Face selective reduction of the exocyclic double bond in isatin derived spirocyclic lactones

Sandeep Rana,^a and Amarnath Natarajan^{a,b*}

^aEppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center,

Omaha, NE, USA.

^bEppley Institute for Cancer and Allied Diseases and Department of Chemistry, University of Nebraska, Lincoln, NE, USA

Fax: 1-402-559-3793; Tel: 1-402-559-8270; E-mail: anatarajan@unmc.edu

Contents

General Methods	S2
Experimental Section	S 3
LCMS retetion time table	S9
¹ H NMR, ¹³ C NMR, gCOSY, NOESY, 1D NOE difference spectra of all compds	S10-S27

Supporting Experimental Methods

General methods

All reagents were purchased from commercial sources and were used without further purification. Flash chromatography was carried out on silica gel (200–400 mesh). Thin layer chromatography (TLC) were run on pre-coated EMD silica gel 60 F_{254} plates and observed under UV light at 254 nm and with basic potassium permanganate dip. Column chromatography was performed with silica gel (230-400 mesh, grade 60, Fisher scientific, USA). ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded in chloroform-d or DMSO-d₆ on a Varian-500 and Varian-600 spectrometer (DMSO-d₆ was 2.50 ppm for ¹H and 39.55 ppm for ¹³C and CDCl₃ was 7.27 ppm for ¹H and 77.23 ppm for ¹³C. Proton and carbon chemical shifts were reported in ppm relative to the signal from residual solvent proton and carbon. LC-MS for the compounds was generated on an Agilent 1200 series system with UV detector (214 nm and 254 nm) and an Agilent 6130 quadrupole mass detector. HRMS were carried our University of Nebraska at Lincoln Mass Spectrometry facility.

Experimental Section

General Procedure for Barbier-type reaction: In a dry round bottom flask equipped with a reflux condenser was taken indium metal powder (4.06 mmol, 2 eq) and ammonium chloride (4.06 mmol, 2 eq). To it was added a solution of methyl 2-(bromomethyl) acrylate (2.45 mmol, 1.2 eq) in dry THF (5 mL). The reaction mixture was heated at 50 °C for 15 minutes followed by addition of a solution of isatin/isatin derivatives (2.03 mmol, 1 eq) in 5 mL THF. Reaction mixture was heated at 50 °C with constant stirring for 30 minutes and reaction completion (disappearance of isatin) was monitored by thin layer chromatography using 50% ethyl acetate in hexane solvent. Following reaction completion, reaction mixture was cooled to room temperature and passed through silica gel to remove ammonium chloride and indium metal. Reaction solvent was evaporated under reduced pressure using rotavapor. Crude reaction mixture was dissolved in 0.1% HCl and extracted using ethyl acetate followed by washing with brine, and dried using magnesium sulfate. Crude mixture was column chromatographed using hexane and ethyl acetate gradient to obtain spirocyclic compound and acyclic compound respectively.

General procedure for the reduction reaction for spiro compounds: Taken spiro compound (0.11 mmol) in round bottom flask and added 4 mL of dry THF via syringe. To the reaction mixture was added Pd/C (5 mg, 5 % by weight on activated carbon) and nitrogen gas was bubbled though the reaction mixture for about 10 minutes. Reaction mixture was gently vacuumed and was kept under hydrogen atmosphere for 5 hours (*Note: Reaction was monitored by NMR spectroscopy as longer time leads to over reduction of carbonyl group of lactone*). After completion of reaction, mixture was passed through a bed of celite and column chromatographed using hexane and ethyl acetate gradient to obtained product as white solid.

General procedure for the reduction reaction for acyclic compounds: Taken acyclic compound (0.36 mmol) in round bottom flask and added 8 mL of dry THF via syringe. To the reaction mixture was added Pd/C (20 mg, 5 % by weight on activated carbon) and nitrogen gas was bubbled though the reaction mixture for about 10 minutes. Reaction mixture was gently vacuumed and was kept under hydrogen atmosphere for 24 hours. After completion of reaction, mixture was passed through a bed of celite and column chromatographed using hexane and ethyl acetate gradient to obtained product as colorless oil.

General procedure for the cyclization reaction of acyclic compounds: Taken acyclic compound (0.25 mmol, 1 eq.) in round bottom flask and added 5 mL of dichloromethane via syringe followed by addition of *p*-toluenesulfonic acid monohydrate salt (0.25 mmol, 1 eq.). Reaction mixture was stirred at room temperature for 12 h under nitrogen atmosphere. Completion of the reaction was monitored by thin layer chromatography. Crude mixture was washed with brine and extracted using dichloromethane, dried under magnesium sulfate and column chromatographed using hexane and ethyl acetate gradient to obtain desired product as white solid.

methyl 2-((3-hydroxy-2-oxindolin-3-yl)methyl)acrylate and methyl 2-((3-hydroxy-2-oxindolin-3-yl)methyl)acrylate 3a(I-II). White amorphous solid (360 mg, 82%): ¹H NMR (CDCl₃) δ 9.06 (s, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 6.99 (t, J = 7.0 Hz, 1H), 6.84 (d, J = 7.5 Hz, 1H), 6.20 (s, 1H), 5.58 (s, 1H), 3.60 (s, 3H), 3.13 (d, J = 13.5 Hz, 1H), 2.80 (d, J = 13.5 Hz, 1H); ¹³C NMR δ 180.5, 168.2, 140.5, 134.2, 130.1, 130.0, 129.8, 125.0,

122.7, 110.8, 76.7, 52.3, 39.8.

4-methylene-*3H***-spiro**[**furan-2,3'-indoline**]-**2'**,**5**(*4H*)-**dione** and **4-methylene-***3H*-**spiro**[**furan-2,3'-indoline**]-**2'**,**5**(*4H*)-**dione 4a**(**I-II**). White amorphous solid (58 mg, 15%): ¹H NMR (CDCl₃) δ 8.54 (s, 1H), 7.36 – 7.30 (m, 2H), 7.11 (t, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.42 (t, *J* = 2.5 Hz, 1H), 5.82 (t, *J* = 2.5 Hz, 1H), 3.34 (dt, *J* = 17.5 Hz, 3 Hz, 1H), 3.14 (dt, *J* = 17.5 Hz, 3.0 Hz, 1H); ¹³C NMR δ 175.4, 169.1, 141.0, 132.8, 131.5, 127.2, 124.8, 124.0, 123.5, 111.0, 79.7, 36.6; IR (cm⁻¹) 2915, 2836, 1768, 1731, 1616, 1468, 1251, 1180, 1030; LCMS calcd for C₁₈H₁₃NO₃ m/z 215.0582, found: 216.05 (m + 1); HRMS (TOF MS EI⁺) calcd for C₁₂H₉NO₃ m/z 215.0582, found: 215.0583

4-methyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dion and 4-methyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione 6a(I-II). Colorless gel (13 mg, 55%): ¹H NMR (CDCl₃) δ 8.32 (s, 1H), 7.34 – 7.29 (m, 2H), 7.09 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 7.5 Hz, 1H), 3.16 – 3.11 (m, 1H), 2.61 (dd, J = 13.0 Hz, 9.5 Hz, 1H), 2.41 (dd, J = 13.0 Hz, 9.5 Hz, 2H), 1.51 (d, J = 7.3 Hz, 3H); ¹³C NMR δ 178.6, 175.4, 140.6, 131.2, 128.4, 124.3, 123.8, 110.9, 80.9, 38.8, 34.8, 16.6; IR (cm⁻¹) 1698, 1616, 1466, 1206, 749; LCMS calcd for C₁₈H₁₃NO₃ m/z 217.0739, found: 218.10 (m + 1); HRMS (TOF MS EI⁺) calcd for C₁₂H₁₁NO m/z 217.0739, found: 217.0742.

methyl 3-(3-hydroxy-2-oxindolin-3-yl)-2-methylpropanoate and methyl 3-(3-hydroxy-2-oxindolin-3-yl)-2-methylpropanoate and methyl 3-(3-hydroxy-2-oxindolin-3-yl)-2-methylpropanoate and methyl 3-(3-hydroxy-2-oxindolin-3-yl)-2-methylpropanoate 5a(I-IV) (2 inseparable set of compounds). Yellow gummy liquid (77 mg, 85%): ¹H NMR (CDCl₃) δ 8.18 (s, 1H), 8.12 (s, 1H) 7.40 (d, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 7.0 Hz, 1H), 7.26 - 7.23 (m, 2H), 7.08 - 7.05 (m, 2H), 6.89 - 6.86 (m, 2H), 4.03 (bs, 1H), 3.67 (s, 3H), 3.47 (s, 3H), 3.25 (bs, 1H), 2.99 - 2.92 (m, 1H), 2.62 - 2.52 (m, 3H), 1.88 - 1.83 (m, 2H), 1.16 - 1.14 (m, 6H); ¹³C NMR δ 180.81, 180.8, 177.7, 177.1, 140.9, 140.5, 131.2, 130.0, 129.9, 129.8, 125.2, 124.2, 123.1, 123.0, 110.9, 76.4, 76.0, 52.1, 51.9, 41.6, 35.2, 34.9, 29.9, 19.4, 19.2. LCMS calcd for C₁₃H₁₅NO₄ m/z 249.1001, found: 249.10.

4-methyl-3H-spiro[furan-2,3'-indoline]-2',5(4H)-dione and 4-methyl-3H-spiro[furan-2,3'-

indoline]-2',5(4*H*)-dione and 4-methyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione and 4methyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione 6a(I-IV) (2 inseparable set of compounds). White amorphous solid (20 mg, 92%): ¹H NMR (CDCl₃) δ 8.36 (bs, 1H), 8.22 (bs, 1H), 7.34 – 7.29 (m, 4H), 7.13 – 7.07 (m, 2H), 6.94 – 6.91 (m, 2H), 3.50 – 3.42 (m, 1H), 3.18 - 3.10 (m, 1H), 2.76 (dd, *J* = 13.0 Hz, 8.5 Hz, 1H), 2.61 (dd, *J* = 13.0 Hz, 9.5 Hz, 1H), 2.41 (dd, *J* = 13.0 Hz, 9.5.0 Hz, 1H), 2.16 (apparent triplet, *J* =12.5 Hz, 1H), 1.51 (d, *J* = 7.0 Hz, 3H), 1.40 (d, *J* = 7.5 Hz, 3H); ¹³C NMR δ 179.0, 178.7, 176.7, 176.0, 141.3, 140.7, 131.4, 131.2, 128.3, 126.7, 124.9, 124.2, 123.8, 123.8, 111.2, 110.9, 81.1, 80.8, 40.1, 38.7, 34.8, 34.4, 16.6, 15.7; LCMS calcd for C₁₂H₁₁NO₃ m/z 217.0739, found: 218.10 (m + 1).

1'-methyl-4-methylene-*3H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione and 1'-methyl-4methylene-*3H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione 4b(I-II). White amorphous solid (58 mg, 26%): ¹H NMR (CDCl₃) δ 7.42 (t, *J* = 7.5 Hz, 1H), 7.32 (d, *J* = 7.5 Hz, 1H), 7.13 (t, *J* = 7.5 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.41 (t, *J* = 2.5 Hz, 1H), 5.80 (t, *J* = 2.5 Hz, 1H), 3.30 (dt, *J* = 17.0 Hz, 2.5 Hz 1H), 3.21 (s, 3H), 3.11 (dt, *J* = 17.0 Hz, 3.0 Hz, 1H); ¹³C NMR δ 173.6, 169.1, 144.1, 133.0, 131.5, 126.9, 124.3, 123.8, 123.3, 109.1, 79.5, 36.5, 26.7; IR (cm⁻¹) 3040, 1768, 1721, 1610, 1466, 1371, 1261, 1123, 1092, 701; LCMS calcd for C₁₃H₁₁NO₃ m/z 229.0739, found: 230.10 (m + 1); HRMS (TOF MS EI⁺) calcd for C₁₃H₁₁NO₃ m/z 229.0739, found: 229.0742.

1',4-dimethyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione and 1',4-dimethyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione 6b(I-II). White amorphous solid (30 mg, 60%): ¹H NMR (CDCl₃) δ 7.40 – 7.37 (dt, *J* = 8 Hz, 1.0 Hz, 1H), 7.30 (d, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 7.5 Hz, 1H), 3.23 (s, 3H), 3.17 – 3.08 (m, 1H), 2.57 (dd, *J* = 13.0 Hz, 10.0 Hz, 1H), 2.39 (dd, *J* = 13.0 Hz, 9.5 Hz, 1H), 1.51 (d, *J* = 7.5 Hz, 3H); ¹³C NMR δ 178.6, 173.8, 143.7, 131.2, 128.0, 123.8, 123.7, 109.2, 80.8, 38.6, 34.9, 26.8, 16.6; IR (cm⁻¹) 3052, 2913, 1778, 1723, 1610, 1466, 1261, 1188, 1168, 1020, 991, 730, 700; LCMS calcd for C₁₃H₁₃NO₃ m/z 231.0895, found: 232.10 (m + 1); HRMS (TOF MS EI⁺) calcd for C₁₃H₁₃NO₃ m/z 231.0895.

methyl 3-(3-hydroxy-1-methyl-2-oxindolin-3-yl)-2-methylpropanoate and methyl 3-(3-hydroxy-1-methyl-2-oxindolin-3-yl)-2-methylpropanoate and methyl 3-(3-hydroxy-1-methyl-2-oxindolin-3-yl)-2-methylpropanoate and methyl 3-(3-hydroxy-1-methyl-2-oxindolin-3-yl)-2-methylpropanoate 5b(I-IV) (2 inseparable set of compounds). Colorless gel (38 mg, 75%): ¹H NMR (CDCl₃) δ 7.42 – 7.30 (m, 4H), 7.10 – 7.07 (m, 2H), 6.83 – 6.82 (m, 2H), 4.06 (bs, 1H), 3.64 (s, 3H), 3.42 (s, 3H), 3.39 (bs, 1H), 3.18 (s, 3H), 3.16 (s, 3H), 2.86 – 2.80 (m, 1H), 2.59 – 2.43 (m, 3H), 1.91 – 1.85 (m, 2H), 1.14 – 1.11 (m, 6H); ¹³C NMR δ 178.0, 177.8, 177.6, 176.8, 143.7, 143.2, 130.7, 130.0, 129.9, 129.3, 125.0, 123.8, 123.2, 123.1, 108.6, 76.0, 75.5, 52.2, 51.9, 41.9, 35.3, 35.0, 26.4, 26.3, 19.3, 19.2; LCMS calcd for C₁₄H₁₇NO₄ m/z 263.1158, found: 264.10 (m + 1).

1',4-dimethyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione and 1',4-dimethyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione and 1',4-dimethyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione 6b(I-IV) (2 inseparable set of compounds). Off-white solid (28 mg, 95%): ¹H NMR (CDCl₃) δ 7.42 – 7.30 (m, 4H), 7.16 – 7.09 (m, 2H), 6.88 – 6.85 (m, 2H), 3.52 – 3.47 (m, 1H), 3.23 (s, 3H), 3.20 (s, 3H), 3.15 - 3.08 (m, 1H), 2.70 (dd, *J* = 13.0 Hz, 9.0 Hz, 1H), 2.57 (dd, *J* = 13.0 Hz, 10.0 Hz, 1H), 2.29 (dd, *J* = 13.0 Hz, 9.5 Hz, 1H), 2.12 (apparent triplet, *J* = 13.0 Hz, 1H), 1.52 (d, *J* = 7.0 Hz, 3H), 1.39 (d, *J* = 7.5 Hz, 3H); ¹³C NMR δ 179.0, 178.6, 174.5, 173.8, 144.2, 143.7, 131.3, 131.1, 128.0, 126.4, 124.5, 123.8, 123.7, 123.7, 109.2, 109.0, 80.8, 80.4, 39.9, 38.6, 34.9, 34.5, 26.8, 26.5, 16.6, 15.7; LCMS calcd for C₁₃H₁₃NO₃ m/z 231.0895, found: 232.10 (m + 1);

1',4',7'-trimethyl-4-methylene-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione and 1',4',7'-trimethyl-4-methylene-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione 4c(I-II). White amorphous solid (38 mg, 96%): ¹H NMR (CDCl₃) δ 8.80 (s, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.79 (d, *J* = 7.5 Hz, 1H), 6.44 (t, *J* = 2.5 Hz, 1H), 5.81 (t, *J* = 2.5 Hz, 1H), 3.32 – 3.22 (m, 2H), 2.23 (s, 3H) 2.22 (s, 3H); ¹³C NMR δ 176.5, 169.5, 139.8, 133.7, 133.1, 132.5, 125.8, 124.2, 123.6, 117.9, 81.0, 34.4, 29.9, 17.5, 16.1; IR (cm⁻¹) 1768, 1725, 1599, 1282, 1262, 1243, 1152, 1028; LCMS calcd for C₁₄H₁₃NO₃ m/z 243.0895, found: 244.10 (m + 1); HRMS (TOF MS EI⁺) calcd for C₁₄H₁₃NO₃ m/z 243.0895, found: 243.0895.

1',4,4',7'-tetramethyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione and 1',4,4',7'tetramethyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione 6c(I-II) (67% yield). White amorphous solid 17 mg, 67%): ¹H NMR (CDCl₃) δ 9.16 (s, 1H), 7.03 (d, *J* = 8.5 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 3.10 – 3.03 (m, 1H), 2.78 – 2.71 (m, 1H), 2.34 - 2.29 (m, 1H), 2.26 (s, 3H), 2.24 (s, 3H), 1.59 (d, *J* = 7.0 Hz, 3H); ¹³C NMR δ 179.7, 177.8, 139.8, 133.1, 132.3, 125.7, 125.2, 117.9, 82.6, 36.0, 35.2, 18.3, 17.5, 16.0; IR (cm⁻¹) 2920, 1778, 1721, 1594, 1453, 1260, 1193, 1019, 731; LCMS calcd for C₁₄H₁₅NO₃ m/z 245.1052, found: 246.10 (m + 1); HRMS (TOF MS EI⁺)calcd for C₁₄H₁₅NO₃ m/z 245.1052, found: 245.1061.

1',4,4',7'-tetramethyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione and 1',4,4',7'-tetramethyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione and 1',4,4',7'-tetramethyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione and 1',4,4',7'-tetramethyl-3*H*-spiro[furan-2,3'-indoline]-2',5(4*H*)-dione 6c(I-IV) (2 inseparable set of compounds). White amorphous solid (12 mg, 74%): ¹H NMR (CDCl₃) δ 7.71 – 7.70 (m, 1H), 7.54 – 7.52 (m, 1H), 7.03 (d, *J* = 6.0 Hz, 1H), 6.78 (d, *J* = 6.5 Hz, 1H), 4.25 – 4.19 (m, 2H), 3.45 – 3.40 (m, 1H), 3.07 – 3.04 (m, 1H), 2.77 – 2.67 (m, 1H), 2.37 – 2.23 (m, 8H), 1.59 (d, *J* = 6.0 Hz, 3H), 1.40 (d, *J* = 6.0 Hz, 3H); ¹³C NMR δ 179.6, 179.2, 177.5, 177.2, 139.7, 139.5, 132.34, 132.29,131.1, 129.0, 125.8, 125.7, 125.2, 123.5, 117.8, 117.7, 82.5, 82.1, 37.5, 36.0, 35.2, 33.9, 18.3, 17.9,17.5, 16.0, 15.7, 15.2. LCMS calcd for C₁₄H₁₅NO₃ m/z 245.1052, found: 246.10 (m + 1);

LC-MS for the compounds was generated on an Agilent 1260 LC-MSD system with UV detector (214 nm and 254 nm) and an Agilent 6130 quadrupole mass detector.

Solvent A: 99.99% Water and 0.01% TFA Solvent B: 99.99% CH3CN with 0.01% TFA Method: 5 - 95% CH₃CN in 5 minutes, 40 psi, 300dC Column used: Zorbax 300SB-C18, Narrow-Bore 2.1 X 150mm 5 – micron (PN 883750-902

Compd	Retention time (min)
4a(I-II)	2.70
6a(I-II)	2.67
5a(I-IV)	2.33 and 2.42
6a(I-IV)	2.66 and 2.82
4b(I-II)	2.96
6b(I-II)	2.94
5b(I-IV)	2.53 and 2.63
6b(I-IV)	2.95 and 3.10
4c(I-II)	3.50
6c(I-II)	3.52
5c(I-IV)	2.71 and 2.92
6c(I-IV)	3.52 and 3.58

Compound 4a(I-II): ¹H-NMR

Compound 4a(I-II): ¹³C-NMR

Compound 6a(I-II): ¹H-NMR

Compound 6a(I-II): ¹³C-NMR

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Compound 6a(I-II): 1D-NOE difference Saturation Irradiation: 7.34 ppm Saturation Selected Frequency: 1375.7 Selected Irradiation Power: -1 Exponential Line Broadening: 0 Hz

Compound 6a(I-IV): ¹H-NMR

Compound 6a(I-IV): ¹³C-NMR

Compound 6a(I-IV): gCOSY

Compound 6a(I-IV): NOESY

2D-NOESY

Compound 6a(I-IV): 1D- NOE difference Saturation Irradiation: 7.3 ppm Saturation Selected Frequency: 1374.0 Selected Irradiation Power: -1 Exponential Line Broadening: 0 Hz

Compound 6a(I-IV): 1D- NOE difference Saturation Irradiation: 7.3 ppm Saturation Selected Frequency: 1374.0 Selected Irradiation Power: -1 Exponential Line Broadening: 3 Hz

Compound 6a(I-IV): 1D- NOE difference Saturation Irradiation: 7.3 ppm Saturation Selected Frequency: 1374.0 Selected Irradiation Power: -1 Exponential Line Broadening: 5 Hz

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Compound 4b(I-II): ¹H-NMR

Compound 4b(I-II): ¹³C-NMR

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Compound 6b(I-II): ¹H-NMR

Compound 6b(I-II): ¹³C-NMR

Compound 6b(I-IV): ¹H-NMR

Compound 6b(I-IV): ¹³C-NMR

Compound 6b(I-IV): 1D-NOE difference Saturation Irradiation: 7.34 ppm Saturation Selected Frequency: 1375.7 Selected Irradiation Power: -1 Exponential Line Broadening: 0 Hz

Representative LCMS trace for 6b(I-II) and 6b(I-IV)

1 ml/min; 5-95% ACN in 5 min; 9 L/min, 40 psi, 300dC

```
Acq. Operator
            : SK
Acq. Instrument : Agilent 1260 LC-MSD-ELSD Syst
                                         Location : Vial 2
Injection Date : 10/29/2012 11:02:45 AM
                                              Inj: 1
                                        Inj Volume : 10.000 µl
             : C:\CHEM32\1\METHODS\ORG CPD.M
Acq. Method
Last changed
             : 10/29/2012 10:30:45 AM by SK
Analysis Method : C:\CHEM32\1\METHODS\ORG CPD.M
Last changed
             : 10/30/2012 10:27:09 AM by SK
               (modified after loading)
Method Info
             : Peptides Zorbax 300SB-C18
```

Sample Info : 1 ml/min; 5-95% ACN in 5 min; 9 L/min, 40 psi, 300dC

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Compound 4c(I-II): ¹H-NMR

Compound 4c(I-II): ¹³C-NMR

Compound 6c(I-II): ¹H-NMR

Compound 6c(I-II): ¹³C-NMR

Compound 6c(I-II): 1D-NOE difference Saturation Irradiation: 2.2 ppm Saturation Selected Frequency: -1666.6 Selected Irradiation Power: -1 Exponential Line Broadening: 0 Hz

Compound 6c(I-IV): 1D-NOE difference Saturation Irradiation: 2.2 ppm Saturation Selected Frequency: -1678.2 Selected Irradiation Power: -1 Exponential Line Broadening: 0 Hz

Saturated signal