentrated to give the aldehyde as yellow oil.

To a suspension of Ph<sub>3</sub>PCH<sub>3</sub>Br (10.34 g, 28.9 mmol) in THF (200 mL) was added *n*-BuLi (2.5 M in hexane) (10.5 mL, 26.3 mmol) at 0 °C under N<sub>2</sub>. Upon stiiring at 0 °C for 1 h and subsequent addition of HMPA (9.43 g, 9.2 mL, 52.6 mmol), the reaction mixture was stirred at 0 °C for additional 15 min. At this point, a solution of the above aldehyde in THF (127 mL) was slowly added via syringe pump over 1 h. The resulting reaction mixture was stirred at 0 °C for 0.5 h, quenched with saturated NH<sub>4</sub>Cl (50 mL), extracted with EtOAc (50 mL x 3), washed with brine (50 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 50/1) to give compound **4** as light

yellow oil (1.37 g, 54% for two steps).  $[\alpha]^{20}{}_{D}$  = +1.13 (*c* 1.06, CHCl<sub>3</sub>); IR (film): 1499, 1252, 1142 cm<sup>-1</sup>; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.72 (s, 1H), 6.60 (s, 1H), 5.97 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.35-5.20 (m, 1H), 5.16 (dd, *J* = 10.8, 1.2 Hz, 1H), 5.11 (dd, *J* = 17.6, 1.2 Hz, 1H), 4.94 (dd, *J* = 16.8, 1.6 Hz, 1H), 4.90-4.83 (m, 1H), 4.33 (t, *J* = 8.4 Hz, 1H), 3.85 (s, 6H), 2.98 (dd, *J* = 15.2, 7.6 Hz, 1H), 2.82 (dd, *J* = 15.2, 8.4 Hz, 1H), 2.11-1.97 (m, 1H), 1.96-1.82 (m, 1H), 1.81-1.65 (m, 2H), 0.92 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  148.6, 148.2, 144.8, 139.8, 137.7, 131.6, 114.2, 113.9, 109.0, 108.0, 82.0, 56.7, 56.3, 56.1, 39.7, 32.1, 29.2, 26.0, 18.2, -4.3, -4.5; HRMS Calcd for C<sub>23</sub>H<sub>37</sub>O<sub>3</sub>Si (M+H): 389.2507; Found: 389.2517.

(a) D. Crich, H. Xu and F. Kenig, J. Org. Chem., 2006, 71, 5016

(b) H. Toya, K. Okano, K. Takasu, M. Ihara, A. Takahashi, H. Tanaka and H. Tokuyama, Org. Lett., 2010, 12, 5196.



*Tert*-butyl((*1R*,2*'R*)-5',6'-dimethoxy-2',3'-dihydrospiro[cyclopent[2]ene-1,1'indene]-2'-yloxy)dimethylsilane (3). To a solution of 4 (0.389 g, 1.0 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (110 mL) was added the second-generation Grubbs catalyst (0.085 g, 0.1 mmol) at rt. The reaction mixture was stirred at rt for 4.5 h, passed through a pad of silica gel, eluted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL), concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 50/1) to give compound **3** as white solid (0.326 g, 91%). mp. 71-73 °C;  $[\alpha]^{20}_{D}$ = -66.9 (*c* 0.81, CHCl<sub>3</sub>); IR (film): 1499, 1252, 1115 cm<sup>-1</sup>; <sup>-1</sup>HNMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.70 (s, 1H), 6.58 (s, 1H), 6.06-5.98 (m, 1H), 5.55-5.49 (m, 1H), 4.33 (dd, *J* = 8.8, 7.2 Hz, 1H), 3.85 (s, 6H), 2.93 (dd, *J* = 14.8, 7.2 Hz, 1H), 2.79 (dd, *J* = 14.4, 8.8 Hz, 1H), 2.74-2.62 (m, 1H), 2.51-2.35 (m, 2H), 1.53-1.42 (m, 1H), 0.92 (s, 9H), 0.08 (s, 3H), 0.04 (s, 3H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>) δ 148.7, 148.5, 140.9, 135.8, 133.9, 130.2, 108.0, 106.7, 80.1, 65.0, 56.1, 39.6, 32.7, 30.3, 25.9, 18.2, -4.60, -4.64; HRMS Calcd for  $C_{21}H_{32}NaO_3Si$  (M+Na): 383.2013; Found: 383.2020.

(*a*) M. Scholl, T. M. Trnka, J. P. Morgan and R. H. Grubbs, *Tetrahedron Lett.*, 1999, **40**, 2247

(b) B. Biswas, P. K. Sen and R. V. Venkateswaran, Tetrahedron, 2007, 63, 12026



(1'R,2'R,5R,6S)-ethyl 2'-(*tert*-butyldimethylsilyloxy)-5',6'-dimethoxy-2',3'dihydrospiro[bicyclo[3.1.0]hexane-2,1'-indene]-6-carboxylate (11). A solution of (CuOTf)<sub>2</sub>·PhH (0.0063 g, 0.0125 mmol) and ligand 12 (0.0092 g, 0.0275 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL) was stirred at 25 °C for 1 h, followed by the addition of compound **3** (0.1803 g, 0.5 mmol). At this point, a solution of ethyl diazoacetate (containing 15% CH<sub>2</sub>Cl<sub>2</sub>) (0.6712 g, 5.0 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1 mL) was slowly added via syringe pump over 10 h. The reaction mixture was stirred at 25 °C for another 1 h, passed though a pad of silica gel, eluted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL), concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 20/1 to 10/1) to give compound **11** as colorless oil (0.2071 g, 93%).  $[\alpha]^{20}_{D} = -36.8$  (c 0.57, CHCl<sub>3</sub>); IR (film): 1724, 1500, 1252, 1178 cm<sup>-1</sup>; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>) δ 6.94 (s, 1H), 6.67 (s, 1H), 4.38 (t, J = 7.2 Hz, 1H), 4.20-4.06 (m, 2H), 3.87 (s, 3H), 3.83 (s, 3H), 2.95 (dd, J = 14.8, 6.8 Hz, 1H), 2.75 (dd, J = 14.8, 8.0 Hz, 1H), 2.28-2.09 (m, 2H), 2.06-1.92 (m, 2H), 1.87-1.75 (m, 2H), 1.25 (t, J = 7.2 Hz, 3H), 1.09-0.09 (m, 1H), 0.92 (s, 9H), 0.11 (s, 6H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>) δ 173.6, 148.8, 148.6, 138.3, 131.1, 108.1, 106.2, 81.7, 60.4, 58.7, 56.1, 39.3, 38.0, 28.22, 28.18, 27.2, 26.02, 25.99, 22.0, 18.2, 14.5, -4.5, -4.7; HRMS Calcd for C<sub>25</sub>H<sub>42</sub>NO<sub>5</sub>Si (M+NH<sub>4</sub>): 464.2827; Found: 464.2820.

D. A. Evans, K. A. Woerpel, M. M. Hinman and M. M. Faul, J. Am. Chem. Soc., 1991, 113, 726



(*l'R*,2*'R*,5*R*,6*S*)-ethyl-2'-hydroxy-5',6'-dimethoxy-2',3'-dihydrospiro[bicycle -[3.1.0]hexane- 2,1'-indene]-6-carboxylate (2a). To a solution of 11 (0.622 g, 1.39 mmol) in THF (30 mL) was added TBAF (1 M in THF) (2.8 mL, 2.8 mmol). The reaction mixture was stirred at rt for 3 h, quenched with water (10 mL), extracted with EtOAc (20 mL x 3), washed with brine (10 mL), dried over MgSO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 1/1) to give compound 2a as colorless oil (0.405 g, 88%).  $[α]^{20}_{D}$  = -31.9 (*c* 1.00, CHCl<sub>3</sub>); IR (film): 3481, 1718, 1499, 1180 cm<sup>-1</sup>; <sup>-1</sup>HNMR (400 MHz, CDCl<sub>3</sub>) δ 6.80 (s, 1H), 6.74 (s, 1H), 4.41-4.30 (m, 1H), 4.07 (q, *J* = 7.2 Hz, 2H), 3.87 (s, 3H), 3.83 (s, 3H), 3.18 (dd, *J* = 15.6, 6.0 Hz, 1H), 2.79 (dd, *J* = 15.6, 4.8 Hz, 1H), 2.22-2.02 (m, 3H), 2.01-1.91 (m, 2H), 1.90-1.79 (m, 2H), 1.22 (t, *J* = 7.2 Hz, 3H), 1.31-1.15 (m, 1H); <sup>-13</sup>CNMR (100 MHz, CDCl<sub>3</sub>) δ 173.6, 149.0, 148.7, 137.3, 131.5, 108.5, 106.6, 80.4, 60.5, 59.4, 56.3, 56.1, 39.1, 37.4, 27.5, 27.4, 26.5, 21.5, 14.4; HRMS Calcd for C<sub>23</sub>H<sub>37</sub>O<sub>3</sub>Si (M+H): 333.1697; Found: 333.1698.



(*1'R*,2*'R*,5*R*,6*S*)-ethyl 2',5',6'-trihydroxy-2',3'-dihydrospiro[bicyclo[3.1.0]hexane-2,1'-indene] -6-carboxylate (2). To a solution of 2a (0.405 g, 1.22 mol) in

CH<sub>2</sub>Cl<sub>2</sub> (9 mL) was added a solution of BBr<sub>3</sub> (0.917g, 0.33 mL, 3.7 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL) at -78 °C under N<sub>2</sub>. The reaction mixture was warmed to rt and stirred at rt for 1 h, poured to ice-water (10 mL), extracted with CHCl<sub>3</sub> (10 mL x 10), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 1/1) to give compound **2** as white solid (0.293 g, 79 %). mp. 94-96 °C;  $[\alpha]^{20}_{D}$  = -42.6 (*c* 0.74, CHCl<sub>3</sub>); IR (film): 3372, 1694, 1307, 1276 cm<sup>-1</sup>; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.69 (s, 1H), 6.64 (s, 1H), 6.38 (br, 1H), 6.19 (br, 1H), 4.31-4.19 (m, 1H), 4.17-3.95 (m, 2H), 3.19-3.04 (m, 1H), 2.76-2.64 (m, 1H), 2.57 (br, 1H), 2.15-1.86 (m, 4H), 1.85-1.74 (m, 2H), 1.22 (t, *J* = 7.2 Hz, 3H), 1.09-1.07 (m, 1H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.5, 143.7, 143.3, 137.4, 131.8, 112.3, 110.4, 80.4, 61.0, 59.6, 39.1, 37.3, 28.1, 27.4, 26.1, 21.6, 14.4; HRMS Calcd for C<sub>17</sub>H<sub>21</sub>O<sub>5</sub> (M+H): 305.1384; Found: 305.1384.

(a) C.-C. Lin, T.-M. Teng, C.-C. Tsai, H.-Y. Liao and R.-S. Liu, J. Am. Chem. Soc., 2008, 130, 16417

(b) C. Pan, X. Zeng, Y. Guan, X. Jiang, L. Li and H. Zhang, Synlett, 2011, 425



((1'R,2'R,5R,6S)-2'-(*tert*-butyldimethylsilyloxy)-5',6'-dimethoxy-2',3'-dihydr -ospiro[bicycle- [3.1.0]hexane-2,1'-indene]-6-yl)methanol (13a). To a solution of 11 (0.495 g, 1.1 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (11 mL) was added DIBAL-H (1 M in hexane) (2.8 mL, 2.8 mmol) at -78 °C under N<sub>2</sub>. Upon stirring at -78 °C for 15 min and at 0 °C for 1 h, the reaction mixture was quenched with MeOH (0.5 mL) and saturated sodium potassium tartrate (20 mL), stirred at rt for 0.5 h, extracted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL x 3), washed with brine (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 2/1) to give compound 13a as colorless oil (0.346 g, 78%).  $[\alpha]^{20}_{D}$ = -52.8 (*c* 0.48, CHCl<sub>3</sub>); IR (film): 3497, 1498, 1252, 1104 cm<sup>-1</sup>; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.02 (s, 1H), 6.66 (s, 1H), 4.34 (t, J = 7.2 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.67-3.55 (m, 1H), 3.46-3.32 (m, 1H), 2.92 (dd, J = 14.8, 6.8 Hz, 1H), 2.74 (dd, J = 14.8, 8.0 Hz, 1H), 2.24-2.12 (m, 1H), 2.11-2.00 (m, 1H), 1.80-1.66 (m, 2H), 1.54-1.43 (m, 1H), 1.35-1.25 (m, 1H), 1.18-0.99 (m, 2H), 0.92 (s, 9H), 0.11 (s, 6H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  148.6, 148.5, 139.5, 130.9, 108.0, 106.3, 82.2, 66.0, 58.0, 56.2, 56.1, 39.2, 32.8, 29.2, 28.1, 26.0, 22.6, 22.0, 18.2, -4.6, -4.7; HRMS Calcd for C<sub>23</sub>H<sub>40</sub>NO<sub>4</sub>Si (M+NH<sub>4</sub>): 422.2721; Found: 422.2718.

(a) D. L. J. Clive, M. Yu and M. Sannigrahi, J. Org. Chem., 2004, 69, 4116

(b) K.Okura, S. Matsuoka, R. Goto and M. Inoue, *Angew. Chem., Int. Ed.*, 2010, **49**, 329.



(1'R,2'R,5R,6S)-2'-(*tert*-butyldimethylsilyloxy)-5',6'-dimethoxy-2',3'-dihydro -spiro[bicycle- [3.1.0]hexane-2,1'-indene]-6-carbaldehyde (13). To a solution of (COCl)<sub>2</sub> (0.123 g, 0.095 mL, 0.97 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8 mL) was slowly added DMSO (0.126 g, 0.115 mL, 1.62 mmol) at -78 °C under N<sub>2</sub>. After the reaction mixture was stirred at -78 °C for 15 min, a solution of **13a** (0.327 g, 0.81 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1 mL) was added. The resulting mixture was stirred at -78 °C for another 45 min. Upon addition of Et<sub>3</sub>N (0.328 g, 0.451 mL, 3.24 mmol), the reaction mixture was warmed to rt over 2 h, quenched with water (5 mL), extracted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL x 3), washed with brine (5 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 5/1) to give compound **13** as white solid (0.304 g, 93%). mp. 91-93 °C;  $[\alpha]^{20}_{D}$ = -70.3 (*c* 0.76, CHCl<sub>3</sub>); IR (film): 1706, 1499, 1252, 1107 cm<sup>-1</sup>; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.12 (d, *J* = 4.8 Hz, 1H), 6.83 (s, 1H), 6.68 (s, 1H), 4.11 (t, *J* = 7.2 Hz, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 2.96 (dd, J = 14.8, 6.8 Hz, 1H), 2.76 (dd, J = 14.8, 8.0 Hz, 1H), 2.30-2.15 (m, 3H), 2.14-2.03 (m, 1H), 1.95-1.92 (m, 1H), 1.90-1.79 (m, 1H), 1.01-1.12 (m, 1H), 0.93 (s, 9H), 0.12 (s, 6H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  199.9, 149.0, 148.8, 137.6, 131.1, 108.2, 106.2, 81.9, 58.7, 56.4, 56.2, 39.2, 37.2, 32.5, 28.14, 28.09, 27.3, 26.0, 18.3, -4.4, -4.6; HRMS Calcd for C<sub>23</sub>H<sub>34</sub>O<sub>4</sub>Si (M<sup>+</sup>): 402.2226; Found: 402.2221.

S. F. Martin, J. M. Humphrey, A. Ali and M. C. Hillier, *J. Am. Chem. Soc.*, 1999, **121**, 866.



(1R)-N-benzyl-N-(((1'R,2'R,5R,6S)-2'-(tert-butyldimethylsilyloxy)-5',6'-dime -thoxy-2',3'-dihydrospiro[bicyclo[3.1.0]hexane-2,1'-indene]-6-yl)methyl)-1-pheny To a solution of 13 (0.271 l-ethanamine (14). 0.67 mmol), g, (*R*)-(+)-*N*-benzyl-1-phenylethylamine (0.171 g, 0.17 mL, 0.81 mmol), AcOH (0.089 g, 0.86 mL, 1.48 mmol) in MeOH (11 mL) was added NaBH<sub>3</sub>CN (0.0758 g, 1.20 mmol) under N<sub>2</sub>. The reaction mixture was stirred at rt overnight, quenched with aqueous NaOH (5 mL, 1M), concentrated, extracted with EtOAc (10 mL x 3), washed with brine (5 mL), dried over MgSO<sub>4</sub>, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: PE/EtOAc = 15/1) to give compound 14 as colorless oil (0.185 g, 46%).  $[\alpha]^{20}_{D}$  = -61.0 (*c* 0.92, CHCl<sub>3</sub>); IR (film) 1496, 1251, 1104 cm<sup>-1</sup>; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>) δ 7.44-7.13 (m, 10H), 6.74 (s, 1H), 6.67 (s, 1H), 4.24 (t, J = 6.8 Hz, 1H), 4.13-4.03 (m, 1H), 3.81 (s, 3H), 3.72 (d, J = 14.4 Hz, 1H), 3.61 (s, 3H), 3.50 (d, J = 14.4 Hz, 1H), 2.94 (dd, J = 14.8, 6.4 Hz, 1H), 2.71 (dd, J = 14.8, 6.8 Hz, 1H), 2.59-2.49 (m, 1H), 2.28-2.17 (m, 1H), 2.16-2.05 (m, 1H), 2.02-1.90 (m, 1H), 1.72-1.60 (m, 1H), 1.35 (d, J = 6.8 Hz, 3H), 1.21-1.02 (m, 3H), 0.90 (s, 9H), 0.86-0.79 (m, 1H), 0.08 (s, 3H), 0.07 (s, 3H); <sup>13</sup>CNMR (100 MHz,

CDCl<sub>3</sub>)  $\delta$  148.5, 144.7, 141.2, 139.7, 131.1, 128.7, 128.3, 128.1, 127.9, 126.73, 126.66, 108.1, 106.4, 82.1, 58.9, 57.4, 56.2, 56.1, 54.4, 52.2, 39.5, 32.7, 28.8, 28.2, 26.1, 24.6, 18.5, 18.4, 13.6, -4.5, -4.6; HRMS Calcd for C<sub>38</sub>H<sub>52</sub>NO<sub>3</sub>Si (M+H): 598.3711; Found: 598.3718.

N. T. Hatzenbuhler, R. Baudy, D. A. Evrard, A. Failli, B. L. Harrison, S. Lenicek, R.
E. Mewshaw, A. Saab, U. Shah, J. Sze, M. Zhang, D. Zhou, M. Chlenov, M. Kagan, J.
Golembieski, G. Hornby, M. Lai, D. L. Smith, K. M. Sullivan, L. E. Schechter and T.
H. Andree, *J. Med. Chem.*, 2008, **51**, 6980.



(*1R*)-*N*-benzyl-*N*-(((*1'R*, *2'R*, *5R*, *6S*)-2'-hydroxy-5', 6'-dimethoxy-2', 3'-dihydro spiro[bicycle-[3.1.0]hexane-2,1'-indene]-6-yl)methyl)-1-phenylethanaminium chloride (15). To a solution of 14 (0.0794 g, 0.13 mmol) in EtOAc (20 mL) was added a solution of HCl in EtOH (5 mL). The reaction mixture was stirred at rt for 0.5 h, concentrated, and washed with EtOAc (20 mL) to give compound 15 as white solid (0.065 g, 97%), which was crystallized from MeOH/Et<sub>2</sub>O/EtOAc for the X-ray structure. HRMS Calcd for  $C_{32}H_{38}NO_3$  (M-Cl): 484.2846; Found: 484.2839.

The X-ray Structure of Compound 15





#### Table 1. Crystal data and structure refinement for a.

| Identification code             | a                                                            |  |  |  |
|---------------------------------|--------------------------------------------------------------|--|--|--|
| Empirical formula               | C33 H42 C1 N O4                                              |  |  |  |
| Formula weight                  | 552.13                                                       |  |  |  |
| Temperature                     | 173(2) K                                                     |  |  |  |
| Wavelength                      | 0.71073 A                                                    |  |  |  |
| Crystal system, space group     | Tetragonal, P4(1)2(1)2                                       |  |  |  |
| Unit cell dimensions            | a = 12.3304(17) A alpha = 90 deg.                            |  |  |  |
|                                 | b = 12.3304(17) A beta = 90 deg.                             |  |  |  |
|                                 | c = 38.821(8) A gamma = 90 deg.                              |  |  |  |
| Volume                          | 5902.3(17) A <sup>3</sup>                                    |  |  |  |
| Z, Calculated density           | 8, 1.243 Mg/m <sup>3</sup>                                   |  |  |  |
| Absorption coefficient          | 0.167 mm <sup>-1</sup>                                       |  |  |  |
| F (000)                         | 2368                                                         |  |  |  |
| Crystal size                    | 0.25 x 0.19 x 0.05 mm                                        |  |  |  |
| Theta range for data collection | 1.73 to 25.00 deg.                                           |  |  |  |
| Limiting indices                | $-14 \le h \le 14$ , $-14 \le k \le 14$ , $-45 \le 1 \le 45$ |  |  |  |
| Reflections collected / unique  | 34943 / 5205 [R(int) = 0.0990]                               |  |  |  |
| Completeness to theta = $25.00$ | 99.8 %                                                       |  |  |  |
| Absorption correction           | Semi-empirical from equivalents                              |  |  |  |
| Max. and min. transmission      | 1.0000 and 0.6720                                            |  |  |  |
| Refinement method               | Full-matrix least-squares on F <sup>2</sup>                  |  |  |  |
| Data / restraints / parameters  | 5205 / 0 / 356                                               |  |  |  |
| Goodness-of-fit on $F^2$        | 1.321                                                        |  |  |  |
| Final R indices [I>2sigma(I)]   | R1 = 0.0906, $wR2 = 0.1577$                                  |  |  |  |
| R indices (all data)            | R1 = 0.0932, $wR2 = 0.1587$                                  |  |  |  |
| Absolute structure parameter    | 0.06(13)                                                     |  |  |  |
| Largest diff. peak and hole     | 0.227 and -0.224 e.A^-3                                      |  |  |  |

Table 2. Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for a.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

|              | Х        | у        | Z       | U(eq)          |
|--------------|----------|----------|---------|----------------|
| C1 (1)       | 6941(1)  | 4424(1)  | 3727(1) | 27(1)          |
| 0(1)         | 9424(3)  | 7082(3)  | 2328(1) | 33(1)          |
| 0(2)         | 7954(3)  | 6098(3)  | 2620(1) | 33(1)          |
| 0(2)         | 10573(3) | 8408(3)  | 3861(1) | 31(1)          |
| 0(4)         | 3693(4)  | 5540(4)  | 3906(1) | 57(1)          |
| ∪(1)<br>N(1) | 10193(3) | 2376(3)  | 3893(1) | 24(1)          |
| C(1)         | 10196(4) | 7685(5)  | 2131(1) | 35(1)          |
| C(2)         | 9651 (4) | 6960(4)  | 2671(1) | 26(1)          |
| C(3)         | 10588(4) | 7333(4)  | 2833(1) | 25(1)          |
| C(4)         | 10719(4) | 7170(4)  | 3186(1) | 23(1)<br>21(1) |
| C(5)         | 9937 (4) | 6619(4)  | 3374(1) | 20(1)          |
| C(6)         | 8994(4)  | 6243(4)  | 3215(1) | 23(1)          |
| C(7)         | 8843(4)  | 6429(4)  | 2865(1) | 27(1)          |
| C(8)         | 6998(4)  | 5888(5)  | 2860(1) | 39(1)          |
| C(9)         | 11643(4) | 7522(4)  | 3414(1) | 27(1)          |
| C(10)        | 11147(4) | 7431 (4) | 3775(1) | 27(1)          |
| C(11)        | 10308(4) | 6499(4)  | 3748(1) | 21(1)          |
| C(12)        | 9450(4)  | 6490(4)  | 4030(1) | 26(1)          |
| C(13)        | 9982(4)  | 5914(4)  | 4337(1) | 29(1)          |
| C(14)        | 10723(4) | 5083(4)  | 4173(1) | 24(1)          |
| C(15)        | 10941(4) | 5430(4)  | 3807(1) | 23(1)          |
| C(16)        | 10285(4) | 4424 (4) | 3874(1) | 26(1)          |
| C(17)        | 10834(4) | 3361(4)  | 3789(1) | 23(1)          |
| C(18)        | 9188(4)  | 2210(4)  | 3670(1) | 27(1)          |
| C(19)        | 9402(4)  | 2389(4)  | 3291(1) | 30(1)          |
| C(20)        | 8959(4)  | 3262(4)  | 3126(1) | 33(1)          |
| C(21)        | 9145(5)  | 3453(5)  | 2779(2) | 45(2)          |
| C(22)        | 9765(6)  | 2734(5)  | 2599(2) | 53(2)          |
| C(23)        | 10226(5) | 1862(5)  | 2758(1) | 47(2)          |
| C(24)        | 10047(5) | 1669(5)  | 3105(1) | 39(1)          |
| C(25)        | 9890(4)  | 2394(4)  | 4280(1) | 25(1)          |
| C(26)        | 10924(5) | 2353(4)  | 4498(1) | 34(1)          |
| C(27)        | 9123(4)  | 1488(4)  | 4378(1) | 27(1)          |
| C(28)        | 9468(5)  | 412(4)   | 4380(1) | 32(1)          |
| C(29)        | 8774(5)  | -389(5)  | 4492(2) | 47(2)          |

# Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

| C(30) | 7734(5) | -146(5) | 4599(2) | 49(2) |
|-------|---------|---------|---------|-------|
| C(31) | 7389(5) | 907(6)  | 4589(2) | 52(2) |
| C(32) | 8081(5) | 1728(5) | 4481(1) | 37(1) |
| C(33) | 3624(5) | 5756(5) | 4262(2) | 49(2) |
|       |         |         |         |       |

| 0(1)-C(2)     | 1.368(5) |
|---------------|----------|
| 0(1) - C(1)   | 1.429(6) |
| 0(2) - C(7)   | 1.373(6) |
| 0(2) - C(8)   | 1.397(6) |
| 0(3)-C(10)    | 1.437(6) |
| 0(3) - H(3)   | 0.8401   |
| 0(4)-C(33)    | 1.411(7) |
| 0(4) - H(4)   | 0.8402   |
| N(1)-C(17)    | 1.505(6) |
| N(1)-C(18)    | 1.526(6) |
| N(1)-C(25)    | 1.547(6) |
| N(1) - H(1)   | 0.9300   |
| С(1)-Н(1С)    | 0.9800   |
| С(1)-Н(1А)    | 0.9800   |
| С(1)-Н(1В)    | 0.9800   |
| С(2)-С(3)     | 1.393(7) |
| С(2)-С(7)     | 1.411(7) |
| С(3)-С(4)     | 1.394(6) |
| С(3)-Н(ЗА)    | 0.9500   |
| C(4)-C(5)     | 1.387(6) |
| C(4)-C(9)     | 1.508(7) |
| C (5) –C (6)  | 1.395(6) |
| C(5)-C(11)    | 1.530(7) |
| С(6)-С(7)     | 1.390(7) |
| C(6)-H(6)     | 0.9500   |
| C (8) –H (8C) | 0.9800   |
| C(8)-H(8B)    | 0.9800   |
| C (8) –H (8A) | 0.9800   |
| C (9) –C (10) | 1.531(7) |
| С (9) –Н (9В) | 0.9900   |
| С (9) –Н (9А) | 0.9900   |
| C(10)-C(11)   | 1.549(7) |
| C(10)-H(10)   | 1.0000   |
| C(11)-C(12)   | 1.523(7) |
| C(11)-C(15)   | 1.550(6) |
| C(12)-C(13)   | 1.533(7) |
| C(12)-H(12A)  | 0.9900   |
| С(12)-Н(12В)  | 0.9900   |
| C(13)-C(14)   | 1.512(7) |
| C(13)-H(13B)  | 0.9900   |
| С(13)-Н(13А)  | 0.9900   |

Table 3. Bond lengths [A] and angles [deg] for a.

| C(14)-C(15)      | 1.508(6) |
|------------------|----------|
| C(14)-C(16)      | 1.517(7) |
| С(14)-Н(14)      | 1.0000   |
| C(15)-C(16)      | 1.503(6) |
| С(15)-Н(15)      | 1.0000   |
| C(16)-C(17)      | 1.512(6) |
| С(16)-Н(16)      | 1.0000   |
| С(17)-Н(17А)     | 0.9900   |
| С(17)-Н(17В)     | 0.9900   |
| C(18)-C(19)      | 1.510(7) |
| С(18)-Н(18А)     | 0.9900   |
| С(18)-Н(18В)     | 0.9900   |
| C(19)-C(20)      | 1.368(7) |
| C(19)-C(24)      | 1.394(7) |
| C(20)-C(21)      | 1.384(8) |
| С(20)-Н(20)      | 0.9500   |
| C(21)-C(22)      | 1.363(8) |
| С(21)-Н(21)      | 0.9500   |
| С (22) –С (23)   | 1.364(8) |
| С(22)-Н(22)      | 0.9500   |
| С (23) –С (24)   | 1.385(7) |
| С(23)-Н(23)      | 0.9500   |
| С(24)-Н(24)      | 0.9500   |
| C(25)-C(27)      | 1.513(7) |
| C(25)-C(26)      | 1.532(7) |
| С(25)-Н(25)      | 1.0000   |
| С (26) – Н (26А) | 0.9800   |
| С (26) – Н (26С) | 0.9800   |
| С(26)-Н(26В)     | 0.9800   |
| C(27)-C(32)      | 1.378(7) |
| C(27)-C(28)      | 1.394(7) |
| C (28) –C (29)   | 1.378(8) |
| С(28)-Н(28)      | 0.9500   |
| C(29)-C(30)      | 1.381(9) |
| С(29)-Н(29)      | 0.9500   |
| C(30)-C(31)      | 1.368(9) |
| С(30)-Н(30)      | 0.9500   |
| C(31)-C(32)      | 1.389(8) |
| С(31)-Н(31)      | 0.9500   |
| С(32)-Н(32)      | 0.9500   |
| С(33)-Н(33А)     | 0.9800   |
| С(33)-Н(33В)     | 0.9800   |
| С(33)-Н(33С)     | 0.9800   |
|                  |          |

| C(2) - O(1) - C(1)      | 116.2(4) |
|-------------------------|----------|
| C(7)-O(2)-C(8)          | 117.7(4) |
| С(10)-0(3)-Н(3)         | 94.0     |
| C(33) - O(4) - H(4)     | 111.6    |
| C(17) - N(1) - C(18)    | 112.4(3) |
| C(17) - N(1) - C(25)    | 112.1(4) |
| C(18) - N(1) - C(25)    | 111.0(4) |
| C(17) - N(1) - H(1)     | 107.0    |
| C(18) - N(1) - H(1)     | 107.0    |
| C(25) - N(1) - H(1)     | 107.0    |
| 0(1) - C(1) - H(1C)     | 109.5    |
| 0(1) - C(1) - H(1A)     | 109.5    |
| H(1C)-C(1)-H(1A)        | 109.5    |
| 0(1)-C(1)-H(1B)         | 109.5    |
| H(1C)-C(1)-H(1B)        | 109.5    |
| H(1A)-C(1)-H(1B)        | 109.5    |
| 0(1)-C(2)-C(3)          | 124.8(4) |
| 0(1) - C(2) - C(7)      | 115.3(4) |
| C(3) - C(2) - C(7)      | 119.9(4) |
| C(2) - C(3) - C(4)      | 119.4(5) |
| C(2)-C(3)-H(3A)         | 120.3    |
| C(4) - C(3) - H(3A)     | 120.3    |
| C(5) - C(4) - C(3)      | 120.5(5) |
| C(5) - C(4) - C(9)      | 110.9(4) |
| C(3) - C(4) - C(9)      | 128.6(4) |
| C(4) - C(5) - C(6)      | 120.7(4) |
| C(4) - C(5) - C(11)     | 109.8(4) |
| C(6) - C(5) - C(11)     | 129.4(4) |
| C(7) - C(6) - C(5)      | 119.1(5) |
| C(7) - C(6) - H(6)      | 120.4    |
| C(5) - C(6) - H(6)      | 120.4    |
| 0(2)-C(7)-C(6)          | 124.8(5) |
| 0(2)-C(7)-C(2)          | 114.9(4) |
| C(6) - C(7) - C(2)      | 120.3(5) |
| 0(2)-C(8)-H(8C)         | 109.5    |
| 0(2)-C(8)-H(8B)         | 109.5    |
| H (8C) –C (8) –H (8B)   | 109.5    |
| 0(2)-C(8)-H(8A)         | 109.5    |
| H (8C) –C (8) –H (8A)   | 109.5    |
| H (8B) – C (8) – H (8A) | 109.5    |
| C(4) - C(9) - C(10)     | 102.4(4) |
| С(4)-С(9)-Н(9В)         | 111.3    |
| С(10)–С(9)–Н(9В)        | 111.3    |
| C(4)-C(9)-H(9A)         | 111.3    |

| С (10) –С (9) –Н (9А) | 111.3    |
|-----------------------|----------|
| H (9B) –C (9) –H (9A) | 109.2    |
| 0(3) - C(10) - C(9)   | 110.4(4) |
| 0(3)-C(10)-C(11)      | 108.0(4) |
| C(9) - C(10) - C(11)  | 105.0(4) |
| 0(3)-C(10)-H(10)      | 111.1    |
| С(9)–С(10)–Н(10)      | 111.1    |
| С(11)-С(10)-Н(10)     | 111.1    |
| C(12)-C(11)-C(5)      | 118.5(4) |
| C(12)-C(11)-C(10)     | 114.9(4) |
| C(5) - C(11) - C(10)  | 101.1(4) |
| C(12)-C(11)-C(15)     | 103.7(4) |
| C(5) - C(11) - C(15)  | 112.0(4) |
| C(10)-C(11)-C(15)     | 106.5(4) |
| C(11)-C(12)-C(13)     | 105.4(4) |
| С(11)-С(12)-Н(12А)    | 110.7    |
| С(13)-С(12)-Н(12А)    | 110.7    |
| С(11)-С(12)-Н(12В)    | 110.7    |
| С(13)-С(12)-Н(12В)    | 110.7    |
| H(12A)-C(12)-H(12B)   | 108.8    |
| C(14)-C(13)-C(12)     | 104.3(4) |
| С(14)-С(13)-Н(13В)    | 110.9    |
| С(12)-С(13)-Н(13В)    | 110.9    |
| С(14)-С(13)-Н(13А)    | 110.9    |
| С(12)-С(13)-Н(13А)    | 110.9    |
| H(13B)-C(13)-H(13A)   | 108.9    |
| C(15)-C(14)-C(13)     | 108.1(4) |
| C(15)-C(14)-C(16)     | 59.6(3)  |
| C(13)-C(14)-C(16)     | 117.9(4) |
| C(15)-C(14)-H(14)     | 118.8    |
| C(13)-C(14)-H(14)     | 118.8    |
| C(16) - C(14) - H(14) | 118.8    |
| C(16)-C(15)-C(14)     | 60.5(3)  |
| C(16)-C(15)-C(11)     | 117.1(4) |
| C(14)-C(15)-C(11)     | 107.0(4) |
| C(16)-C(15)-H(15)     | 119.2    |
| С(14)-С(15)-Н(15)     | 119.2    |
| С(11)-С(15)-Н(15)     | 119.2    |
| C(15)-C(16)-C(17)     | 115.9(4) |
| C(15)-C(16)-C(14)     | 59.9(3)  |
| C(17)-C(16)-C(14)     | 118.3(4) |
| С(15)-С(16)-Н(16)     | 116.9    |
| С(17)-С(16)-Н(16)     | 116.9    |
| С(14)-С(16)-Н(16)     | 116.9    |

| N(1)-C(17)-C(16)           | 113.9(4) |
|----------------------------|----------|
| N(1)-C(17)-H(17A)          | 108.8    |
| С(16)-С(17)-Н(17А)         | 108.8    |
| N(1)-C(17)-H(17B)          | 108.8    |
| С(16)-С(17)-Н(17В)         | 108.8    |
| H(17A) – C(17) – H(17B)    | 107.7    |
| C(19) - C(18) - N(1)       | 113.0(4) |
| С(19)–С(18)–Н(18А)         | 109.0    |
| N(1)-C(18)-H(18A)          | 109.0    |
| С(19)-С(18)-Н(18В)         | 109.0    |
| N(1)-C(18)-H(18B)          | 109.0    |
| H(18A)-C(18)-H(18B)        | 107.8    |
| C(20) - C(19) - C(24)      | 119.0(5) |
| C (20) – C (19) – C (18)   | 120.2(5) |
| C(24)-C(19)-C(18)          | 120.8(5) |
| C (19) –C (20) –C (21)     | 121.6(5) |
| С(19)-С(20)-Н(20)          | 119.2    |
| С (21) – С (20) – Н (20)   | 119.2    |
| C (22) – C (21) – C (20)   | 118.7(5) |
| С(22)-С(21)-Н(21)          | 120.6    |
| С(20)-С(21)-Н(21)          | 120.6    |
| C (21) – C (22) – C (23)   | 121.0(5) |
| С(21)-С(22)-Н(22)          | 119.5    |
| С(23)-С(22)-Н(22)          | 119.5    |
| C (22) – C (23) – C (24)   | 120.5(5) |
| С (22) – С (23) – Н (23)   | 119.8    |
| С(24)-С(23)-Н(23)          | 119.8    |
| C (23) – C (24) – C (19)   | 119.1(5) |
| С (23) – С (24) – Н (24)   | 120.4    |
| C(19)-C(24)-H(24)          | 120.4    |
| C (27) – C (25) – C (26)   | 110.9(4) |
| C(27) - C(25) - N(1)       | 112.6(4) |
| C(26) - C(25) - N(1)       | 109.7(4) |
| С (27) – С (25) – Н (25)   | 107.8    |
| С (26) – С (25) – Н (25)   | 107.8    |
| N(1)-C(25)-H(25)           | 107.8    |
| С (25) – С (26) – Н (26А)  | 109.5    |
| С (25) – С (26) – Н (26С)  | 109.5    |
| H (26A) –C (26) –H (26C)   | 109.5    |
| С (25) – С (26) – Н (26В)  | 109.5    |
| H (26A) – C (26) – H (26B) | 109.5    |
| H (26C) –C (26) –H (26B)   | 109.5    |
| С (32) –С (27) –С (28)     | 119.2(5) |
| С (32) –С (27) –С (25)     | 119.9(5) |
|                            |          |

| C (28) –C (27) –C (25)   | 120.9(5) |
|--------------------------|----------|
| С (29) –С (28) –С (27)   | 119.6(5) |
| С (29) –С (28) –Н (28)   | 120.2    |
| С (27) – С (28) – Н (28) | 120.2    |
| С (28) –С (29) –С (30)   | 121.2(6) |
| С (28) –С (29) –Н (29)   | 119.4    |
| С (30) –С (29) –Н (29)   | 119.4    |
| С (31) –С (30) –С (29)   | 119.1(6) |
| С (31) – С (30) – Н (30) | 120.5    |
| С (29) –С (30) –Н (30)   | 120.5    |
| С (30) –С (31) –С (32)   | 120.6(6) |
| С (30) – С (31) – Н (31) | 119.7    |
| С(32)-С(31)-Н(31)        | 119.7    |
| С (27) –С (32) –С (31)   | 120.3(6) |
| С (27) – С (32) – Н (32) | 119.8    |
| С (31) – С (32) – Н (32) | 119.8    |
| 0(4)-C(33)-H(33A)        | 109.5    |
| 0(4)-C(33)-H(33B)        | 109.5    |
| H(33A)-C(33)-H(33B)      | 109.5    |
| 0(4)-C(33)-H(33C)        | 109.5    |
| H(33A)-C(33)-H(33C)      | 109.5    |
| H(33B)-C(33)-H(33C)      | 109.5    |
|                          |          |

Symmetry transformations used to generate equivalent atoms:

|       | U11   | U22   | U33   | U23    | U13   | U12    |
|-------|-------|-------|-------|--------|-------|--------|
| C1(1) | 29(1) | 23(1) | 28(1) | -2(1)  | 1(1)  | 0(1)   |
| 0(1)  | 29(2) | 42(2) | 28(2) | 5(2)   | 0(2)  | -5(2)  |
| 0(2)  | 23(2) | 49(2) | 27(2) | -4(2)  | -2(2) | -9(2)  |
| 0(3)  | 30(2) | 21(2) | 44(2) | -1(2)  | 5(2)  | -2(2)  |
| 0(4)  | 47(3) | 70(3) | 55(3) | -12(2) | 13(2) | -18(2) |
| N(1)  | 28(2) | 20(2) | 23(2) | 3(2)   | 1(2)  | 2(2)   |
| C(1)  | 32(3) | 44(4) | 30(3) | 5(3)   | 3(2)  | -1(2)  |
| C(2)  | 30(3) | 31(3) | 18(2) | 7(2)   | 1(2)  | 0(2)   |
| C(3)  | 27(3) | 19(2) | 28(3) | 5(2)   | 3(2)  | -2(2)  |
| C(4)  | 18(2) | 16(2) | 29(3) | 3(2)   | -2(2) | 3(2)   |
| C(5)  | 15(2) | 19(3) | 27(3) | -4(2)  | 2(2)  | 2(2)   |
| C(6)  | 23(3) | 15(2) | 30(3) | 1(2)   | 0(2)  | 0(2)   |
| C(7)  | 28(3) | 23(3) | 30(3) | -4(2)  | -7(2) | 1(2)   |
| C (8) | 24(3) | 54(4) | 38(3) | -2(3)  | -5(3) | -9(3)  |
| C(9)  | 12(2) | 30(3) | 39(3) | 7(2)   | -2(2) | -5(2)  |
| C(10) | 33(3) | 16(2) | 32(3) | 2(2)   | -2(2) | 3(2)   |
| C(11) | 25(3) | 18(2) | 20(2) | 1(2)   | -2(2) | -1(2)  |
| C(12) | 22(3) | 24(3) | 31(3) | 1(2)   | 2(2)  | 1(2)   |
| C(13) | 34(3) | 26(3) | 28(3) | -2(2)  | 3(2)  | -2(2)  |
| C(14) | 26(3) | 27(3) | 20(2) | 6(2)   | 0(2)  | -7(2)  |
| C(15) | 20(2) | 17(2) | 32(3) | 2(2)   | 1(2)  | -4(2)  |
| C(16) | 33(3) | 18(2) | 25(3) | 3(2)   | 2(2)  | 2(2)   |
| C(17) | 24(3) | 22(3) | 24(3) | 3(2)   | -2(2) | -5(2)  |
| C(18) | 29(3) | 23(3) | 29(3) | -1(2)  | 0(2)  | -4(2)  |
| C(19) | 26(3) | 36(3) | 29(3) | -3(2)  | -3(2) | 2(2)   |
| C(20) | 32(3) | 38(3) | 28(3) | -6(3)  | -5(2) | 11(2)  |
| C(21) | 52(4) | 44(4) | 40(3) | 3(3)   | -7(3) | 17(3)  |
| C(22) | 75(5) | 58(4) | 26(3) | 7(3)   | -2(3) | 21(4)  |
| C(23) | 55(4) | 51(4) | 36(3) | -5(3)  | 4(3)  | 18(3)  |
| C(24) | 54(4) | 35(3) | 26(3) | 1(3)   | -8(3) | 11(3)  |
| C(25) | 34(3) | 22(3) | 20(2) | -1(2)  | 3(2)  | 3(2)   |
| C(26) | 46(4) | 25(3) | 31(3) | -1(2)  | -2(3) | -7(2)  |
| C(27) | 34(3) | 25(3) | 22(3) | -4(2)  | -4(2) | -2(2)  |
| C(28) | 34(3) | 33(3) | 28(3) | -1(2)  | 3(2)  | -1(2)  |
| C(29) | 64(4) | 27(3) | 49(4) | 0(3)   | 3(3)  | -10(3) |

Table 4. Anisotropic displacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for a. The anisotropic displacement factor exponent takes the form:  $-2 \text{ pi}^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]$ 

# Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

| C(30) | 52(4) | 51(4)  | 44(4) | -1(3) | 2(3)  | -22(3) |
|-------|-------|--------|-------|-------|-------|--------|
| C(31) | 42(4) | 67 (5) | 46(4) | -8(3) | 12(3) | -12(3) |
| C(32) | 33(3) | 37(3)  | 41(3) | -2(3) | 2(3)  | -3(3)  |
| C(33) | 45(4) | 47 (4) | 57(4) | -1(3) | 7(3)  | -11(3) |
|       |       |        |       |       |       |        |

| H(3)<br>H(4)<br>H(1)<br>H(1C)<br>H(1A)<br>H(1B) | 11072<br>4255<br>10638<br>10270<br>9948<br>10900<br>11133<br>8461<br>6836<br>7086 | 8818<br>5811<br>1777<br>8414<br>7737<br>7315<br>7695<br>5864<br>6500 | 3793<br>3819<br>3859<br>2228<br>1892<br>2138<br>2704<br>3345 | 38<br>69<br>29<br>53<br>53<br>53<br>30<br>27 |
|-------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|
| H(3)<br>H(4)<br>H(1)<br>H(1C)<br>H(1A)<br>H(1B) | 11072<br>4255<br>10638<br>10270<br>9948<br>10900<br>11133<br>8461<br>6836<br>7086 | 8818<br>5811<br>1777<br>8414<br>7737<br>7315<br>7695<br>5864<br>6500 | 3793<br>3819<br>3859<br>2228<br>1892<br>2138<br>2704<br>3345 | 38<br>69<br>29<br>53<br>53<br>53<br>30<br>27 |
| H(4)<br>H(1)<br>H(1C)<br>H(1A)<br>H(1B)         | 4255<br>10638<br>10270<br>9948<br>10900<br>11133<br>8461<br>6836<br>7086          | 5811<br>1777<br>8414<br>7737<br>7315<br>7695<br>5864<br>6500         | 3819<br>3859<br>2228<br>1892<br>2138<br>2704<br>3345         | 69<br>29<br>53<br>53<br>53<br>30<br>27       |
| H(1)<br>H(1C)<br>H(1A)<br>H(1B)                 | 10638<br>10270<br>9948<br>10900<br>11133<br>8461<br>6836<br>7086                  | 1777<br>8414<br>7737<br>7315<br>7695<br>5864<br>6500                 | 3859<br>2228<br>1892<br>2138<br>2704<br>3345                 | 29<br>53<br>53<br>53<br>30<br>27             |
| H(1C)<br>H(1A)<br>H(1B)                         | 10270<br>9948<br>10900<br>11133<br>8461<br>6836<br>7086                           | 8414<br>7737<br>7315<br>7695<br>5864<br>6500                         | 2228<br>1892<br>2138<br>2704<br>3345                         | 53<br>53<br>53<br>30<br>27                   |
| H(1A)<br>H(1B)                                  | 9948<br>10900<br>11133<br>8461<br>6836<br>7086                                    | 7737<br>7315<br>7695<br>5864<br>6500                                 | 1892<br>2138<br>2704<br>3345                                 | 53<br>53<br>30<br>27                         |
| H(1B)                                           | 10900<br>11133<br>8461<br>6836<br>7086                                            | 7315<br>7695<br>5864<br>6500                                         | 2138<br>2704<br>3345                                         | 53<br>30<br>27                               |
|                                                 | 11133<br>8461<br>6836<br>7086                                                     | 7695<br>5864<br>6500                                                 | 2704<br>3345                                                 | 30<br>27                                     |
| H(3A)                                           | 8461<br>6836<br>7086                                                              | $\begin{array}{c} 5864 \\ 6500 \end{array}$                          | 3345                                                         | 27                                           |
| H(6)                                            | 6836<br>7086                                                                      | 6500                                                                 |                                                              | 4                                            |
| H(8C)                                           | 7086                                                                              |                                                                      | 3013                                                         | 58                                           |
| H(8B)                                           | 0.465                                                                             | 5227                                                                 | 2998                                                         | 58                                           |
| H(8A)                                           | 6400                                                                              | 5791                                                                 | 2697                                                         | 58                                           |
| H(9B)                                           | 11865                                                                             | 8277                                                                 | 3363                                                         | 32                                           |
| H(9A)                                           | 12277                                                                             | 7037                                                                 | 3389                                                         | 32                                           |
| H(10)                                           | 11715                                                                             | 7262                                                                 | 3951                                                         | 32                                           |
| H(12A)                                          | 8796                                                                              | 6093                                                                 | 3953                                                         | 31                                           |
| H(12B)                                          | 9240                                                                              | 7240                                                                 | 4093                                                         | 31                                           |
| H(13B)                                          | 10400                                                                             | 6433                                                                 | 4479                                                         | 35                                           |
| H(13A)                                          | 9429                                                                              | 5559                                                                 | 4483                                                         | 35                                           |
| H(14)                                           | 11334                                                                             | 4780                                                                 | 4313                                                         | 29                                           |
| H(15)                                           | 11692                                                                             | 5357                                                                 | 3712                                                         | 28                                           |
| H(16)                                           | 9488                                                                              | 4471                                                                 | 3830                                                         | 31                                           |
| H(17A)                                          | 10965                                                                             | 3331                                                                 | 3537                                                         | 28                                           |
| H(17B)                                          | 11548                                                                             | 3339                                                                 | 3905                                                         | 28                                           |
| H(18A)                                          | 8915                                                                              | 1462                                                                 | 3704                                                         | 32                                           |
| H(18B)                                          | 8614                                                                              | 2717                                                                 | 3746                                                         | 32                                           |
| H(20)                                           | 8511                                                                              | 3749                                                                 | 3251                                                         | 39                                           |
| H(21)                                           | 8847                                                                              | 4073                                                                 | 2669                                                         | 54                                           |
| H(22)                                           | 9877                                                                              | 2843                                                                 | 2360                                                         | 64                                           |
| H(23)                                           | 10674                                                                             | 1383                                                                 | 2629                                                         | 57                                           |
| H(24)                                           | 10359                                                                             | 1055                                                                 | 3214                                                         | 46                                           |
| H(25)                                           | 9518                                                                              | 3098                                                                 | 4329                                                         | 30                                           |
| H(26A)                                          | 11370                                                                             | 1736                                                                 | 4426                                                         | 51                                           |
| H(26C)                                          | 10730                                                                             | 2269                                                                 | 4749                                                         | 51                                           |
| H(26R)                                          | 1133/                                                                             | 3027                                                                 | 4468                                                         | 51                                           |
| н (200)                                         | 10179                                                                             | 921                                                                  | 1202                                                         | 30                                           |
| ц (20)                                          | 0015                                                                              | ۵۵۱<br>1190_                                                         | 4303                                                         | 50                                           |

Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for a.

# Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

| H(30)  | 7264 | -704 | 4679 | 59 |
|--------|------|------|------|----|
| H(31)  | 6669 | 1080 | 4657 | 62 |
| H(32)  | 7834 | 2458 | 4477 | 44 |
| H(33A) | 3355 | 5111 | 4382 | 74 |
| H(33B) | 3125 | 6363 | 4301 | 74 |
| H(33C) | 4345 | 5945 | 4350 | 74 |
|        |      |      |      |    |

| Table 6  | Torsion   | angles | [deg] | for | я  |
|----------|-----------|--------|-------|-----|----|
| Table 0. | 101 51011 | angres | Lueg  | 101 | a. |

| C(1) - O(1) - C(2) - C(3)    | -3.1(7)   |
|------------------------------|-----------|
| C(1) - O(1) - C(2) - C(7)    | 175.7(4)  |
| 0(1) - C(2) - C(3) - C(4)    | 179.2(5)  |
| C(7) - C(2) - C(3) - C(4)    | 0.4(7)    |
| C(2) - C(3) - C(4) - C(5)    | 1.5(7)    |
| C(2) - C(3) - C(4) - C(9)    | -178.4(5) |
| C(3) - C(4) - C(5) - C(6)    | -1.6(7)   |
| C(9) - C(4) - C(5) - C(6)    | 178.3(4)  |
| C(3) - C(4) - C(5) - C(11)   | 176.9(4)  |
| C(9) - C(4) - C(5) - C(11)   | -3.2(5)   |
| C(4) - C(5) - C(6) - C(7)    | -0.2(7)   |
| C(11) - C(5) - C(6) - C(7)   | -178.4(5) |
| C(8) - O(2) - C(7) - C(6)    | 22.0(7)   |
| C(8) - O(2) - C(7) - C(2)    | -160.2(5) |
| C(5) - C(6) - C(7) - O(2)    | 179.8(4)  |
| C(5) - C(6) - C(7) - C(2)    | 2.1(7)    |
| 0(1) - C(2) - C(7) - 0(2)    | 1.0(7)    |
| C(3) - C(2) - C(7) - O(2)    | 179.9(4)  |
| 0(1)-C(2)-C(7)-C(6)          | 178.9(4)  |
| C(3) - C(2) - C(7) - C(6)    | -2.2(8)   |
| C(5) - C(4) - C(9) - C(10)   | -17.3(5)  |
| C(3) - C(4) - C(9) - C(10)   | 162.6(5)  |
| C(4) - C(9) - C(10) - O(3)   | -85.8(5)  |
| C(4) - C(9) - C(10) - C(11)  | 30.4(5)   |
| C(4) - C(5) - C(11) - C(12)  | 148.3(4)  |
| C(6) - C(5) - C(11) - C(12)  | -33.3(7)  |
| C(4) - C(5) - C(11) - C(10)  | 21.9(5)   |
| C(6) - C(5) - C(11) - C(10)  | -159.8(5) |
| C(4) - C(5) - C(11) - C(15)  | -91.1(5)  |
| C(6) - C(5) - C(11) - C(15)  | 87.2(6)   |
| 0(3)-C(10)-C(11)-C(12)       | -42.7(6)  |
| C(9) - C(10) - C(11) - C(12) | -160.6(4) |
| 0(3)-C(10)-C(11)-C(5)        | 86.0(4)   |
| C(9) - C(10) - C(11) - C(5)  | -31.8(5)  |
| 0(3)-C(10)-C(11)-C(15)       | -156.9(4) |
| C(9) - C(10) - C(11) - C(15) | 85.3(5)   |
| C(5) - C(11) - C(12) - C(13) | 157.5(4)  |
| C(10) -C(11) -C(12) -C(13)   | -83.0(5)  |
| C(15) -C(11) -C(12) -C(13)   | 32.7(5)   |
| C(11) -C(12) -C(13) -C(14)   | -33.2(5)  |
| C(12) -C(13) -C(14) -C(15)   | 20.4(5)   |

| C(12) -C(13) -C(14) -C(16)     | -44.1(6)  |
|--------------------------------|-----------|
| C (13) -C (14) -C (15) -C (16) | -112.3(5) |
| C(13) -C(14) -C(15) -C(11)     | -0.3(5)   |
| C (16) -C (14) -C (15) -C (11) | 112.0(4)  |
| C(12) -C(11) -C(15) -C(16)     | 45.0(5)   |
| C (5) -C (11) -C (15) -C (16)  | -83.9(5)  |
| C(10) -C(11) -C(15) -C(16)     | 166.5(4)  |
| C(12) -C(11) -C(15) -C(14)     | -20.0(5)  |
| C(5)-C(11)-C(15)-C(14)         | -148.9(4) |
| C(10) -C(11) -C(15) -C(14)     | 101.5(4)  |
| C(14) -C(15) -C(16) -C(17)     | -109.1(5) |
| C(11) -C(15) -C(16) -C(17)     | 155.9(4)  |
| C(11) -C(15) -C(16) -C(14)     | -95.0(5)  |
| C(13) -C(14) -C(16) -C(15)     | 95.5(5)   |
| C(15) -C(14) -C(16) -C(17)     | 105.2(5)  |
| C(13) -C(14) -C(16) -C(17)     | -159.3(4) |
| C(18) - N(1) - C(17) - C(16)   | 70.9(5)   |
| C(25) - N(1) - C(17) - C(16)   | -55.0(5)  |
| C(15) - C(16) - C(17) - N(1)   | 174.1(4)  |
| C(14) - C(16) - C(17) - N(1)   | 105.9(5)  |
| C(17) - N(1) - C(18) - C(19)   | 43.0(5)   |
| C(25) - N(1) - C(18) - C(19)   | 169.5(4)  |
| N(1) -C(18) -C(19) -C(20)      | -111.3(5) |
| N(1)-C(18)-C(19)-C(24)         | 69.0(6)   |
| C (24) –C (19) –C (20) –C (21) | -0.8(9)   |
| C (18) –C (19) –C (20) –C (21) | 179.6(5)  |
| С (19) –С (20) –С (21) –С (22) | 1.7(10)   |
| C (20) –C (21) –C (22) –C (23) | -2.3(11)  |
| С (21) –С (22) –С (23) –С (24) | 2.0(11)   |
| C (22) –C (23) –C (24) –C (19) | -1.1(10)  |
| C (20) –C (19) –C (24) –C (23) | 0.5(9)    |
| C(18) – C(19) – C(24) – C(23)  | -179.9(5) |
| C(17) - N(1) - C(25) - C(27)   | 172.4(4)  |
| C(18) –N(1) –C(25) –C(27)      | 45.8(5)   |
| C(17) –N(1) –C(25) –C(26)      | -63.6(5)  |
| C(18) - N(1) - C(25) - C(26)   | 169.7(4)  |
| C (26) –C (25) –C (27) –C (32) | 123.4(5)  |
| N(1) -C(25) -C(27) -C(32)      | -113.3(5) |
| C (26) –C (25) –C (27) –C (28) | -54.1(6)  |
| N(1)-C(25)-C(27)-C(28)         | 69.2(6)   |
| C (32) –C (27) –C (28) –C (29) | -1.9(8)   |
| C (25) –C (27) –C (28) –C (29) | 175.6(5)  |
| C (27) –C (28) –C (29) –C (30) | 1.0(9)    |
| С (28) –С (29) –С (30) –С (31) | 0.6(10)   |

| C (29) –C (30) –C (31) –C (32) | -1.4(10)  |
|--------------------------------|-----------|
| C (28) -C (27) -C (32) -C (31) | 1.1(8)    |
| C (25) -C (27) -C (32) -C (31) | -176.5(5) |
| C (30) –C (31) –C (32) –C (27) | 0.6(9)    |
|                                |           |

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for a [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)













81























### Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012



















Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012







