Supplementary Information for:

# $\mathrm{Sc}(\mathrm{OTf})_{3}$-catalyzed diastereoselective Friedel-Crafts reactions of arenes and hetarenes with 3-phenylglycidates 

David Wilcke, Thorsten Bach*

Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, D-85747 Garching

thorsten.bach@ch.tum.de

## Content

1. General ..... 3
2. Substrate Synthesis ..... 4-11
3. Diastereoselective Friedel-Crafts Alkylations ..... 12-24
4. Determination of the relative configuration ..... 25-28
5. References ..... 29
6. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra ..... 30-43

## 1. General

All reactions involving moisture-sensitive chemicals were carried out in flame-dried glassware in dried solvents with magnetic stirring under argon. Diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were purified by using a SPS-800 solvent purification system (M. Braun). All other chemicals were used as received. TLC was performed on silica coated glass plates (silica gel $60 \mathrm{~F}_{254}$ ) with detection by UV ( 254 nm ) or ceric ammonium molybdate (CAM) with subsequent heating. Flash chromatography was performed on silica gel 60 (Merck, 230-400 mesh) with the indicated eluent. All solvents for chromatography [Pentane $(\mathrm{P})$ and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ ] were distilled prior to use. IR-spectra were recorded on a JASCO IR-4100 (ATR), MS/HRMS-measurements were performed on a Finnigan MAT 8200 (EI), a Finnigan MAT 95S (HR-EI), a Finnigan LCQ classic (ESI) and a Thermo Scientific LTQ Orbitrap XL (HRMS-ESI). ${ }^{1} \mathrm{H}$-and ${ }^{13} \mathrm{C}$-NMR-spectra were recorded in $\mathrm{CDCl}_{3}$ at 303 K either on a Bruker AV-250, a Bruker AV-360 or a Bruker AV-500 spectrometer. The chemical shifts are reported relative to $\mathrm{CHCl}_{3}(\delta=7.26 \mathrm{ppm})$. Apparent multiplets that occur as a result of the accidental equality of coupling constants to those of magnetically nonequivalent protons are marked as virtual (virt). The multiplicities of the ${ }^{13} \mathrm{C}$-NMR signal were determined by DEPT experiments, assignments are based on COSY, HMBC and HMQC experiments. Melting points were measured on a Koffler Thermopan and are uncorrected. Elemental analyses were carried out on a Elementar Vario EL in the Department Chemie at the Technische Universität München.

## 2. Substrate Synthesis

## General procedure 1: Darzens reactions for the synthesis of compounds trans-2a-c

Methanol ( 150 mL ) was carefully added to sodium ( $3.45 \mathrm{~g}, 150 \mathrm{mmol}, 1.50 \mathrm{eq}$.$) under an$ atmosphere of argon at $0{ }^{\circ} \mathrm{C}$. After the complete dissolution of sodium, a mixture of the respective aldehyde ( $100 \mathrm{mmol}, 1.00$ eq.) and ethyl chloroacetate ( $16.0 \mathrm{~mL}, 150 \mathrm{mmol}$, 1.50 eq.) was added slowly to the alkoxide solution. The reaction mixture was stirred at ambient temperature over night, subsequently neutralised with glacial acetic acid and poured into ice water $(500 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified under the given conditions.

## Methyl 3-(4-methoxyphenyl)oxirane-2-carboxylate (trans-2a) ${ }^{[1]}$



Following the general procedure 1, reaction of $p$-anisaldehyde $(12.2 \mathrm{~mL}, 100 \mathrm{mmol}, 1.00$ eq.) and purification of the crude product by recrystallization from methanol yielded trans-2a ( $8.21 \mathrm{~g}, 39.4 \mathrm{mmol}, 39 \%$ ) as a colourless solid (d.r. trans/cis $>95 / 5$ ).

TLC: $R_{\mathrm{f}}=0.34\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=2 / 1\right)[\mathrm{UV}, \mathrm{CAM}]$.
trans-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.51\left(\mathrm{~d},{ }^{3} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.81(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H}_{\mathrm{D}}-\mathrm{OMe}$ ), 3.82 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{COOMe}$ ), 4.05 (d, ${ }^{3} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 6.88-6.90 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}$ ), 7.20-7.22 (m, 2 H, H-B).
${ }^{13} \mathbf{C}-$ NMR ( $90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=52.5(\mathrm{q}, \mathrm{COOMe}), 55.3\left(\mathrm{q}, \mathrm{C}_{\mathrm{D}}-\mathrm{OMe}\right), 56.5(\mathrm{~d}, \mathrm{C}-2)$, 57.9 (d, C-3), 114.1 (d, C-C), 126.7 (s, C-A), 127.2 (d, C-B), 160.2 (s, C-D), 168.8 ( $\mathrm{s}, \mathrm{C}-1$ ).

MS (EI, 70 eV$): m / z(\%)=208(25)\left[\mathrm{M}^{+}\right], 121(100)\left[\left(\mathrm{M}_{-} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}\right)^{+}\right]$.

## Methyl 3-phenyloxirane-2-carboxylate (trans-2b) ${ }^{[2]}$



Following the general procedure 1, reaction of benzaldehyde ( $10.1 \mathrm{~mL}, 100 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and purification of the crude product by flash chromatography $\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=9 / 1 \rightarrow 2 / 1\right)$ yielded trans-2b $(8.03 \mathrm{~g}, 45.1 \mathrm{mmol}, 45 \%)$ as a colourless solid (d.r. trans/cis $>95 / 5$ ).

TLC: $R_{\mathrm{f}}=0.60\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=1 / 1\right)[\mathrm{UV}, \mathrm{CAM}]$.
trans-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.52\left(\mathrm{~d},{ }^{3} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.83(\mathrm{~s}, 3 \mathrm{H}$, COOMe), 4.10 (d, ${ }^{3} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), $7.28-7.31$ (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{B}$ ), $7.35-7.38$ ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{C}+$ H-D).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=52.6(\mathrm{q}, \mathrm{COOMe}), 56.6(\mathrm{~d}, \mathrm{C}-2), 58.0(\mathrm{~d}, \mathrm{C}-3)$, 125.8 (d, C-B), 128.7 (d, C-C), 129.0 (d, C-D), 134.9 (s, C-A), 168.6 ( $\mathrm{s}, \mathrm{C}-1$ ).

MS (ESI): $m / z(\%)=357\left[(2 \mathrm{M}+\mathrm{H})^{+}\right]$.

## Methyl 3-(p-tolyl)oxirane-2-carboxylate (trans-2c) ${ }^{[2]}$



Following the general procedure 1, reaction of p-tolualdehyde ( $11.8 \mathrm{~mL}, 100 \mathrm{mmol}, 1.00$ eq.) and purification of the crude product by flash chromatography $\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=8 / 1 \rightarrow 2 / 1\right)$ yielded trans-2c ( $10.8 \mathrm{~g}, 56.2 \mathrm{mmol}, 56 \%$ ) as a colourless solid (d.r. trans/cis $>95 / 5$ ).

TLC: $R_{\mathrm{f}}=0.63\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=1 / 1\right)[\mathrm{UV}, \mathrm{CAM}]$.
trans-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{D}}-\mathrm{Me}\right), 3.51\left(\mathrm{~d},{ }^{3} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-2)$, 3.83 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{COOMe}$ ), 4.07 ( $\mathrm{d},{ }^{3} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 7.17-7.7.18 (m, $4 \mathrm{H}, \mathrm{H}-\mathrm{B}+\mathrm{H}-\mathrm{C}$ ).
${ }^{13} \mathbf{C - N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=21.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{D}}-\mathrm{Me}\right), 52.6(\mathrm{q}, \mathrm{COOMe}), 56.6(\mathrm{~d}, \mathrm{C}-2)$, 58.0 (d, C-3), 125.8 (d, C-B), 129.3 (d, C-C), 131.8 (s, C-A), 139.0 (s, C-D), 168.8 ( $\mathrm{s}, \mathrm{C}-1$ ).

MS (ESI): $m / z(\%)=385(100)\left[(2 \mathrm{M}+\mathrm{H})^{+}\right]$.

## Methyl 2,3-dihydroxy-3-(4-methoxyphenyl)propanoate ${ }^{[3,4]}$



Methyl 3-(4-methoxyphenyl)oxirane-2-carboxylate (trans-2a) ( $2.08 \mathrm{~g}, \quad 10.0 \mathrm{mmol}$, d.r. trans/cis $>95 / 5,1.00$ eq.) was dissolved in dioxane ( 60 mL ) and water ( 15 mL ). Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ ( $250 \mu \mathrm{~L}, 4.69 \mathrm{mmol}, 0.47 \mathrm{eq}$.) was added and the reaction mixture was stirred at ambient temperature over night. The solution was concentrated in vacuo and sat. aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ were subsequently added. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography $\left[\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=1 / 1 \rightarrow \mathrm{Et}_{2} \mathrm{O}(100 \%)\right]$ to afford $1.94 \mathrm{~g}(8.57 \mathrm{mmol}, 86 \%)$ of methyl 2,3-dihydroxy-3-(4-methoxyphenyl)propanoate as a colourless solid (d.r. anti/syn $=32 / 68$ ).

TLC: $R_{\mathrm{f}}=0.14\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=1 / 3\right)[\mathrm{UV}, \mathrm{CAM}]$.
anti-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.10(\mathrm{bs}, 2 \mathrm{H}, \mathrm{OH}), 3.71(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 3.80$ (s, $3 \mathrm{H}, \mathrm{H}_{\mathrm{D}}-\mathrm{OMe}$ ), $4.47\left(\mathrm{~d},{ }^{3} J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.94\left(\mathrm{~d},{ }^{3} J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 6.86-6.89$ (m, 2 H, H-C), 7.22-7.26 (m, 2 H, H-B).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=52.4(\mathrm{q}, \mathrm{COOMe}), 55.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{D}}-\mathrm{OMe}\right), 74.6(\mathrm{~d}, \mathrm{C}-3)$, 74.7 (d, C-2), 113.8 (d, C-C), 127.6 (d, C-B), 130.7 (s, C-A), 159.5 (s, C-D), 172.5 ( $\mathrm{s}, \mathrm{C}-1$ ). syn-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=2.70(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.88(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.81(\mathrm{~s}, 6 \mathrm{H}$, COOMe $\left.+\mathrm{H}_{\mathrm{D}}-\mathrm{OMe}\right), 4.34\left(\mathrm{~d},{ }^{3} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.96\left(\mathrm{~d},{ }^{3} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, 6.88-6.93 (m, 2 H, H-C), 7.30-7.35 (m, 2 H, H-B).
${ }^{13} \mathbf{C - N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=52.8(\mathrm{q}, \mathrm{COOMe}), 55.3\left(\mathrm{q}, \mathrm{C}_{\mathrm{D}}-\mathrm{OMe}\right), 74.1(\mathrm{~d}, \mathrm{C}-3)$, 74.7 (d, C-2), 113.9 (d, C-C), 127.5 (d, C-B), 132.0 (s, C-A), 159.4 (s, C-D), 173.2 ( $\mathrm{s}, \mathrm{C}-1$ ).

MS (EI, 70 eV$): m / z(\%)=226$ (1) $\left[\mathrm{M}^{+}\right], 208$ (2) $\left[\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}\right], 170$ (9), 137 (100) $\left[\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)^{+}\right], 77$ (34).

## Methyl 3-hydroxy-3-(4-methoxyphenyl)-2-(tosyloxy)propanoate ${ }^{[3,5]}$



Methyl 2,3-dihydroxy-3-(4-methoxyphenyl)propanoate $(1.64 \mathrm{~g}, 7.25 \mathrm{mmol}$, d.r. anti/syn $=$ $32 / 68,1.00$ eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{NEt}_{3}(1.51 \mathrm{~mL}$, $10.9 \mathrm{mmol}, 1.50 \mathrm{eq}$.) and $p$-toluenesulfonyl chloride ( $1.42 \mathrm{~g}, 7.47 \mathrm{mmol}, 1.03 \mathrm{eq}$.) were subsequently added and the solution was stirred for 60 h at $0^{\circ} \mathrm{C}$. The mixture was poured into ice water ( 50 mL ) and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography $\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=1 / 1\right.$ $\rightarrow 1 / 3$ ) to afford 1.69 g ( $4.44 \mathrm{mmol}, 61 \%$ ) of methyl 3-hydroxy-3-(4-methoxyphenyl)-2-(tosyloxy)propanoate as a colourless solid (d.r. anti/syn $=7 / 93$ ).

TLC: $R_{\mathrm{f}}=0.22\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=1 / 3\right)[\mathrm{UV}, \mathrm{CAM}]$.
syn-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 2.48(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.59$ ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{COOMe}$ ), 3.78 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{D}}-\mathrm{OMe}$ ), $4.86\left(\mathrm{~d},{ }^{3} J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.04$ (d, $\left.{ }^{3} J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 6.74-6.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}), 7.13-7.14$ (m, $\left.2 \mathrm{H}, \mathrm{H}-\mathrm{B}\right), 7.20-7.22$ (m, 2 H, H-c), 7.58-7.60 (m, 2 H, H-b).
${ }^{13} \mathbf{C}$-NMR ( $90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=21.6\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right)$, 52.7 ( $\mathrm{q}, \mathrm{COOMe}$ ), 55.2 ( $\mathrm{q}, \mathrm{C}_{\mathrm{D}}-\mathrm{OMe}$ ), 73.3 (d, C-3), 81.3 (d, C-2), 113.8 (d, C-C), 127.5 (d, C-B), 127.9 (d, C-b), 129.2 (s, C-A), 129.6 (d, C-c), 132.5 (s, C-a), 145.0 (s, C-d), 159.7 (s, C-D), 167.4 (s, C-1).

MS (EI, 70 eV ): $m / z(\%)=380(1)\left[\mathrm{M}^{+}\right], 313$ (19), 171 (100) $\left[\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4}\right)^{+}\right], 151$ (19), 144 (58), 137 (70).

## Methyl 3-(4-methoxyphenyl)oxirane-2-carboxylate (cis-2a) ${ }^{[3]}$



Methyl 3-hydroxy-3-(4-methoxyphenyl)-2-(tosyloxy)propanoate (1.68 g, 4.42 mmol , d.r. anti/syn $=7 / 93,1.00$ eq. ) was dissolved in DMF ( 30 mL ) and water $(400 \mu \mathrm{~L}) . \mathrm{K}_{2} \mathrm{CO}_{3}$ ( $1.83 \mathrm{~g}, 13.4 \mathrm{mmol}, 3.00 \mathrm{eq}$.) was added and the suspension was stirred for 20 h at ambient temperature. The mixture was poured into ice water $(50 \mathrm{~mL})$ and EtOAc $(50 \mathrm{~mL})$ was added. The layers were separated and the aqueous layer was extracted with EtOAc $(3 \times 70 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography $\left[\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=2 / 1 \rightarrow 1 / 1+0.5 \% \mathrm{NEt}_{3}\right]$ to afford 725 mg ( $3.48 \mathrm{mmol}, 79 \%$ ) of methyl 3-(4-methoxyphenyl)oxirane-2-carboxylate $($ cis-2a) as a colourless solid (d.r. trans/cis $=7 / 93$ ).
cis-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.58(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{D}}-\mathrm{OMe}\right), 3.81$ (d, ${ }^{3} J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), $4.21\left(\mathrm{~d},{ }^{3} J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 6.86-6.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}), 7.33-7.35$ (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{B}$ ).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=52.1(\mathrm{q}, \mathrm{COOMe}), 55.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{D}}-\mathrm{OMe}\right), 56.0(\mathrm{~d}, \mathrm{C}-2)$, 57.4 (d, C-3), 113.5 (d, C-C), 124.7 (s, C-A), 127.9 (d, C-B), 159.8 (s, C-D), 167.2 ( $\mathrm{s}, \mathrm{C}-1$ ).

## 1-(4-methoxyphenyl)-4,4-dimethylpent-1-en-3-one ${ }^{[6]}$



Methanol ( 50 mL ) was carefully added to sodium ( $1.59 \mathrm{~g}, 69.0 \mathrm{mmol}, 1.15 \mathrm{eq}$.$) under an$ atmosphere of argon at $0{ }^{\circ} \mathrm{C}$. After the complete dissolution of sodium, a mixture of $p$-anisaldehyde ( $7.29 \mathrm{~mL}, 60.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) and pinacolone 8.26 \mathrm{~mL}(66.0 \mathrm{mmol}, 1.10 \mathrm{eq}$.) was added slowly to the alkoxide solution. The reaction mixture was heated to reflux for 24 h . After cooling to ambient temperature sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 80 \mathrm{~mL})$.

The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography $\left[\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=8 / 1 \rightarrow 4 / 1\right]$ to afford 11.6 g ( $53.1 \mathrm{mmol}, 88 \%$ ) of 1-(4-methoxyphenyl)-4,4-dimethylpent-1-en-3-one as a yellow oil (d.r. trans/cis $>95 / 5$ ).

TLC: $R_{\mathrm{f}}=0.53\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=2 / 1\right)[\mathrm{UV}, \mathrm{CAM}]$.
trans-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=1.23\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.84(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 6.90-6.92 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}$ ), 7.01 (d, ${ }^{3} J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), $7.52-7.54$ (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{B}$ ), 7.65 (d, ${ }^{3} J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ).
${ }^{13} \mathbf{C - N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=26.4\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 43.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 55.4$ (q, OMe), 114.3 (d, C-C), 118.5 (d, C-2), 127.7 (s, C-A), 130.0 (d, C-B), 142.6 (d, C-1), 161.3 (s, C-D), 204.3 (s, C-3).

MS (ESI): $m / z(\%)=219(100)\left[(M+H)^{+}\right], 121(8)$.

## 4,4-Dimethyl-1,2-epoxy-1-(4-methoxyphenyl)-pentan-3-one ${ }^{[6]}$



1-(4-methoxyphenyl)-4,4-dimethylpent-1-en-3-one ( $3.00 \mathrm{~g}, 13.7 \mathrm{mmol}$, d.r. trans/cis $>95 / 5$, 1.00 eq.) was dissolved in methanol ( 20 mL ) and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}_{2}(3.83 \mathrm{~mL}, 44.7 \mathrm{mmol}$, $35 \%$ in $\mathrm{H}_{2} \mathrm{O}, 3.25 \mathrm{eq}$.) was added over a period of 5 min and aqueous $2 \mathrm{M} \mathrm{NaOH}(4.00 \mathrm{~mL}$, $8.00 \mathrm{mmol}, 0.58 \mathrm{eq}$.) was subsequently added over a period of 15 min . The reaction mixture was stirred at ambient temperature over night. Sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(40 \mathrm{~mL})$ was added and the mixture was stirred for 30 min at ambient temperature. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by recrystallization from $\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=4 / 1$ to afford 1.20 g ( $5.12 \mathrm{mmol}, 37 \%$ ) of 4,4-Dimethyl-1,2-epoxy-1-(4-methoxyphenyl)-pentan-3-one as a colourless solid (d.r. trans/cis $>95 / 5$ ).

TLC: $R_{\mathrm{f}}=0.37\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=2 / 1+1 \% \mathrm{NEt}_{3}\right)[\mathrm{UV}, \mathrm{CAM}]$.
trans-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR ( $360 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=1.23\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}(\mathrm{CH})_{3}\right], 3.80\left(\mathrm{~d},{ }^{3} J=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-1$ ), 3.81 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$ ), 3.85 ( $\mathrm{d},{ }^{3} J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 6.88-6.92 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}$ ), 7.21-7.25 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{B}$ ).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=25.7\left[\mathrm{q}, \mathrm{C}(\mathrm{CH})_{3}\right], 43.5\left[\mathrm{~s}, C(\mathrm{CH})_{3}\right], 55.3(\mathrm{q}, \mathrm{OMe})$, 59.1 (d, C-2), 59.3 (d, C-1), 114.1 (d, C-C), 127.0 (d, C-B), 127.5 ( $\mathrm{s}, \mathrm{C}-\mathrm{A}$ ), 160.2 ( $\mathrm{s}, \mathrm{C}-\mathrm{D}$ ), 208.2 ( $\mathrm{s}, \mathrm{C}-3$ ).

MS (EI, 70 eV$): m / z(\%)=234(35)\left[\mathrm{M}^{+}\right], 177(8)\left[\left(\mathrm{M}_{-} \mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}\right], 161(11)\left[\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)^{+}\right], 149$ (19), 149 (19) $\left[\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}\right)^{+}\right], 121(100)\left[\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{2}\right)^{+}\right], 57(70)$.
tert-Butyl 3-(4-methoxyphenyl)oxirane-2-carboxylate (trans-5) ${ }^{[6]}$


3-Chloroperoxybenzoic acid ( $3.28 \mathrm{~g}, 13.3 \mathrm{mmol}, 70-75 \%$ in $\mathrm{H}_{2} \mathrm{O}, 2.60$ eq.) and $\mathrm{KF}(2.23 \mathrm{~g}$, 38.4 mmol, 7.50 eq.) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ under an atmosphere of argon and stirred at ambient temperature for 30 min . Then 4,4-Dimethyl-1,2-epoxy-1-(4-methoxyphenyl)-pentan-3-one $(1.20 \mathrm{~g}, 5.12 \mathrm{mmol}$, d.r. trans/cis $>95 / 5,1.00$ eq.), dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, was added and the reaction mixture was stirred at $30{ }^{\circ} \mathrm{C}$ over night. After cooling to ambient temperature 3-Chloroperoxybenzoic acid ( $500 \mathrm{mg}, 2.03 \mathrm{mmol}$, 0.40 eq.) was added and the reaction mixture was stirred for another 4 h at $30^{\circ} \mathrm{C}$. The mixture was cooled to ambient temperature and filtered over Celite ${ }^{\circledR}$. The filtrate was concentrated in vacuo and the crude product was purified by recrystallization from $\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=4 / 1$ to afford 1.07 g ( $4.28 \mathrm{mmol}, 83 \%$ ) of tert-butyl 3-(4-methoxyphenyl)oxirane-2-carboxylate (trans-5) as a colourless solid (d.r. trans/cis $>95 / 5$ ).

TLC: $R_{\mathrm{f}}=0.52\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=2 / 1+1 \% \mathrm{NEt}_{3}\right)[\mathrm{UV}, \mathrm{CAM}]$.
trans-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.51\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}(\mathrm{CH})_{3}\right], 3.40\left(\mathrm{~d},{ }^{3} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-2), 3.81 (s, $3 \mathrm{H}, \mathrm{OMe}$ ), 3.97 ( $\mathrm{d},{ }^{3} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 6.88-6.90 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}$ ), 7.20-7.22 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{B}$ ).
${ }^{13} \mathbf{C}$-NMR ( $90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=28.0\left[\mathrm{q}, \mathrm{C}(\mathrm{CH})_{3}\right], 55.3(\mathrm{q}, \mathrm{OMe}), 57.3(\mathrm{~d}, \mathrm{C}-2)$, 57.5 (d, C-3), 82.5 [s, C(CH) ${ }_{3}$ ], 114.0 (d, C-C), 127.2 (s, C-A), 127.2 (d, C-B), 160.1 (s, C-D), 167.4 ( $\mathrm{s}, \mathrm{C}-1$ ).

MS (EI, 70 eV$): m / z(\%)=250(6)\left[\mathrm{M}^{+}\right], 194$ (27), 150 (31), 137 (39), 121 (100) $\left[\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{3}\right)^{+}\right]$.

## 3. Diastereoselective Friedel-Crafts alkylations

General procedure 2: Friedel-Crafts alkylations with glycidic esters 2
A flame-dried Schlenk flask was purged with argon and charged with the glycidic ester 2 ( $250 \mu \mathrm{~mol}, 1.00$ eq.) and the aryl nucleophile ( $1.00 \mathrm{mmol}, 4.00$ eq.) in dry nitromethane ( 2 mL ). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Sc}(\mathrm{OTf})_{3}(6.15 \mathrm{mg}, 12.5 \mu \mathrm{~mol}, 0.05 \mathrm{eq}$.) was added. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 45 min . The reaction was quenched with sat. aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 7 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography to give the respective product.

## General procedure 3: Friedel-Crafts alkylations with glycidic ester 5

A flame-dried Schlenk flask was purged with argon and charged with the glycidic ester 5 ( $37.5 \mathrm{mg}, 150 \mu \mathrm{~mol}, 1.00$ eq.) and the aryl nucleophile ( $600 \mu \mathrm{~mol}, 4.00$ Äq.) in dry nitromethane $(2 \mathrm{~mL})$. The solution was cooled to $-25^{\circ} \mathrm{C}$ and $\mathrm{Sc}(\mathrm{OTf})_{3}(3.69 \mathrm{mg}, 7.50 \mu \mathrm{~mol}$, 0.05 eq.) was added. The resulting mixture was stirred at $-25^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched with sat. aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 7 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography to give the respective product.

## Methyl 3-(2,4-dimethoxyphenyl)-2-hydroxy-3-(4-methoxyphenyl)propanoate (6a)



$$
\begin{gathered}
\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 2}} \mathbf{O}_{\mathbf{6}} \\
\mathrm{M}=346.37 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Following general procedure 2, reaction of $\mathbf{2 a}(52.1 \mathrm{mg}, 250 \mu \mathrm{~mol}, 1.00$ eq.) with 1,3-dimethoxybenzene ( $132 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 4.00$ eq.) and $\mathrm{Sc}(\mathrm{OTf})_{3}(6.15 \mathrm{mg}, 12.5 \mu \mathrm{~mol}$, 0.05 eq.) yielded after flash chromatography ( $\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 4 / 1 \rightarrow 2 / 1$ ) $\mathbf{6 a}(66 \mathrm{mg}, 191 \mu \mathrm{~mol}, 76 \%$ ) as a colourless solid (d.r. anti/syn 17/83).

TLC: $R_{\mathrm{f}}=0.21\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O} 1 / 1\right)[\mathrm{UV}, \mathrm{CAM}]$.
m.p.: $130-132{ }^{\circ} \mathrm{C}$ (d.r. anti/syn $=17 / 83$ ).

IR (ATR): $\widetilde{v}=3556(\mathrm{br}, \mathrm{OH}), 2954\left(\mathrm{w}, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2837(\mathrm{w}, \mathrm{OMe}), 2353(\mathrm{~m}), 1732(\mathrm{vs}, \mathrm{C}=\mathrm{O})$, 1610 (s), 1584 (s), 1501 (vs), 1473 (m, CH3 ), 1246 (vs, COC), 1181 (m), 1112 (vs), 1087 (m), 1028 (s), $841 \mathrm{~cm}^{-1}\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right)$.
syn-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=2.76(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 3.76$ $+3.77+3.78\left(3 \times \mathrm{s}, 3 \times 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-\mathrm{OMe}+\mathrm{H}_{\mathrm{d}}-\mathrm{OMe}+\mathrm{H}_{\mathrm{D}}-\mathrm{OMe}\right), 4.82-4.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2+\mathrm{H}-3)$, 6.40-6.44 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{c}+\mathrm{H}-\mathrm{e}), 6.83$ (virt.d, $J \cong 8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}$ ), 7.11 (d, ${ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, H-f), 7.30 (virt.d, $J \cong 8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{B}$ ).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=45.7(\mathrm{~d}, \mathrm{C}-3), 52.1(\mathrm{q}, \mathrm{COOMe}), 55.2+55.2+55.5$ $\left(3 \times \mathrm{C}, 3 \times \mathrm{q}, \mathrm{C}_{\mathrm{b}}-\mathrm{OMe}+\mathrm{C}_{\mathrm{d}}-\mathrm{OMe}+\mathrm{C}_{\mathrm{D}}-\mathrm{OMe}\right), 73.2(\mathrm{~d}, \mathrm{C}-2), 98.5(\mathrm{~d}, \mathrm{C}-\mathrm{c}), 104.2(\mathrm{~d}, \mathrm{C}-\mathrm{e}), 113.6$ (d, C-C), 119.8 (s, C-a), 129.5 (d, C-B), 131.2 (d, C-f), 134.0 (s, C-A), $157.9+158.0+159.7$ $(3 \times \mathrm{C}, 3 \times \mathrm{s}, \mathrm{C}-\mathrm{b}+\mathrm{C}-\mathrm{d}+\mathrm{C}-\mathrm{D}), 174.4(\mathrm{~s}, \mathrm{C}-1)$.
anti-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=2.76(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 3.74$ $+3.77+3.78\left(3 \times \mathrm{s}, 3 \times 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-\mathrm{OMe}+\mathrm{H}_{\mathrm{d}}-\mathrm{OMe}+\mathrm{H}_{\mathrm{D}}-\mathrm{OMe}\right), 4.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, 4.82-4.86 (m, $1 \mathrm{H}, \mathrm{H}-2), 6.42-6.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}), 6.45-6.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{e}), 6.80$ (virt.d, $J \cong 8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}$ ), 7.20 (virt.d, $J \cong 8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{B}$ ), 7.44 (d, ${ }^{3} J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{f}$ ).
${ }^{13} \mathbf{C - N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=46.2(\mathrm{~d}, \mathrm{C}-3), 52.4(\mathrm{q}, \mathrm{COOMe}), 55.1+55.3+55.4$ $\left(3 \times \mathrm{C}, 3 \times \mathrm{q}, \mathrm{C}_{\mathrm{b}}-\mathrm{OMe}+\mathrm{C}_{\mathrm{d}}-\mathrm{OMe}+\mathrm{C}_{\mathrm{D}}-\mathrm{OMe}\right), 73.3(\mathrm{~d}, \mathrm{C}-2), 98.6(\mathrm{~d}, \mathrm{C}-\mathrm{c}), 103.9$ (d, C-e), 113.5 (d, C-C), 122.6 ( $\mathrm{s}, \mathrm{C}-\mathrm{a}$ ), 129.7 (d, C-f), 130.2 (d, C-B), 131.2 (s, C-A), $157.6+158.2+159.6$ $(3 \times \mathrm{C}, 3 \times \mathrm{s}, \mathrm{C}-\mathrm{b}+\mathrm{C}-\mathrm{d}+\mathrm{C}-\mathrm{D}), 174.4(\mathrm{~s}, \mathrm{C}-1)$.

MS (EI, 70 eV ): $m / z(\%)=346(1)\left[\mathrm{M}^{+}\right], 328(3)\left[\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}\right], 257(75)\left[\left(\mathrm{M}_{\mathrm{C}} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)^{+}\right]$, 196 (94), 165 (84), 135 (100).

HRMS (EI): $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}\left[\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}\right]$: calcd.: 328.1305; found: 328.1306.
$\begin{array}{llll}\text { CHN }\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}\right): & \text { calcd.: } & \mathrm{C}: 65.88 & \mathrm{H}: 6.40 \\ & \text { found: } & \mathrm{C}: 65.89 & \mathrm{H}: 6.61 .\end{array}$

## Methyl 2-hydroxy-3-(4-methoxyphenyl)-3-(5-methylthiophen-2-yl)propanoate (7a)



$$
\begin{gathered}
\mathbf{C}_{\mathbf{1 6}} \mathbf{H}_{\mathbf{1 8}} \mathbf{O}_{\mathbf{4}} \mathbf{S} \\
\mathrm{M}=306.38 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Following general procedure 2, reaction of $\mathbf{2 a}(52.1 \mathrm{mg}, 250 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.$) with$ 2-methylthiophene ( $96.8 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 4.00$ eq.) and $\mathrm{Sc}(\mathrm{OTf})_{3}(6.15 \mathrm{mg}, 12.5 \mu \mathrm{~mol}$, 0.05 eq.) yielded after flash chromatography ( $\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 4 / 1 \rightarrow 1 / 1$ ) 7a ( $64 \mathrm{mg}, 209 \mu \mathrm{~mol}, 84 \%$ ) as a yellow oil (d.r. anti/syn 25/75).

TLC: $R_{\mathrm{f}}=0.18\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 2 / 1\right)$ [UV, CAM].
IR (ATR): $\widetilde{v}=3484(\mathrm{br}, \mathrm{OH}), 2928\left(\mathrm{w}, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2837(\mathrm{w}, \mathrm{OMe}), 1735(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1610(\mathrm{~m})$, 1511 (vs), 1439 ( $\mathrm{m}, \mathrm{CH}_{3}$ ), 1246 (vs, COC), 1179 (s), 1113 (m), 1031 (s), 834 (m, Car H ), 802 (m), $731 \mathrm{~cm}^{-1}(\mathrm{~m})$.
syn-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR ( $360 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=2.41\left(\mathrm{~d},{ }^{4} J=1.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 3.03$ (d, ${ }^{3} J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), 3.73 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{COOMe}$ ), 3.79 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{D}}-\mathrm{OMe}$ ), $4.63\left(\mathrm{~d},{ }^{3} J=3.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-3), 4.72\left(\mathrm{dd},{ }^{3} J=3.6 \mathrm{~Hz},{ }^{3} J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.56-6.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}), 6.69$ (d, $\left.{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{b}\right), 6.84-6.88$ (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}$ ), 7.36-7.40 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{B}$ ).
${ }^{13} \mathbf{C}-$ NMR ( $90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=15.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right), 49.5(\mathrm{~d}, \mathrm{C}-3), 52.6(\mathrm{q}$, COOMe), 55.2 ( $\mathrm{q}, \mathrm{C}_{\mathrm{D}}-\mathrm{OMe}$ ), 74.2 (d, C-2), 113.8 (d, C-C), 124.5 (d, C-c), 126.1 (d, C-b), 129.3 (d, C-B), 133.0 (s, C-A), 139.0 (s, C-a), 139.4 (s, C-d), 158.5 (s, C-D), 173.7 (s, C-1).
anti-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR ( $360 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=2.43\left(\mathrm{~d},{ }^{4} J=1.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 2.86$ (d, ${ }^{3} J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), 3.72 (s, $3 \mathrm{H}, \mathrm{COOMe}$ ), 3.78 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{D}}-\mathrm{OMe}$ ), $4.60\left(\mathrm{~d},{ }^{3} J=3.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-3), 4.82\left(\mathrm{dd},{ }^{3} J=3.4 \mathrm{~Hz},{ }^{3} J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.58-6.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}), 6.81-6.88$ (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{b}+\mathrm{H}-\mathrm{C}$ ), 7.22-7.25 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{B}$ ).
${ }^{13} \mathbf{C}-$ NMR ( $90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=15.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right), 49.4(\mathrm{~d}, \mathrm{C}-3), 52.5(\mathrm{q}, \mathrm{COOMe})$, 55.1 ( $\mathrm{q}, \mathrm{C}_{\mathrm{D}}-\mathrm{OMe}$ ), 74.2 (d, C-2), 113.7 (d, C-C), 124.5 (d, C-c), 125.4 (d, C-b), 130.0 (d, C-B), 130.4 (s, C-A), 138.8 (s, C-d), 142.0 (s, C-a), 158.9 (s, C-D), 173.4 (s, C-1).

MS (EI, 70 eV$): m / z(\%)=306(1)\left[\mathrm{M}^{+}\right], 217(100)\left[\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)^{+}\right], 135(34), 121(26)$.

HRMS (EI): $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}^{+}\right]$: calcd.: 306.0920; found: 306.0917.

## Methyl 2-hydroxy-3-(5-methylthiophen-2-yl)-3-phenylpropanoate (7b)



$$
\begin{gathered}
\mathbf{C}_{\mathbf{1 5}} \mathbf{H}_{\mathbf{1 6}} \mathbf{O}_{\mathbf{3}} \mathbf{S} \\
\mathrm{M}=276.35 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Following general procedure 2, reaction of $\mathbf{2 b}(44.5 \mathrm{mg}, 250 \mu \mathrm{~mol}, 1.00$ eq.) with 2-methylthiophene ( $96.8 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 4.00$ eq.) and $\mathrm{Sc}(\mathrm{OTf})_{3}(6.15 \mathrm{mg}, 12.5 \mu \mathrm{~mol}$, 0.05 eq.) yielded after flash chromatography ( $\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 6 / 1 \rightarrow 2 / 1$ ) $7 \mathrm{bb}(36 \mathrm{mg}, 130 \mu \mathrm{~mol}, 52 \%)$ as a yellow oil (d.r. anti/syn 44/56).

TLC: $R_{\mathrm{f}}=0.49\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 1 / 1\right)[\mathrm{UV}, \mathrm{CAM}]$.
IR (ATR): $\widetilde{v}=3493(\mathrm{br}, \mathrm{OH}), 3025\left(\mathrm{w}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 2952\left(\mathrm{w}, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2919\left(\mathrm{w}, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2861(\mathrm{w})$, 1733 (vs, C=O), 1557 (w), 1495 (m, C=C $\mathrm{C}_{\mathrm{ar}}$ ), 1437 (s, CH3), 1217 (vs, COC), 1093 (vs), 796 (m), $700 \mathrm{~cm}^{-1}$ (s).
syn-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR ( $360 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=2.37\left(\mathrm{~d},{ }^{4} J=0.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 3.02(\mathrm{bs}, 1 \mathrm{H}$, OH ), 3.69 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{COOMe}$ ), $4.64\left(\mathrm{~d},{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.72\left(\mathrm{~d},{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right.$ ), 6.53-6.56 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{c}), 6.67\left(\mathrm{~d},{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{b}\right), 7.19-7.44(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{B}+\mathrm{H}-\mathrm{C}+$ H-D).
${ }^{13}$ C-NMR ( $90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=15.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right), 50.2(\mathrm{~d}, \mathrm{C}-3), 52.7(\mathrm{q}, \mathrm{COOMe})$, 74.0 (d, C-2), 124.6 (d, C-c), 126.3 (d, C-b), 127.0 (d, C-D), $128.3+128.4$ ( $2 \times$ C, $2 \times \mathrm{d}, \mathrm{C}-\mathrm{B}+$ C-C), 138.4 (s, C-a), 139.5 ( $\mathrm{s}, \mathrm{C}-\mathrm{d}$ ), 140.8 ( $\mathrm{s}, \mathrm{C}-\mathrm{A}$ ), 173.6 ( $\mathrm{s}, \mathrm{C}-1$ ).
anti-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.39\left(\mathrm{bs}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 2.83(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.67$ ( s, $3 \mathrm{H}, \mathrm{COOMe}$ ), 4.59 (d, ${ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), $4.80\left(\mathrm{~d},{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.53-6.56$ (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{c}), 6.79$ (d, $\left.{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{b}\right), 7.19-7.44$ (m, $\left.5 \mathrm{H}, \mathrm{H}-\mathrm{B}+\mathrm{H}-\mathrm{C}+\mathrm{H}-\mathrm{D}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=15.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right), 50.3(\mathrm{~d}, \mathrm{C}-3), 52.5(\mathrm{q}, \mathrm{COOMe})$, 74.2 (d, C-2), 124.5 (d, C-c), 125.6 (d, C-b), 127.5 (d, C-D), $128.2+128.9$ ( $2 \times \mathrm{C}, 2 \times \mathrm{d}, \mathrm{C}-\mathrm{B}+$ C-C), 138.3 ( $\mathrm{s}, \mathrm{C}-\mathrm{A}$ ), 138.9 ( $\mathrm{s}, \mathrm{C}-\mathrm{d}$ ), 141.5 ( $\mathrm{s}, \mathrm{C}-\mathrm{a}$ ), 173.3 ( $\mathrm{s}, \mathrm{C}-1$ ).

MS (ESI): $m / z(\%)=299\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 277\left[(\mathrm{M}+\mathrm{H})^{+}\right]$.
HRMS (ESI): $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{SNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: calcd.: 299.0712; found: 299.0712.

## Methyl 2-hydroxy-3-(5-methylthiophen-2-yl)-3-(p-tolyl)propanoate (7c)




Following general procedure 2, reaction of $\mathbf{2 c}(48.1 \mathrm{mg}, 250 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.$) with$ 2-methylthiophene ( $96.8 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 4.00$ eq.) and $\mathrm{Sc}(\mathrm{OTf})_{3}(6.15 \mathrm{mg}, 12.5 \mu \mathrm{~mol}$, 0.05 eq.) yielded after flash chromatography ( $\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 1 / 1$ ) $7 \mathrm{c}(58 \mathrm{mg}, 200 \mu \mathrm{~mol}, 80 \%)$ as a yellow oil (d.r. anti/syn 35/65).

TLC: $R_{\mathrm{f}}=0.49\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 1 / 1\right)$ [UV, CAM].
IR (ATR): $\widetilde{v}=3493(\mathrm{br}, \mathrm{OH}), 3005\left(\mathrm{w}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 2952\left(\mathrm{~m}, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2912\left(\mathrm{~m}, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2861(\mathrm{w})$, 1733 (vs, C=O), 1639 (m), 1513 (s), 1437 (s, CH3), 1215 (vs, COC), 1092 (vs), 1021 (m), 798 (s), $723 \mathrm{~cm}^{-1}$ (s).
syn-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{D}}-\mathrm{Me}\right), 2.41\left(\mathrm{~d},{ }^{4} J=1.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 3.02\left(\mathrm{~d},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right.$ ), $3.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 4.65\left(\mathrm{~d},{ }^{3} J=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-3), $4.74\left(\mathrm{dd},{ }^{3} J=6.3 \mathrm{~Hz},{ }^{3} J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.57\left(\mathrm{dd},{ }^{3} J=3.4 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-c), 6.70 (d, ${ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{b}$ ), 7.13 (virt. d, $J \cong 7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}$ ), 7.35 (virt. d, $J \cong 8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{B})$.
${ }^{13} \mathbf{C}-$ NMR ( $90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=15.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right), 21.0\left(\mathrm{q}, \mathrm{C}_{\mathrm{D}}-\mathrm{Me}\right), 49.9(\mathrm{~d}, \mathrm{C}-3)$, 52.6 ( $\mathrm{q}, \mathrm{COOMe}$ ), 74.2 (d, C-2), 124.6 (d, C-c), 126.2 (d, C-b), 128.1 (d, C-B), 129.1 (d, C-C), 136.7 (s, C-D), 137.9 (s, C-A), 138.7 ( s, C-a), 139.4 (s, C-d), 173.7 (s, C-1).
anti-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{D}}-\mathrm{Me}\right), 2.43\left(\mathrm{bs}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 2.83$ (d, ${ }^{3} J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), $3.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 4.60\left(\mathrm{~d},{ }^{3} J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.83$ (dd, $\left.{ }^{3} J=6.7 \mathrm{~Hz},{ }^{3} J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.59\left(\mathrm{dd},{ }^{3} J=3.4 \mathrm{~Hz},{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}\right), 6.83$
(d, ${ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{b}$ ), 7.10 (virt. d, $J \cong 8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}$ ), 7.19 (virt. d, $J \cong 8.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-\mathrm{B})$.
${ }^{13} \mathbf{C}-$ NMR $\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=15.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right)$, $21.1\left(\mathrm{q}, \mathrm{C}_{\mathrm{D}}-\mathrm{Me}\right), 50.0(\mathrm{~d}, \mathrm{C}-3)$, 52.5 ( $\mathrm{q}, \mathrm{COOMe}$ ), 74.2 (d, C-2), 124.5 (d, C-c), 125.5 (d, C-b), 128.8 (d, C-B), 129.1 (d, C-C), 135.3 ( $\mathrm{s}, \mathrm{C}-\mathrm{A}$ ), 137.1 (s, C-D), 138.9 (s, C-d), 141.8 (s, C-a), 173.4 (s, C-1).

MS (ESI): $m / z(\%)=313\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 291\left[(\mathrm{M}+\mathrm{H})^{+}\right]$.
HRMS (ESI): $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: calcd.: 291.1049; found: 291.1050.

## Methyl 3-(2,4-dimethylphenyl)-2-hydroxy-3-phenylpropanoate (8b)



$$
\begin{gathered}
\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{2 0}} \mathbf{O}_{\mathbf{3}} \\
\mathrm{M}=284.35 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Following general procedure 2, reaction of $\mathbf{2 b}(44.5 \mathrm{mg}, 250 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) with $m$-xylene ( $123 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 4.00$ eq.) and $\operatorname{Sc}(\mathrm{OTf})_{3}(6.15 \mathrm{mg}, 12.5 \mu \mathrm{~mol}, 0.05 \mathrm{eq}$.) yielded after flash chromatography ( $\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 4 / 1 \rightarrow 1 / 1$ ) $\mathbf{8 b}(26 \mathrm{mg}, 91.4 \mu \mathrm{~mol}, 37 \%)$ as a colourless oil (d.r. anti/syn 29/71).

TLC: $R_{\mathrm{f}}=0.41+0.50\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O} 1 / 1\right)[\mathrm{UV}, \mathrm{CAM}]$.
IR (ATR): $\widetilde{v}=3469(b r, O H), 3025\left(w, C_{a r} H\right), 2948\left(w, C_{a 1} H\right), 2912\left(w, C_{a 1} H\right), 1733$ (vs, $\mathrm{C}=\mathrm{O}$ ), 1557 (m), 1494 ( $\mathrm{s}, \mathrm{C}=\mathrm{C}_{\text {ar }}$ ), 1451 ( s$), 1438\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1228$ (vs, COC), 1122 (m), 1091 (vs), 802 (m, $\mathrm{C}_{\mathrm{ar}} \mathrm{H}$ ), $699 \mathrm{~cm}^{-1}$ (vs).
syn-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-\mathrm{Me}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 2.74$ (d, ${ }^{3} J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), $3.58(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 4.59\left(\mathrm{~d},{ }^{3} J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.88-4.91$ (m, 1 H, H-2), 6.96 (bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{c}$ ), $7.02\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{e}\right), 7.18-7.27$ (m, $5 \mathrm{H}, \mathrm{H}-\mathrm{B}$ $+\mathrm{H}-\mathrm{C}+\mathrm{H}-\mathrm{D}), 7.47\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{f}\right)$.
${ }^{13} \mathbf{C}$-NMR ( $90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=19.7\left(\mathrm{q}, \mathrm{C}_{\mathrm{b}}-\mathrm{Me}\right), 20.9\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right), 50.1(\mathrm{~d}, \mathrm{C}-3)$, $52.2(\mathrm{q}, \mathrm{COOMe}), 74.0(\mathrm{~d}, \mathrm{C}-2), 126.6+126.7(2 \times \mathrm{C}, 2 \times \mathrm{d}, \mathrm{C}-\mathrm{D}+\mathrm{C}-\mathrm{e}), 128.0(\mathrm{~d}, \mathrm{C}-\mathrm{f}), 128.4$ $+128.6(2 \times \mathrm{C}, 2 \times \mathrm{d}, \mathrm{C}-\mathrm{B}+\mathrm{C}-\mathrm{C}), 131.6(\mathrm{~d}, \mathrm{C}-\mathrm{c}), 134.5(\mathrm{~s}, \mathrm{C}-\mathrm{a}), 136.4(\mathrm{~s}, \mathrm{C}-\mathrm{d}), 136.5(\mathrm{~s}, \mathrm{C}-\mathrm{b})$, 140.5 (s, C-A), 174.2 (s, C-1).
anti-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-\mathrm{Me}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 2.66$ (d, ${ }^{3} J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), 3.77 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{COOMe}$ ), 4.59-4.60 (m, $1 \mathrm{H}, \mathrm{H}-3$ ), 4.88-4.91 (m, 1 H , H-2), 6.94 (bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{c}$ ), 7.07 (d, ${ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{e}$ ), $7.12-7.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.23-7.27$ ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}$ ), $7.72\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{f}\right)$.
${ }^{13}$ C-NMR ( $90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=19.9\left(\mathrm{q}, \mathrm{C}_{\mathrm{b}}-\mathrm{Me}\right), 20.9\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right), 50.4(\mathrm{~d}, \mathrm{C}-3)$, $52.5(\mathrm{q}, \mathrm{COOMe}), 73.6(\mathrm{~d}, \mathrm{C}-2), 126.7+126.9(2 \times \mathrm{C}, 2 \times \mathrm{d}, \mathrm{C}-\mathrm{D}+\mathrm{C}-\mathrm{e}), 127.8(\mathrm{~d}, \mathrm{C}-\mathrm{f}), 128.3$ $+129.4(2 \times \mathrm{C}, 2 \times \mathrm{d}, \mathrm{C}-\mathrm{B}+\mathrm{C}-\mathrm{C}), 131.3(\mathrm{~d}, \mathrm{C}-\mathrm{c}), 136.0(\mathrm{~s}, \mathrm{C}-\mathrm{b}), 136.3(\mathrm{~s}, \mathrm{C}-\mathrm{d}), 136.9(\mathrm{~s}, \mathrm{C}-\mathrm{a})$, 138.1 (s, C-A), 174.2 (s, C-1).

MS (ESI): $m / z(\%)=307\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 285\left[(\mathrm{M}+\mathrm{H})^{+}\right]$.
HRMS (ESI): $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: calcd.: 285.1485; found: 285.1485.

## Methyl 3-(2,4-dimethylphenyl)-2-hydroxy-3-(p-tolyl)propanoate (8c)



$$
\begin{gathered}
\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 2}} \mathbf{O}_{\mathbf{3}} \\
\mathrm{M}=298.38 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Following general procedure 2, reaction of $\mathbf{2 c}(48.1 \mathrm{mg}, 250 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) with $m$-xylene ( $123 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 4.00 \mathrm{eq}$.$) and \mathrm{Sc}(\mathrm{OTf})_{3}(6.15 \mathrm{mg}, 12.5 \mu \mathrm{~mol}, 0.05 \mathrm{eq}$.) yielded after flash chromatography ( $\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 4 / 1 \rightarrow 1 / 1$ ) 8c $(24 \mathrm{mg}, 80.4 \mu \mathrm{~mol}, 32 \%)$ as a colourless oil (d.r. anti/syn 9/91).

TLC: $R_{\mathrm{f}}=0.61$ (anti) $/ 0.56($ syn $)\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 1 / 1\right)$ [UV, CAM].
IR (ATR): $\widetilde{v}=3484(\mathrm{br}, \mathrm{OH}), 3006\left(\mathrm{w}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 2952\left(\mathrm{~m}, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2919\left(\mathrm{~m}, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2861(\mathrm{w})$, 1732 (vs, C=O), 1512 (s), 1503 (s), 1437 (s, CH3), 1253 (vs, COC), 1126 (s), 1090 (vs), 805 (s, $\left.\mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 737 \mathrm{~cm}^{-1}(\mathrm{~m})$.
syn-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-\mathrm{Me}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 2.30$ ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{D}}-\mathrm{Me}$ ), 2.71 ( $\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}$ ), $3.59(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 4.56\left(\mathrm{~d},{ }^{3} J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, $4.88\left(\mathrm{~d},{ }^{3} J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.94-6.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}), 7.00-7.03$ (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{e}\right), 7.07-7.09$ (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}$ ), 7.13-7.15 (m, 2 H, H-B), 7.47 (d, $\left.{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{f}\right)$.
${ }^{13}$ C-NMR ( $90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=19.7\left(\mathrm{q}, \mathrm{C}_{\mathrm{b}}-\mathrm{Me}\right), 20.9+21.0\left(2 \times \mathrm{C}, 2 \times \mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right.$ $+\mathrm{C}_{\mathrm{D}}-\mathrm{Me}$ ), 49.6 (d, C-3), 52.3 ( q, COOMe), 74.1 (d, C-2), 126.7 (d, C-e), 127.9 (d, C-f), 128.4 (d, C-B), 129.1 (d, C-C), 131.5 (d, C-c), 134.6 (s, C-a), 136.2 (s, C-D), 136.3 (s, C-d), 136.5 (s, C-b), 137.3 (s, C-A), 174.2 ( $\mathrm{s}, \mathrm{C}-1$ ).

MS (ESI): $m / z(\%)=321\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 299\left[(\mathrm{M}+\mathrm{H})^{+}\right]$.
HRMS (ESI): $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: calcd.: 299.1642; found: 299.1642.

## tert-Butyl 3-(2,4-dimethoxyphenyl)-2-hydroxy-3-(4-methoxyphenyl)propanoate (11a)



$$
\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}
$$

$\mathrm{M}=388.45 \mathrm{~g} / \mathrm{mol}$

Following general procedure 3, reaction of $5(37.5 \mathrm{mg}, 150 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) with 1,3-dimethoxybenzene ( $79.0 \mu \mathrm{~L}, 600 \mu \mathrm{~mol}, 4.00$ eq.) and $\mathrm{Sc}(\mathrm{OTf})_{3}(3.69 \mathrm{mg}, 7.50 \mu \mathrm{~mol}$, 0.05 eq.) yielded after flash chromatography ( $\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 4 / 1 \rightarrow 1 / 1$ ) 11a ( $45 \mathrm{mg}, 116 \mu \mathrm{~mol}$, $77 \%$ ) as a colourless solid (d.r. anti/syn 7/93).

TLC: $R_{\mathrm{f}}=0.21\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O} 2 / 1\right)$ [UV, CAM].
m.p.: $115{ }^{\circ} \mathrm{C}$ (d.r. anti/syn $=7 / 93$ ).

IR (ATR): $\widetilde{v}=3490(\mathrm{br}, \mathrm{OH}), 2984\left(\mathrm{w}, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2939(\mathrm{w}), 2911(\mathrm{w}), 2837(\mathrm{~m}, \mathrm{OMe}), 1717$ (vs, $\mathrm{C}=\mathrm{O}$ ), 1608 ( s ), 1507 (vs), 1469 ( $\mathrm{m}, \mathrm{CH}_{3}$ ), 1260 (s, COC), 1207 (s), 1157 (vs), 1124 (s), 1034 ( s ), $834\left(\mathrm{~m}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 737 \mathrm{~cm}^{-1}(\mathrm{~m})$.
syn-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=1.25\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.01(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.76$ $+3.76\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-\mathrm{OMe}+\mathrm{H}_{\mathrm{D}}-\mathrm{OMe}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{OMe}\right), 4.70\left(\mathrm{~d},{ }^{3} J=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-2), 4.77\left(\mathrm{~d},{ }^{3} J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 6.43\left(\mathrm{~d},{ }^{4} J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}\right), 6.46\left(\mathrm{dd},{ }^{3} J=8.5 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{e}\right), 6.80-6.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}), 7.25-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{B}), 7.42$ (d, $\left.{ }^{3} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{f}\right)$.
${ }^{13} \mathbf{C - N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=27.7\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 45.4(\mathrm{~d}, \mathrm{C}-3), 55.2+55.3+55.4$ $\left(3 \times \mathrm{C}, 3 \times \mathrm{q}, \mathrm{C}_{\mathrm{b}}-\mathrm{OMe}+\mathrm{C}_{\mathrm{d}}-\mathrm{OMe}+\mathrm{C}_{\mathrm{D}}-\mathrm{OMe}\right), 74.0(\mathrm{~d}, \mathrm{C}-2), 82.0\left[\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 98.6(\mathrm{~d}, \mathrm{C}-\mathrm{c})$,
104.1 (d, C-e), 113.6 (d, C-C), 121.2 (s, C-a), 129.7 (d, C-B), 130.2 (d, C-f), 133.6 (s, C-A), $158.0+158.0(2 \times \mathrm{C}, 2 \times \mathrm{s}, \mathrm{C}-\mathrm{b}+\mathrm{C}-\mathrm{D}), 159.5(\mathrm{~s}, \mathrm{C}-\mathrm{d}), 173.2(\mathrm{~s}, \mathrm{C}-1)$.

MS (ESI): $m / z(\%)=799(100)\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 735(38), 411(34)\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 333(20), 225$ (9).
HRMS (ESI): $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: calcd.: 411.1778; found: 411.1776.

## tert-Butyl 2-hydroxy-3-(4-methoxyphenyl)-3-(2,3,4-trimethoxyphenyl)propanoate (11b)



$$
\begin{gathered}
\mathbf{C}_{23} \mathbf{H}_{\mathbf{3 0}} \mathbf{O}_{7} \\
\mathrm{M}=418.48 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Following general procedure 3, reaction of $5(37.5 \mathrm{mg}, 150 \mu \mathrm{~mol}, 1.00$ eq.) with $1,2,3$-trimethoxybenzene ( $101 \mathrm{mg}, 600 \mu \mathrm{~mol}, 4.00 \mathrm{Eq}$. ) and $\mathrm{Sc}(\mathrm{OTf})_{3}(3.69 \mathrm{mg}, 7.50 \mu \mathrm{~mol}$, 0.05 eq.) yielded after flash chromatography ( $\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 4 / 1 \rightarrow 1 / 1$ ) 11b ( $35 \mathrm{mg}, 83.6 \mu \mathrm{~mol}$, $56 \%$ ) as a colourless oil (d.r. anti/syn $<5 / 95$ ).

TLC: $R_{\mathrm{f}}=0.34\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O} 1 / 1\right)[\mathrm{UV}, \mathrm{CAM}]$.
IR (ATR): $\widetilde{v}=3479(b r, O H), 2977\left(w, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2933(\mathrm{w}), 2837(\mathrm{~m}, \mathrm{OMe}), 1722(\mathrm{vs}, \mathrm{C}=\mathrm{O})$, 1605 ( s ), 1510 (m), 1493 (m, C=C $\mathrm{Car}_{\mathrm{ar}}$ ), 1462 ( $\mathrm{s}, \mathrm{CH}_{3}$ ), 1244 (vs, COC), 1156 ( s ), 1092 (vs), 838 ( $\mathrm{s}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}$ ), $803 \mathrm{~cm}^{-1}$ (s).
syn-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.27\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.07\left(\mathrm{~d},{ }^{3} J=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, OH ), $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-\mathrm{OMe}\right)$, $3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{D}}-\mathrm{OMe}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{c}}-\mathrm{OMe}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H}_{\mathrm{d}}-\mathrm{OMe}$ ), 4.67 (virt. $\mathrm{t},{ }^{3} \mathrm{~J} \cong 5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), $4.71\left(\mathrm{~d},{ }^{3} J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right.$ ), 6.64 (d, $\left.{ }^{3} J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{e}\right), 6.82-6.84$ (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}$ ), 7.24 (d, $\left.{ }^{3} J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{f}\right), 7.26-7.27$ (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{B}$ ).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=27.7\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 46.3(\mathrm{~d}, \mathrm{C}-3), 55.2\left(\mathrm{q}, \mathrm{C} \mathrm{C}_{\mathrm{D}}-\mathrm{OMe}\right)$, $55.9\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{OMe}\right), 60.6\left(\mathrm{q}, \mathrm{C}_{\mathrm{c}}-\mathrm{OMe}\right), 60.8\left(\mathrm{q}, \mathrm{C}_{\mathrm{b}}-\mathrm{OMe}\right), 74.1(\mathrm{~d}, \mathrm{C}-2), 82.3\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 107.1 (d, C-e), 113.6 (d, C-C), 123.8 (d, C-f), 126.5 ( $\mathrm{s}, \mathrm{C}-\mathrm{a}$ ), 129.7 (d, C-B), 133.6 (s, C-A), 142.2 (s, C-c), 151.9 (s, C-b), 152.5 (s, C-d), 158.2 (s, C-D), 173.1 (s, C-1).

MS (ESI): $m / z(\%)=859(100)\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 441(33)\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 363$ (6).

HRMS (ESI): $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: calcd.: 441.1884; found: 441.1885.
tert-Butyl 3-(5-bromo-2,4-dimethoxyphenyl)-2-hydroxy-3-(4-methoxyphenyl)propanoate (11c)


$$
\begin{gathered}
\mathbf{C}_{\mathbf{2 2}} \mathbf{H}_{\mathbf{2 7}} \mathbf{B r O}_{\mathbf{6}} \\
\mathrm{M}=467.35 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Following general procedure 3, reaction of $5(37.5 \mathrm{mg}, 150 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.$) with 1-bromo-$ 2,4-dimethoxybenzene ( $86.2 \mu \mathrm{~L}, 600 \mu \mathrm{~mol}, 4.00$ eq.) and $\mathrm{Sc}(\mathrm{OTf})_{3}(3.69 \mathrm{mg}, 7.50 \mu \mathrm{~mol}$, 0.05 eq.) yielded after flash chromatography ( $\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 2 / 1 \rightarrow 1 / 1$ ) 11c ( $46 \mathrm{mg}, 98.4 \mu \mathrm{~mol}$, $66 \%$ ) as a colourless oil (d.r. anti/syn $=8 / 92$ ).

TLC: $R_{\mathrm{f}}=0.19\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O} 1 / 1\right)[\mathrm{UV}, \mathrm{CAM}]$.
IR (ATR): $\widetilde{v}=3484(b r, O H), 2977\left(w, C_{a 1} H\right), 2933(w), 2837(w, O M e), 1720(v s, C=O)$, 1600 (s), 1510 (s), 1461 ( m, CH $\mathrm{CH}_{3}$, 1368 (m), 1245 (s, COC), 1204 (s), 1150 (vs), 1027 (vs), $961(\mathrm{~m}), 910(\mathrm{~m}), 842\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 731 \mathrm{~cm}^{-1}(\mathrm{~s})$.
syn-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.27\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.98\left(\mathrm{~d},{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, OH ), 3.77 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{D}}-\mathrm{OMe}$ ), $3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-\mathrm{OMe}\right.$ ), 3.87 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{OMe}$ ), 4.67 (virt. t, $\left.{ }^{3} J \cong 5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.72\left(\mathrm{~d},{ }^{3} J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 6.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}), 6.81-6.83(\mathrm{~m}, 2 \mathrm{H}$, H-C), 7.24-7.25 (m, 2 H, H-B), 7.65 (s, $1 \mathrm{H}, \mathrm{H}-\mathrm{f})$.
${ }^{13} \mathbf{C}-$ NMR $\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=27.7\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 45.6(\mathrm{~d}, \mathrm{C}-3), 55.2(\mathrm{q}, \mathrm{C}-\mathrm{OMe})$, 55.9 ( $\mathrm{q}, \mathrm{C}_{\mathrm{b}}-\mathrm{OMe}$ ), 56.3 ( $\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{OMe}$ ), 73.7 (d, C-2), 82.3 [s, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 96.6(\mathrm{~d}, \mathrm{C}-\mathrm{c}), 102.1$ ( $\mathrm{s}, \mathrm{C}-\mathrm{e}$ ), 113.7 (d, C-C), 122.7 ( $\mathrm{s}, \mathrm{C}-\mathrm{a}$ ), 129.7 (d, C-B), 133.0 ( $\mathrm{s}, \mathrm{C}-\mathrm{A}$ ), 133.6 (d, C-f), 155.3 (s, C-d), 157.4 (s, C-b), 158.3 (s, C-D), 173.0 (s, C-1).

MS (ESI): $m / z(\%)=957(100)\left\{\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}\right\}, 491(26)\left\{\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}\right\}$, $489(24)\left\{\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}\right\}$.

HRMS (ESI): $\mathrm{C}_{22} \mathrm{H}_{27}{ }^{81} \mathrm{BrO}_{6} \mathrm{Na}\left\{\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}\right\}$: calcd.: 491.0863; found: 491.0865.
tert-Butyl 2-hydroxy-3-(4-methoxyphenyl)-3-(5-methylthiophen-2-yl)propanoate (11d)


$$
\begin{gathered}
\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 4}} \mathbf{O}_{\mathbf{4}} \mathbf{S} \\
\mathrm{M}=348.46 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Following general procedure 3, reaction of $5(37.5 \mathrm{mg}, 150 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) with 2-methylthiophene ( $58.3 \mu \mathrm{~L}, 600 \mu \mathrm{~mol}, 4.00 \mathrm{eq}$. ) and $\operatorname{Sc}(\mathrm{OTf})_{3}(3.69 \mathrm{mg}, 7.50 \mu \mathrm{~mol}, 0.05 \mathrm{eq}$. yielded after flash chromatography $\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 6 / 1 \rightarrow 1 / 1\right) 11 \mathrm{~d}(37 \mathrm{mg}, 106 \mu \mathrm{~mol}, 71 \%)$ as a pale yellow oil (d.r. anti/syn $=16 / 84$ ).

TLC: $R_{\mathrm{f}}=0.57\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O} 1 / 1\right)[\mathrm{UV}, \mathrm{CAM}]$.
IR (ATR): $\widetilde{v}=3483(b r, O H), 2977\left(w, C_{a 1} H\right), 2924(w), 2837(w, O M e), 1716(v s, C=O)$, 1610 ( s ), 1511 (vs), 1456 ( $\mathrm{m}, \mathrm{CH}_{3}$ ), 1369 (m), 1247 (vs, COC), 1151 (vs), 1032 ( s$), 835$ (s, $\left.\mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 803$ (s), $669 \mathrm{~cm}^{-1}(\mathrm{~m})$.
syn-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.37\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 3.04$ (bs, $1 \mathrm{H}, \mathrm{OH}$ ), 3.78 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$ ), $4.55\left(\mathrm{~d},{ }^{3} J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.57\left(\mathrm{~d},{ }^{3} J=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-2), 6.55-6.56 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{c}), 6.73$ (d, $\left.{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{b}\right), 6.84-6.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C})$, 7.35-7.37 (m, 2 H, H-B).
${ }^{13} \mathbf{C}$-NMR ( $90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=15.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right), 27.8\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 49.6(\mathrm{~d}, \mathrm{C}-3)$, 55.2 ( $\mathrm{q}, \mathrm{OMe}$ ), 74.2 (d, C-2), 82.9 [s, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 113.7$ (d, C-C), 124.3 (d, C-c), 126.1 (d, C-b), 129.4 (d, C-B), 133.4 (s, C-A), 139.1 (s, C-d), 139.4 (s, C-a), 158.5 (s, C-D), 172.4 (s, C-1). anti-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.38\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right.$-Me), 3.04 (bs, $1 \mathrm{H}, \mathrm{OH}$ ), 3.77 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$ ), $4.52\left(\mathrm{~d},{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.68\left(\mathrm{~d},{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-2), 6.56-6.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}), 6.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{b}\right), 6.81-6.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C})$, 7.29-7.30 (m, 2 H, H-B).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=15.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right), 27.9\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 49.4(\mathrm{~d}, \mathrm{C}-3)$, 55.2 (q, OMe), 74.1 (d, C-2), $83.0\left[\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 113.6$ (d, C-C), 124.4 (d, C-c), 125.2 (d, C-b), 130.3 (d, C-B), 130.9 (s, C-A), 138.7 (s, C-d), 142.8 (s, C-a), 158.9 (s, C-D), 172.1 (s, C-1).

MS (ESI): $m / z(\%)=719(100)\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 371(52)\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 315(13)$.

HRMS (ESI): $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{SNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: calcd.: 371.1288; found: 371.1288.

## tert-Butyl 2-hydroxy-3-(4-methoxyphenyl)-3-(5-methylfuran-2-yl)propanoate (11e)



$$
\begin{gathered}
\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 4}} \mathbf{O}_{\mathbf{5}} \\
\mathrm{M}=332.39 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Following general procedure 3, reaction of $5(37.5 \mathrm{mg}, 150 \mu \mathrm{~mol}, 1.00$ eq.) with 2-methylfuran ( $54.1 \mu \mathrm{~L}, 600 \mu \mathrm{~mol}, 4.00$ eq.) and $\mathrm{Sc}(\mathrm{OTf})_{3}(3.69 \mathrm{mg}, 7.50 \mu \mathrm{~mol}, 0.05 \mathrm{eq}$. yielded after flash chromatography ( $\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 4 / 1 \rightarrow 2 / 1$ ) 11e ( $29 \mathrm{mg}, 87.2 \mu \mathrm{~mol}, 58 \%$ ) as a colourless oil (d.r. anti/syn $=18 / 82$ ).

TLC: $R_{\mathrm{f}}=0.30\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O} 2 / 1\right)[\mathrm{UV}, \mathrm{CAM}]$.
IR (ATR): $\widetilde{v}=3484(\mathrm{br}, \mathrm{OH}), 2977\left(\mathrm{w}, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2933$ (w), 2837 (w, OMe), 1724 (vs, C=O), 1610 (m), 1511 (vs), 1457 (m, CH3 ), 1368 ( s$), 1246$ (vs, COC), 1154 (vs), 1024 (s), 962 (m), $837\left(\mathrm{~s}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 782 \mathrm{~cm}^{-1}$ (s).
syn-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.41\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 3.02$ (d, ${ }^{3} J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), $3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.39\left(\mathrm{~d},{ }^{3} J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.47$ (virt. t, $\left.{ }^{3} J \cong 4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.86\left(\mathrm{~d},{ }^{3} J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}\right), 6.00\left(\mathrm{~d},{ }^{3} J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{b}\right)$, 6.86-6.87 (m, 2 H, H-C), 7.33-7.35 (m, 2 H, H-B).
${ }^{13} \mathbf{C - N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=13.5\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right), 27.8\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 48.3(\mathrm{~d}, \mathrm{C}-3)$, 55.2 (q, OMe), 73.7 (d, C-2), $82.6\left[\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 106.1$ (d, C-c), 108.8 (d, C-b), 113.7 (d, C-C), 129.8 (d, C-B), 131.2 (s, C-A), 151.0 (s, C-d), 151.6 (s, C-a), 158.7 (s, C-D), 172.5 ( $\mathrm{s}, \mathrm{C}-1$ ).
anti-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.39\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 2.89$ (d, ${ }^{3} J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), $3.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.34\left(\mathrm{~d},{ }^{3} J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.73$ (virt. t, $\left.{ }^{3} J \cong 4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.88\left(\mathrm{~d},{ }^{3} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}\right), 6.05\left(\mathrm{~d},{ }^{3} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{b}\right)$, 6.83-6.84 (m, 2 H, H-C), 7.27-7.29 (m, 2 H, H-B).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=13.6\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right), 27.9\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 48.1(\mathrm{~d}, \mathrm{C}-3)$, 55.2 (q, OMe), 72.6 (d, C-2), 82.8 [s, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 106.1$ (d, C-c), 108.2 (d, C-b), 113.6 (d, C-C), 128.9 ( $\mathrm{s}, \mathrm{C}-\mathrm{A}$ ), 130.5 (d, C-B), 151.0 ( $\mathrm{s}, \mathrm{C}-\mathrm{d}$ ), 152.9 ( $\mathrm{s}, \mathrm{C}-\mathrm{a}$ ), 158.9 (s, C-D), 172.3 ( $\mathrm{s}, \mathrm{C}-1$ ).

MS (ESI): $m / z(\%)=687(100)\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 355(42)\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 299$ (8).
HRMS (ESI): $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: calcd.: 355.1516; found: 355.1517.
tert-Butyl 2-hydroxy-3-(4-methoxyphenyl)-3-(1-tosyl-1H-pyrrol-2-yl)propanoate (11f)

$\mathbf{C}_{25} \mathbf{H}_{29} \mathbf{N O}_{6} \mathbf{S}$
$\mathrm{M}=471.57 \mathrm{~g} / \mathrm{mol}$

Following general procedure 3, reaction of $5(37.5 \mathrm{mg}, 150 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.$) with$ $N$-tosylpyrrole ( $133 \mathrm{mg}, 600 \mu \mathrm{~mol}, 4.00$ eq.) and $\mathrm{Sc}(\mathrm{OTf})_{3}(3.69 \mathrm{mg}, 7.50 \mu \mathrm{~mol}, 0.05 \mathrm{eq}$.) at $\underline{0}{ }^{\circ} \mathrm{C}$ yielded after flash chromatography $\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}: 4 / 1 \rightarrow 1 / 1\right) \mathbf{1 1 f}(26 \mathrm{mg}, 55.1 \mu \mathrm{~mol}, 37 \%)$ as a colourless solid (d.r. anti/syn $=7 / 93$ ).

TLC: $R_{\mathrm{f}}=0.30\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O} 1 / 1\right)[\mathrm{UV}, \mathrm{CAM}]$.
m.p.: $122^{\circ} \mathrm{C}$ (d.r. anti/syn $=7 / 93$ ).

IR (ATR): $\widetilde{v}=3489(b r, O H), 2981\left(w, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2928(\mathrm{w}), 2832(\mathrm{w}, \mathrm{OMe}), 1712(\mathrm{vs}, \mathrm{C}=\mathrm{O})$, 1610 (m), 1511 (s), 1460 (m, CH $)_{3}$ ), 1352 (s), 1249 (vs, COC), 1138 (vs), 1035 (m), 835 (m, $\mathrm{C}_{\mathrm{ar}} \mathrm{H}$ ), 810 ( s$), 734$ ( s$), 667 \mathrm{~cm}^{-1}(\mathrm{vs})$.
syn-Diastereoisomer:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.33\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{H}}-\mathrm{Me}\right), 3.02$ (bs, $1 \mathrm{H}, \mathrm{OH}$ ), $3.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.44\left(\mathrm{~d},{ }^{3} J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.26\left(\mathrm{~d},{ }^{3} J=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-3), 6.26 (virt. t, ${ }^{3} J \cong 3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}$ ), 6.62-6.64 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{b}+\mathrm{H}-\mathrm{C}$ ), 6.88-6.90 (m, 2 H , H-G), 6.92-6.95 (m, 2 H, H-B), 7.15-7.18 (m, 2 H, H-F), 7.31 (dd, ${ }^{3} J=3.4 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{d})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=21.4\left(\mathrm{q}, \mathrm{C}_{\mathrm{H}}-\mathrm{Me}\right), 27.7\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 44.3(\mathrm{~d}, \mathrm{C}-3)$, 55.2 (q, OMe), 75.1 (d, C-2), 83.1 [s, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 111.4$ (d, C-c), 113.5 (d, C-C), 114.7 (d, C-b), 122.6 (d, C-d), 126.6 (d, C-F), 129.2 (d, C-G), 129.8 (d, C-B), 130.4 (s, C-A), 132.8 ( $\mathrm{s}, \mathrm{C}-\mathrm{a}$ ), 135.7 ( $\mathrm{s}, \mathrm{C}-\mathrm{E}$ ), 144.0 ( $\mathrm{s}, \mathrm{C}-\mathrm{H}$ ), 158.4 ( $\mathrm{s}, \mathrm{C}-\mathrm{D}$ ), 172.3 ( $\mathrm{s}, \mathrm{C}-1$ ).

MS (ESI): $m / z(\%)=965(100)\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 494(52)\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 416(12)$.
HRMS (ESI): $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{SNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: calcd.: 494.1608; found: 494.1609.

## 4. Determination of the relative configuration

## Methyl 2-[(tert-butyldimethylsilyl)oxy]-3-(4-methoxyphenyl)-3-(5-methylthiophen-

## 2-yl)propanoate (9)



Methyl 2-hydroxy-3-(4-methoxyphenyl)-3-(5-methylthiophen-2-yl)propanoate (7a) (160 mg, $522 \mu \mathrm{~mol}$, d.r. anti/syn $=25 / 75$, 1.00 eq.) was dissolved in DMF ( 1.5 mL ) under an atmosphere of argon. Imidazole ( $71.1 \mathrm{mg}, 1.04 \mathrm{mmol}, 2.00 \mathrm{eq}$.) and $\mathrm{TBDMSCl}(320 \mathrm{mg}$, $2.13 \mathrm{mmol}, 4.07$ eq.) were subsequently added and the solution was stirred at ambient temperature over night. Water ( 7 mL ) and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ were added and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography $\left[\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=6 / 1 \rightarrow 4 / 1\right]$ to afford 9 ( $196 \mathrm{mg}, 466 \mu \mathrm{~mol}, 89 \%$ ) as a colourless oil (d.r. anti/syn $=24 / 76$ ).

TLC: $R_{\mathrm{f}}=0.68\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O} 2 / 1\right)[\mathrm{UV}, \mathrm{CAM}]$.
IR (ATR): $\widetilde{v}=3001\left(\mathrm{w}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 2952\left(\mathrm{~m}, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2928(\mathrm{~m}), 2856(\mathrm{~m}), 1756(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1610$ (m), 1511 ( s), 1466 ( $\mathrm{m}, \mathrm{CH}_{3}$ ), 1437 (w), 1248 (vs, COC), 1131 ( s), 1036 (s), 831 (vs, $\mathrm{C}_{\text {ar }} \mathrm{H}$ ), 777 (s), 727 (m), $674 \mathrm{~cm}^{-1}$ (w).
syn-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR ( $360 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=-0.28(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}),-0.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.83$ [s, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.41\left(\mathrm{~d},{ }^{4} J=0.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 3.55(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 3.77(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{D}}-\mathrm{OMe}\right), 4.56\left(\mathrm{~d},{ }^{3} J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.60\left(\mathrm{~d},{ }^{3} J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 6.55$ (dd, $\left.{ }^{3} J=3.4 \mathrm{~Hz},{ }^{4} J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}\right), 6.80-6.83(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{b}+\mathrm{H}-\mathrm{C}), 7.22-7.24(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-\mathrm{B})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-5.8(\mathrm{q}, \mathrm{SiMe}),-5.4(\mathrm{q}, \mathrm{SiMe}), 15.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right)$, $18.1\left[\mathrm{~s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.6\left[\mathrm{q}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 50.6(\mathrm{~d}, \mathrm{C}-3), 51.7(\mathrm{q}, \mathrm{COOMe}), 55.3\left(\mathrm{q}, \mathrm{C}_{\mathrm{D}}-\mathrm{OMe}\right)$, 77.1 (d, C-2), 113.7 (d, C-C), 124.3 (d, C-c), 126.3 (d, C-b), 129.6 (d, C-B), 132.9 (s, C-A), 138.7 (s, C-d), 139.9 (s, C-a), 158.5 (s, C-D), 172.4 (s, C-1).
anti-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR ( $360 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=-0.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.92$ [s, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.39\left(\mathrm{~d},{ }^{4} J=0.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 3.57$ ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{COOMe}$ ), 3.78 (s, 3 H , $\left.\mathrm{H}_{\mathrm{D}}-\mathrm{OMe}\right), 4.49\left(\mathrm{~d},{ }^{3} J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.63\left(\mathrm{~d},{ }^{3} J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.52$ (dd, $\left.{ }^{3} J=3.4 \mathrm{~Hz},{ }^{4} J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}\right), 6.63\left(\mathrm{~d},{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{b}\right), 6.80-6.83(\mathrm{~m}, 2 \mathrm{H}$, H-C), 7.31-7.34 (m, 2 H, H-B).
${ }^{13} \mathbf{C}-$ NMR $\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-5.7(\mathrm{q}, \mathrm{SiMe}),-5.4(\mathrm{q}, \mathrm{SiMe}), 15.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right)$, $18.1\left[\mathrm{~s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.6\left[\mathrm{q}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 50.5(\mathrm{~d}, \mathrm{C}-3), 51.7(\mathrm{q}, \mathrm{COOMe}), 55.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{D}}-\mathrm{OMe}\right)$, 77.1 (d, C-2), 113.6 (d, C-C), 124.5 (d, C-c), 125.1 (d, C-b), 130.1 (d, C-B), 132.3 (s, C-A), 138.6 (s, C-d), 141.6 (s, C-a), 158.6 (s, C-D), 172.4 (s, C-1).

MS (ESI): $m / z(\%)=443(100)\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 323(25), 289(10)$.
HRMS (ESI): $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SSiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$: calcd.: 443.1683; found: 443.1683.

1-(4-methoxyphenyl)-1-(5-methylthiophen-2-yl)propan-2-ol (10) ${ }^{[7,8]}$


Methyl 2-[(tert-butyldimethylsilyl)oxy]-3-(4-methoxyphenyl)-3-(5-methylthiophen-2-yl)propanoate (9) ( $42.1 \mathrm{mg}, 100 \mu \mathrm{~mol}$, d.r. anti/syn $=24 / 76,1.00 \mathrm{eq}$.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 1 mL ) under an atmosphere of argon and cooled to $-78^{\circ} \mathrm{C}$. DIBAL-H $(300 \mu \mathrm{~L}, 300 \mu \mathrm{~mol}$, 1.0 M in cyclohexane, 3.00 eq.) was added dropwise and the mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. Then, another two equivalents of DIBAL-H ( $200 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in cyclohexane, 2.00 eq.) were added and after stirring for an additional hour at $-78^{\circ} \mathrm{C}$ another two equivalents of DIBAL-H ( $200 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in cyclohexane, 2.00 eq.) were given
to the reaction mixture. After stirring for 30 min at $-78^{\circ} \mathrm{C}$ the reaction was quenched by adding sat. aqueous $\mathrm{K} / \mathrm{Na}$ tartrate ( 3 mL ) and the mixture was stirred at ambient temperature over night. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ under an atmosphere of argon and cooled to $0{ }^{\circ} \mathrm{C}$. Methanesulfonyl chloride $(8.52 \mu \mathrm{~L}, 110 \mu \mathrm{~mol})$ and $\mathrm{NEt}_{3}(20.8 \mu \mathrm{~L}, 150 \mu \mathrm{~mol})$ were subsequently added and the reaction was stirred at ambient temperature for 1.5 h . Water ( 5 mL ) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting product was dried under high vacuum and subsequently dissolved in $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$. The solution was given to a suspension of $\mathrm{LiAlH}_{4}(15.2 \mathrm{mg}, 400 \mu \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ under an atmosphere of argon at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and for another hour at ambient temperature. The reaction was quenched by adding sat. aqueous $\mathrm{K} / \mathrm{Na}$ tartrate $(5 \mathrm{~mL})$ and the mixture was stirred for 30 min at ambient temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}$ ( 5 mL ). The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was dissolved in methanol ( 2 mL ). Two drops of conc. HCl were added and the solution was stirred vigorously at ambient temperature for 1 h . Sat. aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography $\left[\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=2 / 1\right.$ $\rightarrow 1 / 1]$ to afford $\mathbf{1 0}(21 \mathrm{mg}, 80.0 \mu \mathrm{~mol}, 80 \%)$ as a colourless oil (d.r. anti/syn $=25 / 75)$.

TLC: $R_{\mathrm{f}}=0.23\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O} 7 / 3\right)[\mathrm{UV}, \mathrm{CAM}]$.
IR (ATR): $\widetilde{v}=3484(\mathrm{br}, \mathrm{OH}), 2962\left(\mathrm{w}, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2924\left(\mathrm{w}, \mathrm{C}_{\mathrm{al}} \mathrm{H}\right), 2837(\mathrm{w}, \mathrm{OMe}), 1609(\mathrm{~m})$, 1511 (vs), 1455 ( $\mathrm{m}, \mathrm{CH}_{3}$ ), 1246 ( vs, COC), 1177 ( s ), 1109 (m), 1030 (s), $797 \mathrm{~cm}^{-1}$ (vs).
syn-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR ( $360 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=1.15\left(\mathrm{~d},{ }^{3} J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-3\right), 1.83(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH})$, $2.42\left(\mathrm{~d},{ }^{4} J=0.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 3.78$ (s, $3 \mathrm{H}, \mathrm{OMe}$ ), 3.93 (d, ${ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 4.28 (dq, $\left.{ }^{3} J=8.1 \mathrm{~Hz},{ }^{3} J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.60\left(\mathrm{dd},{ }^{3} J=3.4 \mathrm{~Hz},{ }^{4} J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}\right), 6.77$ (d, $\left.{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{b}\right), 6.84-6.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}), 7.21-7.23$ (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{B}$ ).
${ }^{13} \mathbf{C - N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=15.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right), 21.1(\mathrm{q}, \mathrm{C}-3), 55.2(\mathrm{q}, \mathrm{OMe}), 55.3$ (d, C-1), 71.2 (d, C-2), 114.2 (d, C-C), 124.8 (d, C-c), 125.2 (d, C-b), 129.0 (d, C-B), 134.2 ( $\mathrm{s}, \mathrm{C}-\mathrm{A}$ ), 139.1 ( $\mathrm{s}, \mathrm{C}-\mathrm{d}), 142.7$ (s, C-a), 158.4 (s, C-D).
anti-Diastereoisomer:
${ }^{1} \mathbf{H}$-NMR ( $360 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta[\mathrm{ppm}]=1.24\left(\mathrm{~d},{ }^{3} J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-3\right), 1.83(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH})$, $2.41\left(\mathrm{~d},{ }^{4} J=0.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}-\mathrm{Me}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.94\left(\mathrm{~d},{ }^{3} J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.35$ (dq, $\left.{ }^{3} J=7.5 \mathrm{~Hz},{ }^{3} J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.56\left(\mathrm{dd},{ }^{3} J=3.4 \mathrm{~Hz},{ }^{4} J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{c}\right), 6.67$ (d, $\left.{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{b}\right), 6.87-6.89$ (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}$ ), 7.30-7.32 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{B}$ ).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=15.2\left(\mathrm{q}, \mathrm{C}_{\mathrm{d}}-\mathrm{Me}\right), 21.2(\mathrm{q}, \mathrm{C}-3), 54.9(\mathrm{~d}, \mathrm{C}-1), 55.2$ ( $\mathrm{q}, \mathrm{OMe}$ ), 71.0 (d, C-2), 114.2 (d, C-C), 124.4 (d, C-b), 124.6 (d, C-c), 129.7 (d, C-B), 132.9 ( $\mathrm{s}, \mathrm{C}-\mathrm{A}$ ), 138.3 ( $\mathrm{s}, \mathrm{C}-\mathrm{d}$ ), 143.6 ( $\mathrm{s}, \mathrm{C}-\mathrm{a}$ ), 158.7 ( $\mathrm{s}, \mathrm{C}-\mathrm{D}$ ).

MS (ESI): $m / z(\%)=263(4)\left[(\mathrm{M}+\mathrm{H})^{+}\right], 245(100)\left[(\mathrm{M}-\mathrm{OH})^{+}\right], 233(10), 196(18), 165(49)$.
HRMS (ESI): $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: calcd.: 263.1100; found: 263.1100 .

## 5. References

[1] G. Moyna, H. J. Williams, A. I. Scott, Synth. Commun. 1996, 26, 2235-2239.
[2] R. Imashiro, M. Seki, J. Org. Chem. 2004, 69, 4216-4226.
[3] N. Harada, K. Ozaki, T. Yamaguchi, H. Arakawa, A. Ando, K. Oda, N. Nakanishi, M. Ohashi, T. Hashiyama, K. Tsujihara, Heterocycles 1997, 46, 241-258.
[4] D. J. Dixon, S. V. Ley, A. Polara, T. Sheppard, Org. Lett. 2001, 3, 3749-3752.
[5] P. R. Fleming, K. B. Sharpless, J. Org. Chem. 1991, 56, 2869-2875.
[6] B. M. Adger, J. V. Barkley, S. Bergeron, M. W. Cappi, B. E. Flowerdew, M. P. Jackson, R. McCague, T. C. Nugent, S. M. Roberts, J. Chem. Soc., Perkin Trans. I 1997, 3501-3508.
[7] D. Stadler, F. Mühlthau, P. Rubenbauer, E. Herdtweck, T. Bach, Synlett 2006, 25732576.
[8] D. Stadler, Diploma Thesis, Technische Universität München, 2006.

## 6. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra

Methyl 3-(2,4-dimethoxyphenyl)-2-hydroxy-3-(4-methoxyphenyl)propanoate (6a)


## Methyl 2-hydroxy-3-(4-methoxyphenyl)-3-(5-methylthiophen-2-yl)propanoate (7a)



## Methyl 2-hydroxy-3-(5-methylthiophen-2-yl)-3-phenylpropanoate (7b)




Methyl 2-hydroxy-3-(5-methylthiophen-2-yl)-3-(p-tolyl)propanoate (7c)



Methyl 3-(2,4-dimethylphenyl)-2-hydroxy-3-phenylpropanoate (8b)



Methyl 3-(2,4-dimethylphenyl)-2-hydroxy-3-(p-tolyl)propanoate (8c)


tert-Butyl 3-(2,4-dimethoxyphenyl)-2-hydroxy-3-(4-methoxyphenyl)propanoate (11a)


tert-Butyl 2-hydroxy-3-(4-methoxyphenyl)-3-(2,3,4-trimethoxyphenyl)propanoate (11b)


tert-Butyl 3-(5-bromo-2,4-dimethoxyphenyl)-2-hydroxy-3-(4-methoxyphenyl)propanoate (11c)


tert-Butyl 2-hydroxy-3-(4-methoxyphenyl)-3-(5-methylthiophen-2-yl)propanoate (11d)


tert-Butyl 2-hydroxy-3-(4-methoxyphenyl)-3-(5-methylfuran-2-yl)propanoate (11e)


tert-Butyl 2-hydroxy-3-(4-methoxyphenyl)-3-(1-tosyl-1H-pyrrol-2-yl)propanoate (11f)



## Methyl 2-[(tert-butyldimethylsilyl)oxy]-3-(4-methoxyphenyl)-3-(5-methylthiophen-

## 2-yl)propanoate (9)




## 1-(4-methoxyphenyl)-1-(5-methylthiophen-2-yl)propan-2-ol (10)




