Supporting Information

Enantioselective Construction of Multifunctionalized Spirocyclohexaneoxindoles through Organocatalytic Michael-Aldol Cyclization of Isatin Derived Alkenes with Linear Dialdehydes

Xiao-Fei Huang, Zhao-Min Liu, Zhi-Cong Geng, Shao-Yun Zhang, Yong

Wang* and Xing-Wang Wang*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China Fax: +(86)512-6588-0378 E-mail:wangxw@suda.edu.cn

A: General Information	2
B: General Procedure for the Michael-Aldol Cyclization	3
C: Characterization Data of Michael-Aldol Cyclization Products	3
D: X-ray crystal structure of <i>ent</i> -3e	12
E: References	12
F: NMR Analysis of Michael-Aldol Cyclization Products	14
G: HPLC Analysis of Michael-Aldol Cyclization Products	31

A: General Information:

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out in air and using undistilled solvent, without any precautions to exclude moisture unless otherwise noted. Organic solutions were concentrated under reduced pressure on an EYELA N-1001 rotary evaporator. Reactions were monitored by thin-layer chromatography (TLC) on silica gel precoated glass plates $(0.2\pm0.03 \text{ mm thickness}, \text{GF-}254, \text{ particle})$ size 0.01-0.04 mm) from Yantai Chemical Industry Research Institute, P. R. China. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm. Flash column chromatography was performed using silica gel (particle size 0.04-0.05 mm) from Yantai Chemical Industry Research Institute, P. R. China. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded in CDCl₃ on Varian Inova-400 NMR spectometer. Chemical shifts (δ ppm) were relative to the resonance of the deuterated solvent as the internal standard (CDCl₃, δ 7.26 ppm for proton NMR, δ 77.00 ppm for carbon NMR). Melting points were measured on an X-5 melting point apparatus and uncorrected. ¹H NMR data were reported as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, q = quartet, m = multiplet), coupling constants (J) and assignment. Data for ¹³C NMR were reported in terms of chemical shift (δ , ppm). Mass spectra were carried out using Agilent 6120 Quadrupole LC/MS system with ESI resource. High-resolution mass spectra (HRMS) for all the compounds were determined on Micromass GCT-TOF mass spertrometer with ESI resource. High performance liquid chromatography (HPLC) was performed on an Agilent 1200 Series chromatographs using a Chiralcel AS-H column (0.46cm x 25 cm), Chiralpak AD-H (0.46cm x 25 cm). X-ray data were recorded on a Rigaku Mercury CCD/AFC diffractometer. Optical rotations are reported as follows: $\left[\alpha\right]_{D}^{rt}$ (c in g per 100 mL, solvent). ECD spectra were recorded on a circular dirchroism spectromete model 410 at 25°C in ethanol solutions, using path lengths of 1.0 cm, in the range 220-300 nm; reported $\Delta \epsilon$ values are expressed as L mol⁻¹cm.⁻¹ DFT Calculations were used Gaussian 03, Reversion B.04.

The Isatin Derived Alkenes were prepared according to reported methods.¹⁻²

B: General Procedure for the Michael-Aldol Cyclization

To a stirred solution of 1a-r (0.2 mmol) and I or II (0.02 mmol) in dichloromethane (1.0 mL) was added tetrahydro-2H-pyran-2,6-diol (50% in solution, 91 μ L, 0.5 mmol) at room temperature. After being stirred for the given time, the desired domino Michael-Aldol cyclization product was purified by flash chromatography over silica gel (petroleum ether/ethyl acetate = 2:1-4:1, v/v as eluent)

C: Characterization Data of Domino Michael-Aldol Cyclization Products

benzyl-2,2-diethyl-3-formyl-6-hydroxy-2'-oxospiro[cyclohexane-1,3'-indoline]-1',

2,2-tricarboxylate (3d): yellow oil ,72% yield, 95% ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak AD-H with hexane/i-PrOH (80:20) as the

eluent. Flow: 1.0 mL/min; $\lambda = 210$ nm: $t_{minor} = 15.462$ min; $t_{major} = 26.119$ min. $[\alpha]_D^{20}$ -24.1 (c 0.50 in CH₃COCH₃). ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 7.2 Hz, 2H), 7.40 - 7.32 (m, 4H), 7.24 (d, *J*

= 7.6 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 5.46 (d, J = 12.4 Hz, 1H), 5.37 (d, J = 12.4 Hz, 1H), 4.64 (dd, J = 11.5, 4.6Hz, 1H), 4.30 - 4.23 (m, 2H), 4.07 - 4.03 (m, 1H), 3.89 - 3.84 (m, 2H), 2.28 - 2.21 (m, 1H), 2.11 - 2.07 (m, 2H), 2.02 - 1.98 (m, 1H), 1.67 (s, 1H), 1.21 (t, J = 7.2 Hz, 3H), 0.82 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.86, 174.10, 168.56, 167.96, 150.40, 141.17, 134.86, 128.81, 128.76, 128.53, 128.35, 128.02, 124.58, 122.87, 114.67, 73.12, 68.53, 62.15, 62.07, 61.64, 56.66, 49.60, 26.48, 21.06, 13.64, 13.01. ESI-MS: [M + Na]⁺ m/z = 546.2; HRMS: m/z [M + H]⁺ calcd for C₂₈H₃₀NO₉: 524.1915; found: 524.1937.

1'-tert-butyl2,2-diethyl-3-formyl-6-hydroxy-2'-oxospiro[cyclohexane-1,3'-indolin e]-1',2,2-tricarboxylate (3e): White solid; m.p. 131-132 °C; 86% yield, >99% ee.

Hz 1H), 7.17 (d, J = 7.6 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 4.53 (d, J = 10.4 Hz, 1H),

4.20 (q, J = 3.2 Hz, 2H), 4.06 - 3.96 (m, 1H), 3.92 - 3.80 (m, 2H), 2.23 - 2.13 (m, 1H), 2.01 (s, 1H), 1.95 - 1.88 (m, 3H), 1.56 (s, 9H), 1.16 (t, J = 6.8 Hz, 3H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.93, 173.99, 168.46, 167.85, 148.71, 141.48, 128.62, 128.46, 124.03, 122.77, 114.31, 84.12, 72.83, 61.85, 61.51, 56.40, 49.41, 27.85, 26.36, 20.88, 13.52, 12.94. ESI-MS: [M + Na]⁺ m/z = 512.2; HRMS: m/z [M + Na]⁺ calcd for C₂₅H₃₁NNaO₉: 512.1891; found: 512.1877.

tert-butyl-3-formyl-6-hydroxy-2'-oxo-2-phenylspiro[cyclohexane-1,3'-indoline]-1' -carboxylate. The reaction was carried out following the general procedure using II as catalyst to furnish the crude product **3f**: White solid; m.p. 112-113 °C; 52% yield,

94.5% ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak OD-H with hexane/i-PrOH (90:10) as the eluent. Flow: 1 mL/min; $\lambda = 210$ nm: $t_{minor} = 10.458$ min; $t_{major} = 12.154$ min. $[\alpha]_D^{10}$ +4.6 (c 0.50 in CH₃COCH₃).

The reaction was carried out following the general procedure using **I** as catalyst to furnish the crude product *ent-***3f**: 48% yield, -99% ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak OD-H with hexane/i-PrOH (90:10) as the eluent. Flow: 1 mL/min; $\lambda = 210$ nm: t_{minor} = 12.271 min; t_{major} = 10.708 min. ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 7.66 (d, J = 6.4 Hz, 1H), 7.24 (s, 1H), 7.17 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 6.8 Hz, 2H), 7.05(t, J = 7.2, 3H), 6.99 (t, J = 7.2 Hz, 1H), 4.15 (d, J = 5.6 Hz, 1H), 3.71 (s, 1H), 2.64 (s, 1H), 2.42 (d, J = 15.2 Hz, 1H), 2.34 (d, J = 14 Hz, 1H), 2.22 (s, 1H), 2.12 (d, J = 12.8 Hz, 1H), 1.73 (d, J = 12 Hz, 1H), 1.63 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 201.18, 176.75, 148.84, 138.79, 138.10, 129.14, 128.60, 128.43, 126.99, 124.47, 124.10, 114.74, 84.87, 69.65, 55.65, 50.38, 45.04, 28.05, 23.92, 18.40. ESI-MS: [M + Na]⁺ m/z = 444.2; HRMS: m/z [M + Na]⁺ calcd for C₂₅H₂₇NaNO₅: 444.1781; found: 444.1784.

1'-tert-butyl-2-ethyl-3-formyl-6-hydroxy-2'-oxospiro[cyclohexane-1,3'-indoline]-1',2-dicarboxylate. The reaction was carried out following the general procedure using **II** as catalyst to furnish the crude product **3g:** White solid; m.p. 53-54 °C; 54% yield, >99% ee. The enantiomeric excess was determined by HPLC on Daicel

Chiralpak OD-H with hexane/i-PrOH (90:10) as the eluent. Flow: 1 mL/min; $\lambda = 210$ nm: $t_{minor} = 15.597$ min; $t_{major} = 12.186$ min. $[\alpha]_D^{10} + 4.1$ (c 0.25 in CH₃COCH₃).

The reaction was carried out following the general procedure using **I** as catalyst to furnish the crude product *ent*-**3en**: 51% yield, -95.7% ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak OD-H with hexane/i-PrOH (90:10) as the eluent. Flow: 1 mL/min; $\lambda = 210$ nm: t_{minor} = 11.829 min; t_{major} = 14.982 min. ¹H NMR (400 MHz, CDCl₃) δ 9.61 (s, 1H), 7.81 (d, *J* =8.0 Hz, 1H), 7.33 - 7.27 (m, 2H), 7.12 (t, *J* = 7.2 Hz, 1H), 4.01 - 3.91 (m, 2H), 3.69 (s, 1H), 3.66 (d, *J* = 6.0 Hz, 1H), 2.93 - 2.92 (m, 1H), 2.41 (dd, *J* = 10.0, 3.6 Hz, 1H), 2.21 (t, *J* = 13.2 Hz, 1H), 2.09 - 2.05 (m, 1H), 2.00 (s, 1H), 1.69 (dd, *J* = 10.4, 3.6 Hz, 1H), 1.59 (s, 9H), 1.03 (t, *J* = 7.2, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.34, 175.56, 170.85, 148.90, 139.69, 129.71, 128.78, 123.98, 123.44, 115.14, 84.51, 68.57, 61.27, 52.73, 46.21, 44.66, 28.05, 17.41, 13.66. ESI-MS: [M + Na]⁺ m/z = 440.2; HRMS: m/z [M + NH₄]⁺ calcd for C₂₂H₃₁N₂O₇: 435.2131; found: 435.2135.

1'-tert-butyl-2,2-diethyl3-formyl-6-hydroxy-5'-methyl-2'-oxospiro[cyclohexane-1, 3'-indoline]-1',2,2-tricarboxylate (3h): White solid; m.p. 134-135 °C; 84% yield, >99% ee. The enantiomeric excess was determined by HPLC on Daicel

Chiralpak AD-H with hexane/i-PrOH (92:8) as the eluent. Flow: 1.0 mL/min; $\lambda = 210$ nm: $t_{minor} = 40.648$ min; $t_{major} = 25.100$ min. $[\alpha]_D{}^{10} -1.1$ (c 1.00 in CH₃COCH₃). ¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.10(d, J = 8.4 Hz, 1H), 7.01 (s, 1H), 4.56 (d, J = 3.6 Hz, 1H), 4.25(q, J = 6.8 Hz, 2H),

4.04 - 3.94 (m, 1H), 3.92 - 3.84 (m, 2H), 2.304 (s, 3H), 2.25 - 2.18 (m, 1H), 2.09 - 2.05 (m, 2H), 1.95 (d, J = 9.2 Hz, 1H), 1.68 (s, 1H), 1.58(s, 9H), 1.21 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl3) δ 200.25, 174.54, 168.88, 168.36, 149.13, 139.49, 133.96, 129.37, 128.71, 123.74, 114.57, 84.38, 73.37, 62.28, 62.17, 61.76, 56.76, 49.91, 28.25, 26.66, 21.43, 21.33, 13.95, 13.36. ESI-MS: [M + Na]⁺ m/z = 526.2; HRMS: m/z [M + Na]⁺ calcd for C₂₆H₃₃NNaO₉: 526.2048; found: 526.2036.

1'-tert-butyl-2,2-diethyl-3-formyl-6-hydroxy-5'-methoxy-2'-oxospiro[cyclohexane -1,3'-indoline]-1',2,2-tricarboxylate (3i): White solid; m.p. 61-62 °C; 88% yield, 98.5% ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak

AD-H with hexane/i-PrOH (80:20) as the eluent. Flow: 1.0 mL/min; $\lambda = 210$ nm: $t_{minor} = 24.027$ min; $t_{major} = 11.497$ min. [α]_D¹⁰ +6.3 (c 1.00 in CH₃COCH₃). ¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 1H), 7.73 (d, J = 8.4 Hz, 1H), 6.79 (s, 2H), 4.61 - 4.58 (m, 1H), 4.24 (t, J = 6.8 Hz, 2H), 4.06 - 4.02 (m, 1H), 3.98 - 3.85 (m, 2H), 3.73 (s, 3H), 2.24 - 2.17 (m, 1H), 2.06 - 1.99 (m,

3H), 1.84 (s, 1H), 1.57(s, 9H), 1.21 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.01, 174.09, 168.50, 167.94, 156.54, 148.85, 134.92, 129.90, 115.19, 112.61, 109.97, 84.04, 73.05, 62.02, 61.64, 56.70, 55.40, 49.48, 27.96, 26.49, 20.94, 13.60, 13.07. ESI-MS: [M + Na]⁺ m/z = 542.2; HRMS: m/z [M + Na]⁺ calcd for C₂₆H₃₃NNaO₁₀: 542.1997; found: 542.1980.

1'-tert-butyl-2,2-diethyl-3-formyl-6-hydroxy-5',7'-dimethyl-2'-oxospiro[cyclohex ane-1,3'-indoline]-1',2,2-tricarboxylate (3j) : White solid; m.p. 42-43 °C; 71% yield, 98.4% ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak

3.89 (m, 1H), 2.30 (s, 3H), 2.22 (s, 1H), 2.19 (s, 3H), 2.07 - 2.05 (m, 2H), 1.99 (d, J = 9.6 1H), 1.59(s, 9H), 1.23 (t, J = 6.8 Hz, 3H), 0.94 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.16, 175.23, 168.63, 168.10, 148.95, 137.86, 133.74, 132.20, 129.67, 123.10, 121.28, 84.36, 72.90, 62.18, 61.88, 61.56, 57.29, 49.57, 27.75, 26.43, 21.13, 21.02, 19.49, 13.73, 13.15. ESI-MS: [M + Na]⁺ m/z = 540.3; HRMS: m/z [M + Na]⁺ calcd for C₂₇H₃₅NNaO₉: 540.2204; found: 540.2193.

1'-tert-butyl2,2-diethyl5'-fluoro-3-formyl-6-hydroxy-2'-oxospiro[cyclohexane-1,3
'-indoline]-1',2,2-tricarboxylate (3k) : White solid; m.p. 78-79 °C; 82% yield,
97.6% ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak

AD-H with hexane/i-PrOH (80:20) as the eluent. Flow: 1.0 mL/min; $\lambda = 210$ nm: $t_{minor} = 14.475$ min; $t_{major} = 7.007$ min. $[\alpha]_D^{10} +25.2$ (c 1.00 in CH₃COCH₃). ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 7.81 (q, J = 4.4 Hz, 1H), 7.00 - 7.02 (m, 2H), 4.65 - 4.61 (m, 1H), 4.27 (q, J = 6.4 Hz, 2H), 4.10 - 4.03

(m, 1H), 3.99 - 3.88 (m, 2H), 2.26 - 2.22 (m, 1H), 2.07 - 2.06 (m, 1H), 2.03 - 2.00 (m, 2H), 1.93 (s, 1H), 1.59(s, 9H), 1.22 (t, J = 6.8 Hz, 3H), 0.93 (t, J = 6.8 Hz, 3H). 13 C NMR (100MHz, CDCl₃) δ 200.15, 174.08, 168.62, 168.12, 161.13, 158.72, 149.02, 137.83, 131.05, 130.97, 115.84, 115.76, 115.21, 114.98, 111.34, 111.09, 84.77, 73.22, 62.49, 62.42, 61.93, 57.00, 49.64, 28.21, 27.00, 21.12, 13.89, 13.36. ESI-MS: [M + Na]⁺ m/z = 530.2; HRMS: m/z [M + Na]⁺ calcd for C₂₅H₃₀FNaNO₉: 530.1797; found: 530.1799.

1'-tert-butyl-2,2-diethyl-5'-chloro-3-formyl-6-hydroxy-2'-oxospiro[cyclohexane-1,3'-indoline]-1',2,2-tricarboxylate (3l) : White solid; m.p. 131-135 °C;79% yield, 97.4% ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak

AD-H with hexane/i-PrOH (80:20) as the eluent. Flow: 1.0 mL/min; $\lambda = 210$ nm: $t_{minor} = 14.732$ min; $t_{major} = 8.859$ min. [α]_D¹⁰ -14.3 (c 0.80 in CH₃COCH₃). ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 4.4 Hz, 1H), 7.2 (s, 1H), 4.59 - 4.56 (m, 1H), 4.32 - 4.22 (m, 2H),

4.01 - 3.93 (m, 2H), 3.92 - 3.87 (m, 1H), 2.27 - 2.16 (m, 1H), 2.07 - 2.05 (m, 2H), 1.99 - 1.94 (m, 1H), 1.85 (s, 1H), 1.58 (s, 9H), 1.22 (t, J = 6.8 Hz, 3H), 0.93 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.71, 173.59, 168.38, 167.92, 148.64, 140.17, 130.69, 129.60, 128.47, 123.32, 115.62, 84.65, 73.02, 62.26, 62.19, 61.48, 56.53, 49.49, 27.94, 26.66, 20.96, 13.69, 13.12. ESI-MS: [M + Na]⁺ m/z = 546.2; HRMS: m/z [M + Na]⁺ calcd for C₂₅H₃₀ClNaNO₉: 546.1501; found: 546.1506.

1'-tert-butyl-2,2-diethyl-5'-bromo-3-formyl-6-hydroxy-2'-oxospiro[cyclohexane-1,3'-indoline]-1',2,2-tricarboxylate (3m) : White solid; m.p. 122-126 °C; 83% yield, 97.5% ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak

AD-H with hexane/i-PrOH (80:20) as the eluent. Flow: 1.0 mL/min; $\lambda = 210$ nm: $t_{minor} = 14.868$ min; $t_{major} = 10.030$ min. $[\alpha]_D^{10}$ -22.4 (c 1.00 in CH₃COCH₃). ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1H), 7.73 (d, J = 8.8 Hz, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.33 (s, 1H), 4.59 - 4.55 (m, 1H), 4.32 - 4.22 (m, 2H), 3.99 -

3.93 (m, 2H), 3.92 - 3.87 (m, 1H), 2.27 - 2.16 (m, 1H), 2.08 - 1.94 (m, 3H), 1.87 (s, 1H), 1.58 (s, 9H), 1.23 (t, J = 7.2 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.66, 173.49, 168.40, 167.95, 148.63, 140.69, 131.40, 131.04, 126.07, 117.14, 116.05, 84.66, 73.03, 62.26, 62.19, 61.45, 56.47, 49.53, 27.94, 26.66, 21.00, 13.72, 13.13. ESI-MS: [M + Na]⁺ m/z = 590.1; HRMS: m/z [M + Na]⁺ calcd for C₂₅H_{30Br}⁷⁹NO₉: 590.0996; found: 590.0993.

1'-tert-butyl-2,2-diethyl-6'-bromo-3-formyl-6-hydroxy-2'-oxospiro[cyclohexane-1,3'-indoline]-1',2,2-tricarboxylate (3n) : White solid; m.p. 130-131 °C; 74% yield,

97.2% ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak AD-H with hexane/i-PrOH (80:20) as the eluent. Flow: 1.0 mL/min; $\lambda = 210$ nm: $t_{minor} = 9.430$ min; t_{major} = 5.566 min. $[\alpha]_D^{10}$ +10.5 (c 1.00 in CH₃COCH₃). ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 8.06 (s, 1H), 7.28 (d, *J* = 8.8

Hz, 1H), 7.10 (d, J = 4.0 Hz,1H), 4.61 - 4.57 (m, 1H), 4.27 - 4.23 (m, 2H), 4.02 - 3.98 (m, 2H), 3.96 - 3.88 (m, 1H), 2.26 - 2.17 (m, 1H), 2.14 (s, 1H), 2.08 - 1.96 (m, 3H), 1.60 (s, 9H), 1.22 (t, J = 6.8 Hz, 3H), 0.98 (t, J = 6.8 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 199.77, 173.68, 168.39, 167.87, 148.51, 142.60, 127.95, 127.07, 124.21, 122.25, 117.86, 84.81, 72.82, 62.18, 62.14, 61.53, 56.43, 49.42, 27.88, 26.65, 20.91, 13.62, 13.12. ppm; ESI-MS: [M + Na]⁺ m/z = 590.1; HRMS: m/z [M + Na]⁺ calcd for C₂₅H_{30Br}⁷⁹NaNO₉: 590.0996; found: 590.0991.

1'-tert-butyl-2,2-dimethyl-3-formyl-6-hydroxy-2'-oxospiro[cyclohexane-1,3'-indo line]-1',2,2-tricarboxylate (30) : White solid; m.p. 57-58 °C; 67% yield, 98.3% ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak AD-H with

hexane/i-PrOH (80:20) as the eluent. Flow: 1.0 mL/min; $\lambda = 210 \text{ nm}$: $t_{minor} = 15.542 \text{ min}$; $t_{major} = 8.964 \text{ min}$. [α]_D¹⁰ +68.8 (c 0.80 in CH₃COCH₃). ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.35 (t, *J* = 6.8 Hz, 1H), 7.17 - 7.13 (m, 2H), 4.63 - 4.58 (m, 1H), 4.09 - 4.05 (m, 1H), 3.78 (m,

3H), 3.48 (s, 3H), 2.30 - 2.22 (m, 1H), 2.12 - 2.07 (m, 2H), 2.04 (s, 1H), 2.02 - 1.98 (m, 1H), 1.62 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 200.09, 174.57, 169.37, 168.77, 149.05, 141.86, 129.11, 128.74, 124.70, 122.83, 114.93, 84.66, 73.34, 61.89, 56.86, 53.09, 53.05, 50.05, 28.27, 26.72, 21.27. ESI-MS: [M + Na]⁺ m/z = 484.2; HRMS: m/z [M + H]⁺ calcd for C₂₃H₂₈NO₉: 462.1759; found: 462.1769.

1'-tert-butyl-2,2-diisopropyl-3-formyl-6-hydroxy-2'-oxospiro[cyclohexane-1,3'-in doline]-1',2,2-tricarboxylate (3p): White solid; m.p. 101-102 °C; 87% yield, >99%

ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak AD-H with hexane/i-PrOH (75:25) as the eluent. Flow: 0.6 mL/min; $\lambda = 210$ nm: $t_{minor} = 16.091$ min; $t_{major} = 8.159$ min. $[\alpha]_D^{10} + 10.5$ (c 1.00 in CH₃COCH₃). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.32

(m, 2H), 7.13 (t, J = 6.8 Hz,1H), 5.23 - 5.17 (m, 1H), 4.85 - 4.80 (m, 1H), 4.68 (dd, J = 4.4, 6.8 Hz, 1H), 4.065 (t, J = 8.0 Hz, 1H), 2.27 - 2.20 (m, 1H), 2.11 - 2.04 (m, 2H), 2.00 - 1.96 (m, 1H), 1.93 (s, 1H), 1.61 (s, 9H), 1.27 (d, J = 6.4 Hz, 3H), 1.16 (d, J = 6.4 Hz, 3H), 0.95 (d, J = 6.4 Hz, 3H), 0.86 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.12, 173.94, 168.09, 167.56, 148.90, 141.61, 128.74, 128.64, 124.08, 123.11, 114.45, 84.29, 73.13, 70.27, 69.99, 61.49, 56.54, 49.57, 28.01, 26.43, 21.58, 21.26, 21.01, 20.84, 20.56. ESI-MS: [M + Na]⁺ m/z = 540.3; HRMS: m/z [M + Na]⁺ calcd for C₂₇H₃₅NaNO₉: 540.2204; found: 540.2194.

2,2-dibenzyl-1'-tert-butyl-3-formyl-6-hydroxy-2'-oxospiro[cyclohexane-1,3'-indol ine]-1',2,2-tricarboxylate (3q) : White solid; m.p. 41-43 °C; 83% yield, >99% ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak OD-H with

hexane/i-PrOH (90:10) as the eluent. Flow: 1 mL/min; $\lambda = 210$ nm: t_{minor} = 27.711 min; t_{major} = 17.986 min. [α]_D¹⁰ -2.52 (c 0.75 in CH₃COCH₃). ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 7.51 (d, *J* = 7.2 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 4H), 7.14 (d, *J* = 6.4 Hz, 5H), 7.03 (d, *J* = 6.4 Hz, 1H), 6.87 (s, 1H), 6.73 (d, *J*

=5.2 Hz, 2H), 5.30 (d, J = 12 Hz, 1H), 5.08 (d, J = 11.6 Hz, 1H), 4.89 (d, J = 11.6 Hz, 1H), 4.71 (d, J = 12 Hz, 1H), 4.60 (d, J = 4.4 Hz, 1H), 4.15 (s, 1H), 2.25 - 2.23 (m, 1H), 2.11 (s, 2H), 1.98 (d, J = 8.8 Hz, 1H), 1.58 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 199.94, 174.10, 168.44, 167.92, 148.57, 141.31, 134.34, 133.68, 128.54, 128.45, 128.22, 128.08, 124.16, 122.58, 114.67, 84.26, 73.20, 68.16, 67.90, 61.44, 56.50, 49.85, 28.00, 26.35, 21.01. ESI-MS: [M + Na]⁺ m/z = 636.3; HRMS: m/z [M + Na]⁺ calcd for C₃₅H₃₅NaNO₉: 636.2204; found: 636.2197.

1'-tert-butyl-2,2-dicyclohexyl-3-formyl-6-hydroxy-2'-oxospiro[cyclohexane-1,3'-i ndoline]-1',2,2-tricarboxylate (3r) : White solid; m.p. 68-69 °C; 88% yield, >99% ee.

The enantiomeric excess was determined by HPLC on Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent. Flow: 1 mL/min; $\lambda = 210$ nm: t_{minor} = 30.646 min; t_{major} = 8.641 min. [α]_D¹⁰ +4.9 (c 0.80 in CH₃COCH₃). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.35 - 7.27 (m,

2H), 7.13 (t, J = 6.8 Hz, 1H), 4.97 (s, 1H), 4.65 (d, J = 8.8 Hz, 1H), 4.57 (s, 1H), 4.06 (d, J = 6.4 Hz, 1H), 2.24 - 2.19 (m, 1H), 2.08 (s, 2H), 2.00 - 1.91 (m, 2H), 1.77 (s, 1H), 1.61 (s, 9H), 1.51 - 1.32 (m, 11H), 1.19 (d, J = 7.2 Hz, 4H), 1.07 - 0.89 (m, 4H). ¹³C NMR (100MHz, CDCl₃) δ 200.11, 174.02, 168.23, 167.61, 148.86, 141.58, 128.65, 124.13, 123.02, 114.55, 84.22, 75.33, 75.22, 73.28, 61.63, 56.53, 49.68, 31.22, 30.94, 30.66, 30.53, 28.00, 26.38, 25.06, 24.95, 23.61, 23.39, 21.14. ESI-MS: [M + Na]⁺ m/z = 620.3; HRMS: m/z [M + Na]⁺ calcd for C₃₃H₄₃NaNO₉: 620.2836; found: 620.2831. diethyl-3-formyl-6-hydroxy-2'-oxospiro[cyclohexane-1,3'-indoline]-2,2-dicarboxy late (4): White solid; m.p. 135-136 °C; 93% yield, >99% ee. The enantiomeric excess was determined by HPLC on Daicel Chiralpak AD-H with hexane/i-PrOH (80:20) as

the eluent. Flow: 1 mL/min; $\lambda = 210$ nm: $t_{minor} = 56.182$ min; $t_{major} = 15.200$ min. $[\alpha]_D^{10} + 11.2$ (c 0.20 in CH₃COCH₃). ¹H NMR (300 MHz, CDCl₃) δ 9.78 (s, 1H), 8.67 (s, 1H) 7.27 (d, J = 7.8 Hz, 1H), 7.19(t, J = 7.8 Hz, 1H), 6.97 (t, J = 8.1 Hz, 1H), 6.75 (d, J = 7.8 Hz, 1H), 4.64 - 4.59 (m, 1H), 4.23 - 4.21(m, 2H),

4.15 - 4.11 (d, J = 12, 1H), 3.92 - 3.84 (m, 2H), 2.63(s, 1H), 2.26 (s, 1H), 2.09 - 2.05 (m, 1H), 1.91 - 1.77 (m, 2H), 1.19 (t, J = 7.8 Hz, 3H), 0.83 (t, J = 7.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.73, 177.42, 168.45, 167.89, 142.56, 130.16, 128.39, 124.24, 122.35, 109.51, 72.06, 61.96, 61.92, 61.41, 57.20, 48.76, 26.38, 20.68, 13.72, 13.07. ESI-MS: [M + Na]⁺ m/z = 412.1; HRMS: m/z [M + Na]⁺ calcd for C₂₀H₂₃NNaO₇: 412.1367; found: 412.1376.

diethyl-6-hydroxy-3-(hydroxymethyl)-2'-oxospiro[cyclohexane-1,3'-indoline]-2,2dicarboxylate (5): White solid; m.p. 151-152 °C; 97% yield, 98% ee. The

enantiomeric excess was determined by HPLC on Daicel Chiralpak AD-H with hexane/i-PrOH (70:30) as the eluent. Flow: 1 mL/min; $\lambda = 210$ nm: $t_{minor} = 16.209$ min; $t_{major} = 10.345$ min. $[\alpha]_D^{10}$ +74.1 (c 0.65 in CH₃COCH₃). ¹H NMR (400 MHz, CD₃OD) 7.37 (d, J = 7.6 Hz, 1H), 7.21 (t, J = 7.6

Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 4.34 - 4.27 (m, 1H), 4.16 - 4.12 (m, 1H), 3.96 - 3.85 (m, 2H), 3.81 - 3.74 (m, 1H), 3.34 (s, 1H), 3.31 - 3.25 (m, 1H), 3.14 (t, J = 8.8 Hz, 1H), 2.46 - 2.35 (m, 1H), 2.22 - 2.18 (m, 1H), 1.89 - 1.85 (m, 1H), 1.75 - 1.64 (m, 1H), 1.26 (t, J = 7.2 Hz, 3H), 0.83 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CD₃OD) δ 178.71, 169.74, 169.38, 144.81, 133.74, 128.81, 125.69, 123.04, 109.98, 72.81, 65.22, 63.60, 62.41, 62.06, 59.39, 40.10, 28.64, 24.53, 14.43, 13.47. ESI-MS: [M + Na]⁺ m/z = 414.1; HRMS: m/z [M + H]⁺ calcd for C₂₀H₂₆NO₇: 392.1704; found: 392.1708.

D: X-ray crystal structure of ent-3e

Crystal structure determination of compound *ent*-**3e**: C₂₅H₃₁NO₉, M = 489.51; a block crystal (0.75 x 0. 5 x 0.4 mm), T = 293(2), λ (Mo-Ka) = 0.71070 Å, Monoclinic, space group: P 65, a = 18.8854(16) Å, b = 18.8854 (16) Å, c = 12.9167(11) Å, V = 3989.6(6) Å3, 19575 total reflections, 4808 unique, Rint = 0.0426, R1 = 0.0819 (I > 2 σ), wR2 = 0.2389, Absolute structure parameter: -0.6(19). An ORTEP drawing of *ent*-**3e** is shown in Figure S1.

Figure S1. ORTEP drawing of ent-3e (40% thermal ellipsoids).

The crystal was prepared from the solution of *ent*-**3e** in dichloromethane. CCDC 875824 contains the supplementary crystallographic data for this paper. Thes e data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

E: References

1. X-C. hang, S-H. Cao, Y. Wei, M. Shi, Org. Lett. 2011, 13, 1142.

2. S.J. Garden, C.R.W. Guimarães, M.B. Corréa, C.A.F.D. Oliveira, A.d.C. Pinto,

R.B.d. Alencastro, J. Org. Chem. 2003, 68, 8815.

3. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman,; J. A. Jr. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J.

Cioslowski, B. B.Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong. C. Gonzalez, J. A. Pople. *Gaussian 03*, Revision B.04; Gaussian, Inc.: Wallingford, CT, 2003.

F: ¹H NMR and ¹³C NMR Spectra

3d

3e

3g

p

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	10.458	VV	0.5472	192.17303	4.65919	2.7744
2	12.154	VB	0.6114	6734.51367	168.11377	97.2256

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	10.708	BB	0.5528	3790.00781	105.59081	99.5650
2	12.271	MM	0.3978	16.56010	6.93757e-1	0.4350

3g

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	11.829	BB	0.6971	177.92854	3.05675	2.1553
2	14.982	BB	0.8607	8077.53955	141.78291	97.8447

3h

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	25.245	BB	0.7076	1.57442e4	339.14178	50.0612
2	40.652	BB	1.1193	1.57056e4	214.72945	49.9388

41.47498

1.31624

20

0.1557

0.5252

3i

2

40.648 MM

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	11.497	BB	0.3281	1.52769e4	724.29523	99.2223
2	24.027	BB	0.5109	119.74255	2.96685	0.7777

15

3k

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	7.045	VV	0.2078	1.58133e4	1169.11597	49.4810
2	14.721	BB	0.4289	1.61450e4	576.13135	50.5190

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.859	BB	0.2511	1.26676e4	789.79559	98.7227
2	14.732	BB	0.4292	163.89111	6.02865	1.2773

#	[min]		[min]	[mAU*s]	[mAU]	00
1	8.964	BB	0.2475	1.06418e4	669.15753	99.1276
2	15.542	BB	0.3956	93.65540	3.52902	0.8724

p

1 8.641 BB 0.2796 5876.50635 320.97714 100.0000

