A Novel Sulfonated Prosthetic Group for [¹⁸F]-Radiolabelling and Imparting Water Solubility of Biomolecules and Cyanine Fluorophores

Thomas Priem,^{*a,b*} Cédric Bouteiller,^{**a*} Davide Camporese,^{*a*} Xavier Brune,^{*b*} Julie Hardouin,^{*e*} Anthony Romieu,^{**b,c,d*} and Pierre-Yves Renard^{**b,c,d*}

^aAdvanced Accelerator Applications, 20 Rue Diesel, 01630 Saint-Genis-Pouilly, France, Fax: +33-4-50-99-30-71 Phone: +33 (0)4 50 99 30 70 E-mail: <u>cedric.bouteiller@adacap.com</u> Web site: <u>http://www.adacap.com</u>

^bUniversité de Rouen, Laboratory COBRA UMR 6014 & FR 3038, IRCOF, 1 Rue Tesnière, 76821 Mont St Aignan Cedex - France Fax: + 33 (0)2 35 52 29 71 Phone: + 33 (0)2 35 52 24 76 (or 24 27) E-mail: <u>pierre-yves.renard@univ-rouen.fr</u> or <u>anthony.romieu@univ-rouen.fr</u> Web:<u>http://ircof.crihan.fr</u> (Thématique Bioorganique)

^cINSA de Rouen, Avenue de l'Université, 76800 St Etienne du Rouvray - France

^dCNRS Délégation Normandie, 14 Rue Alfred Kastler, 14052 Caen Cedex – France

^eLaboratory PBS UMR 6270, Bât. Chimie, 76821 Mont St Aignan Cedex - France

Supporting Information

Abbreviations
Experimental Section
¹ H NMR spectrum of sultone-benzoic acid, <i>tert</i> -butyl ester 2 recorded in CDCl ₃ at 300 MHz.
¹³ C NMR spectrum of sultone-benzoic acid, <i>tert</i> -butyl ester 2 recorded in CDCl ₃ at 75.5 MHz.
RP-HPLC elution profile (system A) of sultone-benzoic acid, <i>tert</i> -butyl ester 2
(ESI-) mass spectrum of sultone-benzoic acid, <i>tert</i> -butyl ester 2
(ESI-) mass spectrum (high resolution) of sultone-benzoic acid, tert-butyl ester 2
¹ H NMR spectrum of mono-fluoro sulfonated <i>tert</i> -butyl ester 3 recorded in CD ₃ OD at 300 MHz. ^{<i>a</i>}
¹³ C NMR spectrum of mono-fluoro sulfonated <i>tert</i> -butyl ester 3 recorded in CD ₃ OD at 75.5 MHz. ^{<i>a</i>}
RP-HPLC elution profile (system A) of mono-fluoro sulfonated tert-butyl ester 3
(ESI-) mass spectrum of mono-fluoro sulfonated <i>tert</i> -butyl ester 3
¹ H NMR spectrum of mono-fluoro-sulfonated benzoic acid 4 recorded in CD ₃ OD at 300 MHz
¹³ C NMR spectrum of mono-fluoro-sulfonated benzoic acid 4 recorded in CD ₃ OD at 75.5 MHz
¹⁹ F NMR spectrum of mono-fluoro-sulfonated benzoic acid 4 recorded in CD ₃ OD at 282.5 MHz
RP-HPLC elution profile (system A) of mono-fluoro-sulfonated benzoic acid 4
(ESI-) mass spectrum of mono-fluoro-sulfonated benzoic acid 4
(ESI-) mass spectrum of [¹⁹ F]-prosthetic group 1
(ESI-) mass spectrum (high resolution) of mono-fluoro sulfonated benzoic acid 4
¹ H NMR spectrum of cyanine amino-amide 6 (TFA salt) recorded in CDCl ₃ at 200 MHz S14
¹³ C NMR spectrum of cyanine amino-amide 6 (TFA salt) recorded in CDCl ₃ at 75.5 MHz.
RP-HPLC elution profile (system S1) of cyanine amino-amide 6
(ESI+) mass spectrum of cyanine amino-amide 6
(ESI+) mass spectrum (high resolution) of cyanine amino-amide 6
Normalised absorption (—), emission (—) (Ex. 600 nm) and excitation (—) (Em. 760 nm) spectra of cyanine amino-amide 6 in DMSO at 25 °C
Normalised absorption (—), emission (—) (Ex. 600 nm) and excitation (—) (Em. 760 nm) spectra of cyanine amino-amide 6 in PBS + 5% BSA at 25 °C

¹ H NMR spectrum of fluoro-monosulfonated cyanine "cold" reference 7 (TFA salt) recorded in CDCl ₃ at 300 MHz
¹³ C NMR spectrum of fluoro-monosulfonated cyanine "cold" reference 7 (TFA salt) recorded in CDCl ₃ at 75.5 MHz.
¹⁹ F NMR spectrum of fluoro-monosulfonated cyanine "cold" reference 7 (TFA salt) recorded in CDCl ₃ at 282.5 MHz
RP-HPLC elution profile (system B) of fluoro-monosulfonated cyanine "cold" reference 7.
RP-HPLC elution profile (system I) of fluoro-monosulfonated cyanine "cold" reference 7. S20
(ESI-) mass spectrum of fluoro-monosulfonated cyanine "cold" reference 7
(ESI+) mass spectrum of fluoro-monosulfonated cyanine "cold" reference 7
(ESI+) mass spectrum (high resolution) of fluoro-monosulfonated cyanine "cold" reference 7.
RP-HPLC elution profile (system A) of fluoro-monosulfonated dodecapeptide "cold" reference 8
RP-HPLC elution profile (system I) of fluoro-monosulfonated dodecapeptide "cold" reference 8
(ESI+) mass spectrum of fluoro-monosulfonated dodecapeptide "cold" reference 8
(ESI-) mass spectrum of fluoro-monosulfonated dodecapeptide "cold" reference 8
(ESI+) mass spectrum (high resolution) of fluoro-monosulfonated dodecapeptide "cold" reference 8
(ESI+) mass spectrum of dodecapeptide before derivatisation with $[^{19}F]$ -prosthetic group 1^a . S25

Abbreviations

The following abbreviations are used throughout the text of the ESI file: Boc₂O, di-*tert*-butyl dicarbonate; BSA, bovine serum albumin protein; DIEA, *N*,*N*-diisopropylethylamine; DMF, *N*,*N*-dimethylformamide; DMSO, dimethylsulfoxide; ESI, electrospray ionisation; PBS, phosphate buffered saline; RP-HPLC, reversed-phase high performance liquid chromatography; TFA, trifluoroacetic acid; TLC, thin-layer chromatography.

Experimental Section

Pyridine was dried through distillation over KOH and stored over BaO and under an Ar atmosphere. Flash column chromatography purifications of cyanine derivatives were performed on Geduran[®] Si 60 silica gel (63-200 μ m) from Merck.

Instruments and methods.

¹H, ¹³C and ¹⁹F spectra were recorded either with a Bruker DPX 300 spectrometer (Bruker, Wissembourg, France) or with a Bruker AC 200. Chemical shifts are expressed in parts per million (ppm) from CDCl₃ ($\delta_{\rm H} = 7.26$, $\delta_{\rm C} = 77.16$) or CD₃OD ($\delta_{\rm H} = 3.31$, $\delta_{\rm C} = 49.0$)¹. J values are expressed in Hz. 13 C substitutions were determined with DEPT-135 experiments, differentiating signals of methyl and methine carbons pointing "up" (+) from methylene carbons pointing "down" (-). Analytical HPLC was performed on a Thermo Scientific Surveyor Plus instrument equipped with a PDA detector. Semi-preparative HPLC was performed on a Thermo Scientific SPECTRASYSTEM liquid chromatography system (P4000) equipped with a UV-visible 2000 detector. Low-resolution mass spectra were obtained with a Finnigan LCQ Advantage MAX (ion trap) apparatus equipped with an electrospray source. High-resolution mass spectra (HRMS) were recorded on a LTQ Orbitrap Elite (Fisher Scientific). UV-visible absorption spectra were obtained on a Varian Cary 50 scan spectrophotometer by using a rectangular quartz cell (Varian, standard cell, Open Top, 10×10 mm, 3.5 mL). Fluorescence spectroscopic studies (emission/excitation spectra) were performed on a Varian Cary Eclipse spectrophotometer with a semi-micro quartz fluorescence cell (Hellma, 104F-OS, 10×4 mm, 1400 µL). The absorption spectra of cvanine dves were recorded (400-900 nm) in DMSO, PBS and PBS + 5% BSA (concentration: 1.0-10.0 µM) at 25 °C. Excitation/emission spectra were recorded under the same conditions after emission/excitation at the corresponding wavelength (760/600 nm. excitation and emission filters: auto, excitation and emission slit = 5 nm). All fluorescence spectra were corrected. Relative quantum yields were measured at 25 °C by a relative method using symmetrical sulfobenzoindocvanine dve Cy 5.5 (Cy5.205) as a standard ($\Phi_{\rm F} = 23\%$ in PBS)². The following equation was used to determine the relative fluorescence quantum yield:

$$\Phi_{\rm F}({\rm x}) = ({\rm A}_{\rm S}/{\rm A}_{\rm X})({\rm F}_{\rm X}/{\rm F}_{\rm S})({\rm n}_{\rm X}/{\rm n}_{\rm S})^2 \Phi_{\rm F}({\rm s})$$

Where A is the absorbance (in the range 0.01-0.1 A.U.), F is the area under the emission curve, n is the refractive index of the solvents (at 25 °C) used in measurements, and the subscripts s and x represent standard and unknown, respectively. The following refractive index values were used: 1.479 for DMSO and 1.337 for PBS and PBS + 5% BSA.

¹ G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176-2179.

² S. R. Mujumdar, R. B. Mujumdar, C. M. Grant and A. S. Waggoner, *Bioconjugate Chem.*, 1996, 7, 356-362.

HPLC separations.

The following chromatographic system was used for the analytical experiments:

- <u>System S1</u>: RP-HPLC (Thermo Hypersil GOLD C₁₈ column, 5 μ m, 2.1 × 100 mm) with CH₃CN and aq. 0.1% trifluoroacetic acid (aq. TFA 0.1%, pH 2.0) as eluents [80% TFA (5 min), then linear gradient from 20 to 40% (5 min) and 40 to 100% (50 min) of CH₃CN] at a flow rate of 0.25 mL min⁻¹. UV-vis detection with the "Max Plot" (*i.e.*, chromatogram at absorbance maximum for each compound) mode (220-798 nm).

Cyanine amino-amide (6):

Scheme S1 *Reagents and conditions*: (a) Boc₂O (3 equiv.), NH₄HCO₃ (3 equiv.), pyridine, DMF, rt, overnight, 89%; (b) CH₃NH₂ (6 equiv.), CH₃OH-H₂O (88 : 12, v/v), rt, 24 h, RP-C₁₈ flash-chromatography, 37%.

<u>Amide formation</u>: Cyanine phthalimide-acide³ S1 (596 mg, 0.77 mmol, 1 equiv.) was dissolved in dry DMF (26.7 mL) and mixed with an heterogeneous DMF solution (14.3 mL) containing NH₄HCO₃ (185.6 mg, 2.35 mmol, 3 equiv.), dry pyridine (187 μ L, 2.32 mmol, 3 equiv.) and Boc₂O (512 mg, 2.35 mmol, 3 equiv.). The resulting reaction mixture was protected from light (with aluminum foil) and stirred at rt overnight. The complete conversion into the carboxamide derivative was confirmed both by TLC (CH₂Cl₂-CH₃OH, 9 : 1, v/v) and ESI mass spectrometric analyses. Thereafter, the reaction mixture was evaporated to dryness and the resulting oily residue was purified by flash-chromatography on a silica gel column with a step gradient of CH₃OH (0-1%) in CH₂Cl₂ (stabilised with 1% ethanol) as the mobile phase. The desired cyanine phthalimide-amide was obtained as a blue amorphous solid (525 mg, yield 89%). Its purity was checked by RP-HPLC (system S1) and this product was directly engaged in the next step without further purification. *R*_f 0.34 (CH₂Cl₂-CH₃OH, 9 : 1, v/v); HPLC (system S1): *t*_R = 32.6 min, purity 98%; MS (ESI+): *m/z* 769.40 [M]^{+•}, calcd for C₅₁H₅₃N₄O₃⁺ 769.41.

<u>*Removal of phthalimide*</u>: Phthalimide derivative (442 mg, 0.57 mmol, 1 equiv.) was dissolved in CH₃OH (20 mL) and 35% aq. methylamine solution (2.75 mL, 3.4 mmol, 6 equiv.) was added; the resulting reaction mixture was protected from light (with aluminum foil) and stirred at rt for 24 h. The complete conversion into the amino-amide derivative was confirmed both by TLC (CH₂Cl₂-CH₃OH, 9 : 1, v/v) and ESI mass spectrometric analyses. Thereafter, the reaction mixture was evaporated to dryness; the resulting oily residue was dissolved in a

³ B. Chipon, G. Clavé, C. Bouteiller, M. Massonneau, P.-Y. Renard and A. Romieu, *Tetrahedron Lett.*, 2006, **47**, 8279-8284. Corrigendum, 2007, **48**, 501.

mixture of CH₃CN and aq. TFA 0.1% and purified on a KP-C18-HS SNAP cartridge (30 g, Biotage[®]) by means of an automated flash purification system (Biotage[®] Isolera One), and by using a linear gradient from 0 to 75% (80 min) of CH₃CN in aq. TFA 0.1% as the mobile phase (flow rate 25 mL min⁻¹ and UV detection at 254/280 nm). The product-containing fractions were lyophilised to give the TFA salt of cyanine amino-amide 6 as a blue amorphous powder (206 mg, 0.21 mmol, yield 37%). Please note: Hydrazine monohydrate can be used as alternative deblocking reagent. Reaction kinetics is faster but traces of diimide (N_2H_2) may cause partial or complete degradation of the cyanine core through reduction of its polymethine chain especially if the crude reaction mixture is slightly heated (ca. 40 $^{\circ}$ C) during the evaporation step. $R_f 0.0$ (CH₂Cl₂-CH₃OH, 9 : 1, v/v); $\delta_H(200 \text{ MHz}, \text{CDCl}_3) 8.42$ (bs, 3H, NH_3^+), 8.06-7.31 (14H, m, Ph-benzoindole & 2 × CH=CH-CH=C), 6.65 (1H, t, J) 12.4, C<u>H</u>=CH-CH=C), 6.18 (2H, pt, J 14.0, 2 × C<u>H</u>=CH-CH=C), 4.03 (4H, bm, 2 × N(benzoindole)-CH₂), 3.09 (2H, bm, CH₂-NH₃⁺), 2.25 (2H, bm, CH₂-CONH₂), 1.92-1.25 (22H, m, 4 × C<u>H</u>₃(benzoindole) & 5 × -C<u>H</u>₂-); δ_{C} (75.5 MHz, CDCl₃) 24.8 (<u>C</u>H₂) 24.9 (<u>C</u>H₂), 25.2 (CH₂), 26.4 (CH₂), 27.4 (CH₂), 27.7 (4 × CH₃), 35.4 (CH₂), 39.4 (CH₂), 43.9 (CH₂), 44.3 (<u>CH</u>₂), 51.2 (2 × <u>C</u>(CH₃)₂), 103.4 (2 × <u>C</u>H), 110.7 (2 × <u>C</u>H), 116.8 (1C, J 292.3, <u>C</u>F₃-TFA), 122.3 (2 × CH), 125.2 (CH), 125.3 (CH), 126.4 (CH), 127.9 (2 × CH), 128.0 (2 × Cq), 130.3 $(2 \times CH)$, 131.0 $(2 \times CH)$, 132.0 $(2 \times Cq)$, 133.8 $(1 \times Cq)$, 134.0 $(1 \times Cq)$, 139.4 $(2 \times Cq)$, 152.1 (2 × CH), 161.5 (1C, q, CO₂H-TFA), 174.0 (1 × CH), 174.1 (1 × CH), 177.7 (1 × Cq, <u>CONH</u>₂); HPLC (system S1): $t_{\rm R} = 21.3$ min, purity 96%; MS (ESI+): m/z 320.27 [M + H]²⁺, 639.40 $[M]^{+\bullet}$, calcd for C₄₃H₅₁N₄O⁺ 639.40; HRMS (ESI+): m/z 320.2061 $[M + H]^{2+}$, calcd for $(C_{43}H_{52}N_4O^{2+})/2$ 320.2070; $\lambda_{max}(DMSO)$ nm 688 (ϵ/dm^3 mol⁻¹cm⁻¹ 195 000), λ_{max} em (DMSO) nm 712 ($\Phi_{\rm F}$ 0.45); $\lambda_{\rm max}$ (PBS + 5% BSA) nm 695 ($\epsilon/{\rm dm}^3$ mol⁻¹cm⁻¹ 162 000). $\lambda_{\rm max}$ em (PBS + 5% BSA) nm 710 ($\Phi_{\rm F}$ 0.34).

¹H NMR spectrum of sultone-benzoic acid, *tert*-butyl ester 2 recorded in CDCl₃ at 300 MHz.

¹³C NMR spectrum of sultone-benzoic acid, *tert*-butyl ester 2 recorded in CDCl₃ at 75.5 MHz.

RP-HPLC elution profile (system A) of sultone-benzoic acid, *tert*-butyl ester 2.

(ESI-) mass spectrum of sultone-benzoic acid, tert-butyl ester 2.

(ESI-) mass spectrum (high resolution) of sultone-benzoic acid, tert-butyl ester 2.

¹H NMR spectrum of mono-fluoro sulfonated *tert*-butyl ester 3 recorded in CD₃OD at 300 MHz.^{*a*}

^aThis compound was partially obtained as the trialkylammonium (Kryptofix[K222]) salt (3-[K222], 1 : 0.4), 3.79-3.51 ppm: peaks assigned to Kryptofix.

¹³C NMR spectrum of mono-fluoro sulfonated *tert*-butyl ester 3 recorded in CD₃OD at 75.5 MHz.^{*a*}

^{*}peaks assigned to residual ethyl acetate.

^aThis compound was partially obtained as the trialkylammonium (Kryptofix[K222]) salt (3-[K222], 1:0.4).

RP-HPLC elution profile (system A) of mono-fluoro sulfonated *tert*-butyl ester 3.

(ESI-) mass spectrum of mono-fluoro sulfonated tert-butyl ester 3.

The peak at m/z = 289.07 was assigned to the free carboxylic acid derivative whose formation occurred during the ionisation process.

¹H NMR spectrum of mono-fluoro-sulfonated benzoic acid 4 recorded in CD₃OD at 300 MHz.

¹³C NMR spectrum of mono-fluoro-sulfonated benzoic acid 4 recorded in CD₃OD at 75.5 MHz.

¹⁹F NMR spectrum of mono-fluoro-sulfonated benzoic acid 4 recorded in CD₃OD at 282.5 MHz.

RP-HPLC elution profile (system A) of mono-fluoro-sulfonated benzoic acid 4.

(ESI-) mass spectrum of [¹⁹F]-prosthetic group 1.

¹H NMR spectrum of cyanine amino-amide 6 (TFA salt) recorded in CDCl₃ at 200 MHz.

¹³C NMR spectrum of cyanine amino-amide 6 (TFA salt) recorded in CDCl₃ at 75.5 MHz.

RP-HPLC elution profile (system S1) of cyanine amino-amide 6.

(ESI+) mass spectrum (high resolution) of cyanine amino-amide 6.

Normalised absorption (—), emission (—) (Ex. 600 nm) and excitation (—) (Em. 760 nm) spectra of cyanine amino-amide 6 in DMSO at 25 °C.

Normalised absorption (—), emission (—) (Ex. 600 nm) and excitation (—) (Em. 760 nm) spectra of cyanine amino-amide 6 in PBS + 5% BSA at 25 °C.

¹H NMR spectrum of fluoro-monosulfonated cyanine "cold" reference 7 (TFA salt) recorded in CDCl₃ at 300 MHz.

¹³C NMR spectrum of fluoro-monosulfonated cyanine "cold" reference 7 (TFA salt) recorded in CDCl₃ at 75.5 MHz.

¹⁹F NMR spectrum of fluoro-monosulfonated cyanine "cold" reference 7 (TFA salt) recorded in CDCl₃ at 282.5 MHz.

RP-HPLC elution profile (system B) of fluoro-monosulfonated cyanine "cold" reference 7.

RP-HPLC elution profile (system I) of fluoro-monosulfonated cyanine "cold" reference 7.

(ESI-) mass spectrum of fluoro-monosulfonated cyanine "cold" reference 7.

(ESI+) mass spectrum of fluoro-monosulfonated cyanine "cold" reference 7.

The peak at m/z = 831.47 was assigned to the desulfonation derivative whose formation occurred during the ionisation process (ESI+).

(ESI+) mass spectrum (high resolution) of fluoro-monosulfonated cyanine "cold" reference 7.

RP-HPLC elution profile (system A) of fluoro-monosulfonated dodecapeptide "cold" reference 8.

RP-HPLC elution profile (system I) of fluoro-monosulfonated dodecapeptide "cold" reference 8.

(ESI+) mass spectrum of fluoro-monosulfonated dodecapeptide "cold" reference 8.

^{*a*}The mass difference between this peptide and the "cold" reference 8 (*vide supra*) is 272 Da that corresponds to the derivatisation of its lysine residue with [¹⁹F]-prosthetic group 1.