ELECTRONIC SUPPLEMENTARY INFORMATION

A Vinylcyclobutane Substrate Designed as a Cyclopropylcarbinyl Radical Probe

Ryan M. Bell, Carlton W. Christie, Joseph A. Mohrbacher III and Phyllis A. Leber*Department of Chemistry, Franklin \& Marshall College, Lancaster PA 17604-3003
Table of Contents S1
General Experimental S2
Synthesis and Spectral Characterization
Spiro[bicyclo[3.2.0]hept-2-ene-6,1'-cyclopropane] (7) S4
Spiro[bicyclo[2.2.1]hept-5-ene-2,1'-cyclopropane] (8) S9
2-Methylene-cis-bicyclo[3.3.0]oct-6-ene (9) S13
2-Methylenebicyclo[3.2.1]oct-6-ene (10) S18
1- and 2-(But-1-en-2-yl)-1,3-cyclopentadiene (11b, 11c) S20
1- and 2-(Spiro[1-ethyl-1,1'-cyclopropane])-1,3-cyclopentadiene (12b, 12c) S22
Time-dependent Concentration Kinetics
Kinetic Data/Thermal Profile for Thermal Reactions of Compound 7 S26
Solver curve fit for Compounds 7 and $\mathbf{8}$ S27
References S28

General Experimental

Kinetics. Thermal reactions of hydrocarbon 9 were carried out at $275.0^{\circ} \mathrm{C}$ (with temperature control to $\pm 0.1^{\circ} \mathrm{C}$ provided by a Bayley Precision Temperature Controller Model 124) in based-treated capillary tubes immersed in a molten salt bath (composed of a eutectic mixture of NaNO_{2} and KNO_{3}). Temperatures were measured with a Omega DP11 thermocouple with a digital readout to $\pm 0.1^{\circ} \mathrm{C}$. Run times were measured to $\pm 0.01 \mathrm{~min}$ with a Precision Solid State Time-it. The internal standard (ISTD) was t-butylcyclohexane. Thermolysis samples were analyzed on an HP 5890A GC equipped with an HP cross-lined methyl silicone column (50 m x 0.2 mm i.d. $\times 0.10 \mu \mathrm{~m}$ film thickness) operating at an initial temperature of $60^{\circ} \mathrm{C}$ held for 1 min followed by a temperature ramp of $0.1^{\circ} \mathrm{C} / \mathrm{min}$ to a maximum temperature of $100^{\circ} \mathrm{C}$. Retention times (min) were as follows: $\mathbf{4}$ (7.0), $\mathbf{3}$ (7.5), $\mathbf{8}$ (9.4), 10 (11.3), 7 (11.6), 9 (11.9), 12b/12c (12.2,12.5), 11b/11c (14.8, overlapping peaks), ISTD (16.5).

General Synthesis. All commercial materials were used as purchased except that methyltriphenylphosphonium bromide was recrystallized ${ }^{1}$ prior to use. Preparative GC was accomplished on a GOW MAC® Model 350 GC equipped with a $12^{\prime} \times 1 / 4^{\prime \prime}$ DC710 column (Column A) or a $8^{\prime} \times 1 / 4^{\prime \prime}$ DC710 column (Column B).

NMR Analysis. NMR spectra were acquired on a Varian Inova 500 operating at 499.7 MHz for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and 125.7 MHz for ${ }^{13} \mathrm{C}-\mathrm{NMR}$.

Catalytic Hydrogenation Reactions. In selected cases NMR samples of olefins or diolefins dissolved in CDCl_{3} were subjected to catalytic hydrogenation in a medium pressure Parr hydrogenation apparatus using $10 \% \mathrm{Pd}-\mathrm{C}$ as a catalyst.

Selective Cyclopropanation Reactions. To $15 \mathrm{~mL}(15 \mathrm{mmol})$ of 1.0 M diethylzinc in hexanes under argon, $1.5 \mathrm{~g}(14 \mathrm{mmol})$ diolefin $\mathbf{3}$ or $\mathbf{4}$ was added extremely slowly via syringe. After cooling the flask to $-5^{\circ} \mathrm{C}$ in a salt bath, diiodomethane ($1.2 \mathrm{~mL}, 15 \mathrm{mmol}$) was added via syringe. Aliquots were withdrawn periodically to monitor the course of the reaction so that
additional increments of diethylzinc and diiodomethane could be added to push the reaction to completion, thus allowing for more efficient purification by preparative GC. To quench the reaction, 2 mL of 1 M aqueous HCl were added. The reaction mixture was poured into 50 mL cold water and extracted several times with pentane. The combined organic extracts were washed with water and brine and then dried over magnesuium sulfate. The organic layer was concentrated by short-path distillation to afford a mixture of unreacted starting material as well as monocyclopropanated and dicyclopropanated products.

Classic Wittig reactions. All Wittig reactions except for the preparation of $\mathbf{3}$ from bicyclo[3.2.0]hept-2-en-6-one were accomplished using a classic Wittig protocol, but substituting $\mathrm{CH}_{3} \mathrm{Li} / \mathrm{Et}_{2} \mathrm{O}$ for $\mathrm{BuLi} /$ hexanes as base and anhydrous THF for $\mathrm{Et}_{2} \mathrm{O}$ as solvent. ${ }^{2}$ Into an oven-dried flask under argon was first added a sample of $1.80 \mathrm{~g}(5.04 \mathrm{mmol})$ $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ followed by 30 mL anhydrous THF. At $-50^{\circ} \mathrm{C}, 3.1 \mathrm{~mL}$ of $1.6 \mathrm{M} \mathrm{CH}_{3} \mathrm{Li} / \mathrm{Et}_{2} \mathrm{O}$ was added and then stirred for 30 min before allowing the reaction mixture to warm to rt. After cooling again to $-50^{\circ} \mathrm{C}, 5.0 \mathrm{mmol}$ of a selected ketone was added dropwise. The reaction mixture was allowed to warm to rt and stirred overnight. The reaction mixture was quenched with cold water and extracted with pentane. The organic layer was washed extensively with water (to remove THF) and then dried over MgSO_{4}. Removal of pentane via short-path distillation afforded crude hydrocarbon product.

Synthesis and Spectral Characterization

Scheme S1. Synthetic Scheme for the preparation of compound 7, its precursor 3, and a side product 13.

6-Methylenebicyclo[3.2.0]hept-2-ene (3). The Corey modification ${ }^{3}$ of the Wittig reaction was employed for the conversion of cyclobutanone bicyclo[3.2.0]hept-2-en-6-one to the corresponding methylenecyclobutane 6-methylenebicyclo[3.2.0]hept-2-ene 3. A 1.27 g (31.8 mmol) sample of $60 \% \mathrm{NaH}$ by weight was transferred to an oven-dried apparatus under argon and rinsed with three $5-\mathrm{mL}$ portions of pentane. After the addition of 14 mL of anhydrous DMSO the resultant mixture was heated at $80^{\circ} \mathrm{C}$ for 1 h , during which time the reaction assumed a green coloration. Upon cooling the reaction mixture in an ice bath, a solution of 10.2 g (28.5 mmol) recrystallized methyltriphenylphosphonium bromide in 28 mL of anhydrous DMSO was added dropwise via an addition funnel. During a 1 h stirring period at rt the reaction mixture slowly assumed a milky yellow appearance as the ylid gradually formed. A sample of $2.00 \mathrm{~g}(18.5 \mathrm{mmol})$ of bicyclo[3.2.0]hept-2-en-6-one dissolved in 9 mL of anhydrous DMSO was slowly added to the reaction mixture, which was subsequently stirred at $40^{\circ} \mathrm{C}$ for 8 h and then at rt overnight. The reaction was quenched with 40 mL of water and extracted twice with pentane. The combined organic layers were washed ten times
with water and once with brine, and then dried over MgSO_{4}. Removal of pentane by shortpath distillation resulted in 0.75 g (38% yield) of crude product $3 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.78(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{dd}, 1 \mathrm{H}), 4.81(\mathrm{dd}, 1 \mathrm{H}), 3.49(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.27(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.97$ $(\mathrm{qt}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.5(=\mathrm{C}), 133.5$ $(=\mathrm{CH}), 131.3(=\mathrm{CH}), 107.3\left(=\mathrm{CH}_{2}\right), 45.5(\mathrm{CH}), 42.5(\mathrm{CH}), 39.5\left(\mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right)$. FTIR (neat) $v_{\max } 3051,2917,2843,1672,1606,876,708 \mathrm{~cm}^{-1}$. LRMS (EI) $m / z 106\left(\mathrm{M}^{+}, \mathrm{C}_{8} \mathrm{H}_{10}, 5\right)$, 105 (19), 91 (100), 78 (60), 66 (68).

Spiro[bicyclo[3.2.0]hept-2-ene-6, 1^{\prime}-cyclopropane] (7). A 0.75 g sample of compound $\mathbf{3}$ was subjected to a selective cyclopropanation procedure, as described in the general experimental section. Under optimal conditions only 10-13\% of starting material 3 remained along with $45-50 \%$ of product $7,2-4 \%$ undesired monocyclopropanated product, and $35-40 \%$ dicyclopropanated product 13. Preparative GC on Column B at $94^{\circ} \mathrm{C}$ afforded both compound 7 and dicyclopropanated product $\mathbf{1 3}$, which was thermally stable at $275^{\circ} \mathrm{C}$. Compound 7: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{br} \mathrm{m}, 1 \mathrm{H})$, $2.90(\mathrm{t}, 1 \mathrm{H}), 2.44(\mathrm{dd}, 1 \mathrm{H}), 2.35(\mathrm{qq}, 1 \mathrm{H}), 2.10(\mathrm{br} \mathrm{d}, 1 \mathrm{H}), 1.66(\mathrm{dd}, 1 \mathrm{H}), 0.54($ pent, 1 H$), 0.40$ (pent, 1H), $0.33(\mathrm{~m}, 1 \mathrm{H}), 0.12(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.5(=\mathrm{CH}), 130.6$ $(=\mathrm{CH}), 42.2(\mathrm{CH}), 41.8(\mathrm{CH}), 37.1\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 22.2(\mathrm{C}), 12.3\left(\mathrm{CH}_{2}\right), 8.8\left(\mathrm{CH}_{2}\right)$. FTIR (neat) $v_{\max } 3050,2919,1612,718 \mathrm{~cm}^{-1}$. LRMS (EI) $m / z 120\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{12}, 2\right), 105$ (33), 92 (74), 91 (100), 79 (26), 66 (20); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12}$ 120.0939, found 120.0933.

Compound 13: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.81(\mathrm{dd}, 1 \mathrm{H}), 2.28(\mathrm{brm}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H})$, $1.97(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{dd}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H}), 0.52(\mathrm{dt}, 1 \mathrm{H}), 0.46(\mathrm{~m}, 1 \mathrm{H}), 0.42(\mathrm{~m}$, $1 \mathrm{H}), 0.31$ (pent, 1H), 0.22 (pent, 1H), -0.31 (dd, 1H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 45.2$ $(\mathrm{CH}), 39.5(\mathrm{CH}), 34.2\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 24.6(\mathrm{CH}), 22.3(\mathrm{C}), 20.1(\mathrm{CH}), 14.5\left(\mathrm{CH}_{2}\right), 11.9$
$\left(\mathrm{CH}_{2}\right), 9.2\left(\mathrm{CH}_{2}\right)$. LRMS (EI) $m / z 134\left(\mathrm{M}^{+}, \mathrm{C}_{10} \mathrm{H}_{14}, 1\right), 119(33), 105(40), 93(40), 92(31), 91$ (100).

Fig S1a. ${ }^{1}$ H NMR Spectrum of 6-Methylenebicyclo[3.2.0]hept-2-ene (3).

Fig S1b. ${ }^{13}$ C NMR Spectrum of 6-Methylenebicyclo[3.2.0]hept-2-ene (3).

Fig S1c. ${ }^{1}$ H NMR Spectrum of Spiro[bicyclo[3.2.0]hept-2-ene-6,1'-cyclopropane] (7).

Fig S1d. ${ }^{13}$ C NMR Spectrum of Spiro[bicyclo[3.2.0]hept-2-ene-6, 1'-cyclopropane] (7).

Fig S1e. ${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 13.

Fig S1f. ${ }^{13}$ C NMR Spectrum of Compound 13.

Scheme S2. Synthetic Scheme for the preparation of Compound $\mathbf{8}$ and its precursors.

5-Methylenebicyclo[2.2.1]hept-2-ene (4). Oxidation of 5-norbornen-2-ol to norbornenone was accomplished using chromium oxide in pyridine. ${ }^{4}$ Subjecting norbornenone to the classic Wittig methodology, as described in the general experimental section, afforded 5-methylene-2-norbornene 4 in good yield. Compound 4: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.12(\mathrm{dd}, 1 \mathrm{H})$, $6.06(\mathrm{dd}, 1 \mathrm{H}), 4.98(\mathrm{dd}, 1 \mathrm{H}), 4.71(\mathrm{dd}, 1 \mathrm{H}), 3.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 1.75$ $(\mathrm{m}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~d}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.7(=\mathrm{C}), 136.2(=\mathrm{CH})$, $134.1(=\mathrm{CH}), 103.2\left(=\mathrm{CH}_{2}\right), 50.8(\mathrm{CH}), 50.0\left(\mathrm{CH}_{2}\right), 41.9(\mathrm{CH}), 33.5\left(\mathrm{CH}_{2}\right)$. LRMS (EI) m / z $106\left(\mathrm{M}^{+}, \mathrm{C}_{8} \mathrm{H}_{10}, 46\right), 91$ (100), 78 (52), 66 (87).

Spiro[bicyclo[2.2.1]hept-5-ene-2,1'-cyclopropane] (8). A selective cyclopropanation reaction performed on compound $\mathbf{4}$ resulted in product $\mathbf{8}$ in lesser selectivity than observed for compound 7. The ratio of desired monocyclopropanated product $\mathbf{8}$ to undesired monocyclopropanated product to dicyclopropanated product was $30: 9: 54$ with 7% unreacted
4. Preparative GC on Column B at $94^{\circ} \mathrm{C}$ afforded compound $\mathbf{8}$ in high purity. Compound $\mathbf{8}$:
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.18(\mathrm{dd}, 1 \mathrm{H}), 6.14(\mathrm{dd}, 1 \mathrm{H}), 2.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$,
$1.69(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{dd}, 1 \mathrm{H}), 0.54(\mathrm{~m}, 1 \mathrm{H}), 0.52(\mathrm{~m}, 1 \mathrm{H}), 0.43($ pent, 1 H$), 0.31$
$(\mathrm{m}, 1 \mathrm{H}), 0.12(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.6(=\mathrm{CH}), 135.4(=\mathrm{CH}), 50.6(\mathrm{CH})$,
$49.7\left(\mathrm{CH}_{2}\right), 43.7(\mathrm{CH}), 38.0\left(\mathrm{CH}_{2}\right), 23.4(\mathrm{C}), 11.8\left(\mathrm{CH}_{2}\right), 9.6\left(\mathrm{CH}_{2}\right)$. FTIR (neat) $v_{\max } 3150$, 3070, 2980, $720 \mathrm{~cm}^{-1}$. LRMS (EI) $m / z 120\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{12}, 13\right), 105$ (45), 92 (38), 91 (67), 79 (28), 66 (100).

Samples of compound $\mathbf{8}$ that were heated up to 40 h at $275^{\circ} \mathrm{C}$ under identical conditions to those described in the General Experimental SI section for the thermal reactions of compound $\mathbf{7}$ showed that compound $\mathbf{8}$ was thermally stable at $275^{\circ} \mathrm{C}$. The ratio of compound $\mathbf{8}$ to ISTD (8:ISTD) was invariant over 40 h at $275^{\circ} \mathrm{C}: 2.99 \pm 0.06$.

- Pentane

Fig S2a. ${ }^{1}$ H NMR Spectrum of 2-Methylenebicyclo[2.2.1]hept-5-ene (4).

Fig S2b. ${ }^{13}$ C NMR Spectrum of 2-Methylenebicyclo[2.2.1]hept-5-ene (4).

Fig S2c. ${ }^{1} \mathrm{H}$ NMR Spectrum of Spiro[bicyclo[2.2.1]hept-5-ene-2, 1'-cyclopropane] (8).

Fig S2d. ${ }^{13}$ C NMR Spectrum of Spiro[bicyclo[2.2.1]hept-5-ene-2,1'-cyclopropane] (8).

53%

88\%
12%

Scheme S3. Synthetic Scheme for the preparation of Compound 9, its precursors, and its hydrogenation products.
cis-Bicyclo[3.3.0]oct-6-en-2-one. The Tiffeneau-Demjanov rearrangement conditions devised by Della and Pigou for the ring expansion of bicyclo[2.1.1]hexan-2-one ${ }^{5}$ was successfully applied to $2.05 \mathrm{~g}(19.0 \mathrm{mmol})$ of bicyclo[3.2.0]hept-2-en-6-one to yield a mixture of cis-bicyclo[3.3.0]oct-6-en-2-one and cis-bicyclo[3.3.0]oct-6-en-3-one, 1.22 g (10.0 mmol). FTIR (neat) $v_{\max } 3046,2933,1735,721,685 \mathrm{~cm}^{-1}$. Preparative GC on Column A at $90^{\circ} \mathrm{C}$ afforded cis-bicyclo[3.3.0]oct-6-en-2-one, the first eluting peak, in 99% purity, and cis-
bicyclo[3.3.0] oct-6-en-3-one in 90\% purity. cis-Bicyclo[3.3.0]oct-6-en-2-one: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.71(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.63(\mathrm{br} \mathrm{d}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H})$, $2.55(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $224.1(\mathrm{C}=\mathrm{O})$, $133.7(=\mathrm{CH})$, $131.1(=\mathrm{CH}), 48.4(\mathrm{CH}), 47.7(\mathrm{CH}), 37.4\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 25.3$ $\left(\mathrm{CH}_{2}\right)$. LRMS (EI) $m / z 122\left(\mathrm{M}^{+}, \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}, 78\right), 94$ (38), 79 (35), 66 (100); HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$ 122.0732, found 122.0723. cis-Bicyclo[3.3.0]oct-6-en-3-one: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.63(\mathrm{br} \mathrm{s}$, 1 H), 3.42 (br s, 1H), 2.97 (br pent, 1H), $2.72(\mathrm{~m}, 1 \mathrm{H}), 2.51$ (sextet, 2H), 2.23 (br dd, 2H), 1.99 $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 220.2(\mathrm{C}=\mathrm{O}), 134.1(=\mathrm{CH}), 130.5(=\mathrm{CH}), 46.3(\mathrm{CH})$, $44.9\left(\mathrm{CH}_{2}\right), 42.6\left(\mathrm{CH}_{2}\right), 40.1\left(\mathrm{CH}_{2}\right), 37.1(\mathrm{CH})$. LRMS (EI) $\mathrm{m} / \mathrm{z} 122\left(\mathrm{M}^{+}, \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}, 81\right), 80$ (60), 79 (100).

2-Methylene-cis-bicyclo[3.3.0]oct-6-ene (9). A classic Wittig reaction on $0.60 \mathrm{~g}(4.92 \mathrm{mmol})$ of the isomeric ketone mixture afforded $0.20 \mathrm{~g}(1.66 \mathrm{mmol})$ of the corresponding hydrocarbons. FTIR (neat) $v_{\max } 3054,2923,1636,721,695 \mathrm{~cm}^{-1}$. Preparative GC on Column B at $110^{\circ} \mathrm{C}$ afforded 2-methylene-cis-bicyclo[3.3.0]oct-6-ene, the first eluting peak, in 97% purity and 3-methylene-cis-bicyclo[3.3.0]oct-6-ene in 90\% purity. Compound 9: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.66(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~d}, 1 \mathrm{H}), 4.81(\mathrm{~d}, 1 \mathrm{H}), 3.30(\mathrm{br} \mathrm{m}, 1 \mathrm{H})$, $3.08(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.77(\mathrm{qq}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.8(=\mathrm{C}), 133.9(=\mathrm{CH}), 130.1(=\mathrm{CH}), 104.6\left(=\mathrm{CH}_{2}\right)$, $51.1(\mathrm{CH})$, $45.3(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right)$. LRMS (EI) $m / z 120\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{12}, 82\right), 105$ (96), 92 (70), 91 (100), 79 (59); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12}$ 120.0939, found 120.0935. Hydrogenation of the NMR sample of compound 9 gave an isomeric mixture of endo-2methylbicyclo[3.3.0]octane and exo-2-methylbicyclo[3.3.0]octane in a 64:36 ratio, respectively. ${ }^{13} \mathrm{C}$ NMR data for these two saturated hydrocarbons match those reported in the literature. ${ }^{6}$ endo-2-Methylbicyclo[3.3.0] octane: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 47.8(\mathrm{CH})$, $43.0(\mathrm{CH}), 37.7(\mathrm{CH}), 35.5\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}, 2\right.$ overlapping peaks), $15.4\left(\mathrm{CH}_{3}\right)$. LRMS (EI) $m / z 124\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{16}, 14\right), 109(6), 96(39), 82(87), 81$ (68), $67(100)$.
exo-2-Methylbicyclo[3.3.0]octane: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 51.8(\mathrm{CH}), 43.3(\mathrm{CH}), 42.3$ $(\mathrm{CH}), 36.0\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 19.8\left(\mathrm{CH}_{3}\right)$. LRMS (EI) $m / z 124\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{16}, 20\right), 109$ (10), 96 (44), 82 (94), 81 (99), 67 (100).
3-Methylene-cis-bicyclo[3.3.0]oct-6-ene: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.64(\mathrm{~m}, 1 \mathrm{H}), 5.55$
$(\mathrm{m}, 1 \mathrm{H}), 4.78(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{br} \mathrm{t}, 1 \mathrm{H}), 2.77(\mathrm{br}$ pent, 1 H$), 2.54(\mathrm{~m}, 3 \mathrm{H}), 2.13$ (dd, 2H), $2.01(\mathrm{dd}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0$ (=C), 134.6 (=CH), 129.4 $(=\mathrm{CH}), 104.9\left(=\mathrm{CH}_{2}\right), 50.0(\mathrm{CH}), 41.5\left(\mathrm{CH}_{2}\right), 40.4\left(\mathrm{CH}_{2}\right), 40.2(\mathrm{CH}), 38.2\left(\mathrm{CH}_{2}\right)$. LRMS (EI) $m / z 120\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{12}, 50\right), 105$ (100), 92 (25), 91 (37), 79 (41); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12}$ 120.0939 , found 120.0930 .

Hydrogenation of the NMR sample of 3-methylene-cis-bicyclo[3.3.0]oct-6-ene gave an isomeric mixture of endo-3-methylbicyclo[3.3.0]octane and exo-3-methylbicyclo[3.3.0]octane in an 88:12 ratio, respectively. endo-3-Methylbicyclo[3.3.0]octane (first eluting peak): ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 43.6\left(2 \mathrm{CH}_{2}\right), 43.5(2 \mathrm{CH}), 36.8(\mathrm{CH}), 33.3\left(2 \mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right)$, $19.2\left(\mathrm{CH}_{3}\right)$. LRMS (EI) $m / z 124\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{16}, 9\right), 109(10), 96(36), 82(31), 81(100), 67(46)$. exo-3-Methylbicyclo[3.3.0]octane (second eluting peak): ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 42.9$ $(2 \mathrm{CH}), 42.3\left(2 \mathrm{CH}_{2}\right), 35.5(\mathrm{CH}), 34.9\left(2 \mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 19.4\left(\mathrm{CH}_{3}\right)$. LRMS (EI) $\mathrm{m} / \mathrm{z} 124$ $\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{16}, 15\right), 109$ (6), 96 (28), 82 (85), 81 (71), 67 (100).

Fig S3a. ${ }^{1}$ H NMR Spectrum of cis-Bicyclo[3.3.0]oct-6-en-2-one.

Fig S3b. ${ }^{13} \mathrm{C}$ NMR Spectrum of cis-Bicyclo[3.3.0]oct-6-en-2-one.

Fig S3c. ${ }^{1}$ H NMR Spectrum of 2-Methylene-cis-bicyclo[3.3.0]oct-6-ene (9).

Fig S3d. ${ }^{13} \mathrm{C}$ NMR Spectrum of 2-Methylene-cis-bicyclo[3.3.0]oct-6-ene (9).

$\xrightarrow[\substack{\text { (2) } \mathrm{LAH} / \mathrm{Et}_{2} \mathrm{O}}]{\text { (1) } \mathrm{TMSCN} / \mathrm{ZnI}_{2} \text { (cat) }}$
(3) $\mathrm{NaNO}_{2}(\mathrm{aq}) / \mathrm{HOAc}$

Scheme S4. Synthetic Scheme for the preparation of Compound 10 and its precursor.

2-Methylenebicyclo[3.2.1]oct-6-ene (10). Norbornenone was subjected to a TiffeneauDemjanov rearrangement using the Della and Pigou methodology ${ }^{5}$ to afford a 1:1 mixture of two known isomeric ketones $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}\right) .{ }^{7}$ Treatment of the isomeric mixture under classic Wittig conditions resulted in compound $\mathbf{1 0}^{8}$ and its symmetric isomer, ${ }^{9}$ both known compounds. Preparative GC separation on column A at $115^{\circ} \mathrm{C}$ gave 2methylenebicyclo[3.2.1] oct-6-ene (10) in ca. 91% purity by GC. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.93(\mathrm{dd}, 1 \mathrm{H}), 5.89(\mathrm{dd}, 1 \mathrm{H}), 4.64(\mathrm{t}, 1 \mathrm{H}), 4.51(\mathrm{t}, 1 \mathrm{H}), 3.02(\mathrm{dd}, 1 \mathrm{H}), 2.65($ sextet, 1 H$), 2.39$ $(\mathrm{m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.9$ $(=\mathrm{C}), 133.6(=\mathrm{CH}), 133.3(=\mathrm{CH}), 105.8\left(=\mathrm{CH}_{2}\right), 49.0(\mathrm{CH}), 46.6\left(\mathrm{CH}_{2}\right), 39.2(\mathrm{CH}), 27.6$ $\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right)$. LRMS (EI) $m / z 120\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{12}, 49\right), 105(48), 92(100), 91$ (86), 79 (38).

Fig S4a. ${ }^{1} \mathrm{H}$ NMR Spectrum of 2-Methylenebicyclo[3.2.1]oct-6-ene (10).

Fig S4b. ${ }^{13}$ C NMR Spectrum of 2-Methylenebicyclo[3.2.1]oct-6-ene (10).

Scheme S5. Synthetic Scheme for the preparation of Compounds 11b and 11c, their precursor 6-ethyl-6-methylfulvene, and their hydrogenation product.

6-Ethyl-6-methylfulvene. The method of Stone and Little for the preparation of 6,6dimethylfulvene ${ }^{10}$ gave 6-ethyl-6-methylfulvene in excellent yield (91\%) with 5\% dicyclopentadiene impurity. FTIR (neat) $v_{\max } 3069,2970,1638,761,633 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 6.66(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{q}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2$ (=C), 142.1 (=C), 130.9 (=CH), 130.7 (=CH), 120.8 (=CH), $120.2(=\mathrm{CH}), 30.0\left(\mathrm{CH}_{2}\right), 20.4\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right)$. The ${ }^{13} \mathrm{C}$ NMR data match those reported in the literature. ${ }^{11}$ LRMS (EI) $m / z 120\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{12}, 60\right), 105$ (100), 91 (30).

1- and 2-(But-1-en-2-yl)-1,3-cyclopentadiene. Base-catalyzed isomerization of 6-ethyl-6methylfulvene to an isomeric mixture of $\mathbf{1 1 b}$ and $\mathbf{1 1} \mathbf{c}$ was accomplished as per the method of Hine and Knight for isomerization of 6,6-dimethylfulvene. ${ }^{12}$ The crude product mixture also contained 19% 6-ethyl-6-methylfulvene and 8% dicyclopentadiene. Major isomer: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.9(=\mathrm{C}), 145.1(=\mathrm{C}), 132.8(=\mathrm{CH}), 131.9(=\mathrm{CH})$, $127.7(=\mathrm{CH}), 108.4$ $\left(=\mathrm{CH}_{2}\right), 40.7\left(\right.$ ring $\left.\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right), 13.2\left(\mathrm{CH}_{3}\right)$. Minor isomer: ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 146.2(=\mathrm{C}), 144.5(=\mathrm{C}), 133.6(=\mathrm{CH}), 131.6(=\mathrm{CH}), 126.6(=\mathrm{CH}), 110.0\left(=\mathrm{CH}_{2}\right)$, $41.9\left(\right.$ ring $\left.\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 13.0\left(\mathrm{CH}_{3}\right)$. LRMS (EI) $m / z 120\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{12}, 42\right), 105(48), 91$ (100) due to overlapping peaks on GC/MS column. sec-Butylcyclopentane. Catalytic hydrogenation of the isomeric mixture of $\mathbf{1 1 b}$ and 11c and independently of 6-ethyl-6-methylfulvene afforded the same single product, sec-
butylcyclopentane. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 3 \mathrm{H}), 1.51(\mathrm{~m}, 3 \mathrm{H})$, $1.18(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}), 0.86(\mathrm{~d}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 46.0$ $(\mathrm{CH}), 39.8(\mathrm{CH}), 30.8\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 17.2\left(\mathrm{CH}_{3}\right)$,
$11.3\left(\mathrm{CH}_{3}\right)$. LRMS (EI) $m / z 126\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{18}, 1\right), 98(8), 97(100)$.

Fig S5a. ${ }^{1}$ H NMR Spectrum of sec-Butylcyclopentane.

Fig S5b. ${ }^{13} \mathrm{C}$ NMR Spectrum of sec-Butylcyclopentane.

(3) $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) / \Delta$

(12b/12c)

Scheme S6. Synthetic Scheme for the preparation of Compounds $\mathbf{1 2 b} / \mathbf{1 2 c}$, their precursor, and their hydrogenation product.

1-Bromo-1-methylcyclopropane. The Hunsdiecker methodology for the conversion of cyclopropane-1,1-dicarboxylic acid to 1,1-dibromocyclopropane ${ }^{13}$ gave 5.1 g (38% yield) of 1-bromo-1-methylcyclopropane (in 93% purity by GC after fractional distillation) from 10.0 g of 1-methylcyclopropanecarboxylic acid. FTIR (neat) $v_{\max } 3006,2971,1183,758,718 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, 2 \mathrm{H}), 0.79(\mathrm{t}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 29.8\left(\mathrm{CH}_{3}\right), 29.0(\mathrm{C}), 17.1\left(2 \mathrm{CH}_{2}\right)$. LRMS (EI) $m / z 136\left(\mathrm{M}+2^{+}, \mathrm{C}_{4} \mathrm{H}_{7}{ }^{81} \mathrm{Br}, 5\right), 134$ $\left(\mathrm{M}^{+}, \mathrm{C}_{4} \mathrm{H}_{7}{ }^{79} \mathrm{Br}, 5\right), 55$ (100).

1- and 2-(Spiro[1-ethyl-1, 1^{\prime}-cyclopropane])-1,3-cyclopentadienes ($\mathbf{1 2 b}$ and 12c). Using the general methodology of Neuenschwander, ${ }^{14}$ 1-bromo-1-methylcyclopropane in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ at $-70^{\circ} \mathrm{C}$ was treated with 2 equiv of $1.7 \mathrm{M} t-\mathrm{BuLi} /$ pentane, which had been cooled in a conical vial with dry ice/acetone. The transfer of t-BuLi via cannula caused the internal temperature to rise to $-30^{\circ} \mathrm{C}$. After stirring for 1 h , cyclopent-2-en- 1 -one (1.5 equiv) dissolved in $\mathrm{Et}_{2} \mathrm{O}$ was added to the reaction mixture dropwise via syringe at $-70^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction mixture was allowed to warm gradually to $0^{\circ} \mathrm{C}$ before the reaction was diluted with 1:1 pentane: $\mathrm{Et}_{2} \mathrm{O}$ and quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. A ca. 2:1 mixture of 12b and 12c formed almost immediately, with the more abundant peak eluting at 12.2 min. Preparative $G C$ on column B at $110^{\circ} \mathrm{C}$ afforded an isomeric mixture of $\mathbf{1 2 b}$ and $\mathbf{1 2 c}$ in 97% purity. The NMR spectral data were acquired under VT-NMR conditions at $0^{\circ} \mathrm{C}$ in order to suppress Diels-Alder dimerization reactions; slow isomerization in the CDCl_{3} resulted
in a $54: 46$ mixture of the two isomers. Major isomer (12.2 min): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.40(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{t}, 2 \mathrm{H}), 0.63(\mathrm{t}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.4(=\mathrm{C}), 132.4(=\mathrm{CH}), 131.0(=\mathrm{CH}), 123.6(=\mathrm{CH}), 40.3\left(\mathrm{CH}_{2}\right), 23.5$ $\left(\mathrm{CH}_{3}\right), 15.5(\mathrm{C}), 14.7\left(2 \mathrm{CH}_{2}\right)$. LRMS (EI) $m / z 120\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{12}, 38\right), 105(100), 91(44), 79$ (28). Minor isomer (12.5 min): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.17(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.03(\mathrm{~m}, 1 \mathrm{H})$, $2.71(\mathrm{~s}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{t}, 2 \mathrm{H}), 0.67(\mathrm{t}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.3$
$(=\mathrm{C}), 134.4(=\mathrm{CH}), 129.2(=\mathrm{CH}), 124.4(=\mathrm{CH}), 41.4\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{3}\right), 17.5\left(2 \mathrm{CH}_{2}\right), 17.2$
(C). LRMS (EI) $m / z 120\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{12}, 40\right), 105$ (100), 91 (44), 79 (27). Catalytic
hydrogenation of the isomer mixture afforded sec-butylcyclopentane.
Safety Note: For a 3.0 mmol scale reaction, 3.5 mL (6.0 mmol , 2 equiv) of cold $1.7 \mathrm{M} t$ $\mathrm{BuLi} /$ pentane was dispensed in a 5.0 mL BD syringe with a Luer-Lok ${ }^{\top \pi}$ tip. Transfer of the 1.7 $\mathrm{M} t$-BuLi/pentane solution was uneventful when the contents of the bottle were kept at $<$ $10^{\circ} \mathrm{C}$.

Thermal Reactions of a Mixture of $\mathbf{1 2 b} / \mathbf{1 2 c}$: Capillary tubes pyrolyses are fundamentally liquid-phase thermal reactions. Facile interconversion of isomers $\mathbf{1 2 b}$ and $\mathbf{1 2 c}$ is observed in early thermal runs, but over time the early eluting peak disappears faster. Diminution in the concentration of 12b and 12c over time can be attributed to slow Diels-Alder dimerization reactions.

Fig S6a. ${ }^{1}$ H NMR Spectrum of 1-Bromo-1-methylcyclopropane.

Fig S6b. ${ }^{13} \mathrm{C}$ NMR Spectrum of 1-Bromo-1-methylcyclopropane.

Fig S6c. ${ }^{1}$ H NMR Spectrum of 1- and 2-(Spiro[1-ethyl-1,1'-cyclopropane]-1,3cyclopentadienes (12b and 12c).

Fig S6d. ${ }^{13} \mathrm{C}$ NMR Spectrum of 1 - and 2-(Spiro[1-ethyl-1,1'-cyclopropane]-1,3-cyclopentadienes ($\mathbf{1 2 b}$ and 12c).

Time-dependent Concentration Kinetics @ $275^{\circ} \mathrm{C}$

Time (sec)	Time (h)	Mole fraction 7	Mole fraction 8	Mole fraction minor isomers
0.0	0.0	1.00000	0.00000	0.00000
$1,791.9$	0.5	0.83284	0.06925	0.00000
$3,589.6$	1.0	0.80643	0.13159	0.02281
$7,191.9$	2.0	0.65186	0.21424	0.04745
$14,446.5$	4.0	0.51287	0.39440	0.04989
$21,482.0$	6.0	0.36999	0.50241	0.06267
$28,915.5$	8.0	0.27968	0.58225	0.05273
$43,184.2$	12.0	0.14626	0.63134	0.07215
$57,584.6$	16.0	0.08350	0.71789	0.05929
$71,966.2$	20.0	0.05278	0.74939	0.05552
$129,978.1$	36.1	0.00731	0.81600	0.03818

Equations for Solver Curve Fit:
$[7]_{\mathrm{t}}=[7]_{0} \mathrm{e}^{\wedge}\left(-k_{d} \mathrm{t}\right)$, where $[7]_{0}=1.0 \mathrm{~mol}$ fraction of 7 at time $0,[7]_{\mathrm{t}}=$ mol fraction of 7 at time t , and $k_{d}=$ rate of decomposition of 7 .
$[8]_{\mathrm{t}}=[7]_{0} *\left(k_{13} / k_{d}\right)\left(1-\mathrm{e}^{\wedge}\left(-k_{d} \mathrm{t}\right)\right)$, where $k_{13}=$ rate of formation of $\mathbf{8}$.
$k_{d}=4.7 \times 10^{-5} \mathrm{~s}^{-1}$
$k_{13}=3.7 \times 10^{-5} \mathrm{~s}^{-1}$

References

1. N. Darby, Aldrichimica Acta, 1977, 10, 2.
2. L. A. Paquette, G. V. Meehan, R. P. Henzel and R. F. Eizember, J. Org. Chem., 1973, 38,

3250-3256.; L. A. Paquette and R. C. Thompson, J. Org. Chem., 1993, 58, 4952-4962.
3. R. Greenwald, M. Chaykovsky and E. J. Corey, J. Org. Chem., 1963, 28, 1128-1129.; B.
D. Kramer and P. D. Bartlett, J. Am. Chem. Soc., 1972, 94, 3934-3939.
4. P. Mayo and W. Tam, Tetrahedron, 2002, 58, 9513-9525.
5. E. W. Della and P. E. Pigou, Aust. J. Chem., 1983, 36, 2261-2268.
6. J. K. Whitesell and R. S. Matthews, J. Org. Chem., 1977, 42, 3878-3882.
7. G. A. Antoniadis, M. T. M. Clements, S. Peiris and J. B. Stothers, Can J. Chem., 1987, 65,

1557-1562.; J. B. Stothers, J. R. Swenson and C. T. Tan, Can J. Chem., 1975, 53, 581-588.
8. F. Bohlmann and W. Rotard, Liebigs Ann. Chem., 1982, 1220-1222.
9. P. G. Garratt and J. F. White, J. Org. Chem., 1977, 42, 1733-1736.
10. K. J. Stone and R. D. Little, J. Org. Chem., 1984, 49, 1849-1854.
11. C. Keller and M. Neuenschwander, Chimia, 1982, 36, 119-122.
12. J. Hine and D. B. Knight, J. Org. Chem., 1970, 35, 3946-3949.
13. C. Blankenship and L. A. Paquette, Synth. Commun., 1984, 14, 983-987.
14. M. Mühlebach and M. Neuenschwander, Helv. Chim. Acta, 1994, 77, 1363-1376.

