Electronic Supporting Information

for

Guest Encapsulation and Coronene-C₆₀ Exchange in **Supramolecular Zinc Porphyrin Tweezers, Grids and Prisms**

Soumen K. Samanta, Michael Schmittel*

Center of Micro and Nanochemistry and Engineering, Universität Siegen, Adolf-Reichwein-Strasse, 57068 Siegen, Germany. Fax: (+49) 271-740-3270; E-mail: schmittel@chemie.uni-siegen.de

Contents

NMR Spectra	2
ESI-MS	9
Absorption Spectral Data	13
Energy Minimised Structures	16
DOSY NMR	17

NMR Spectra

Figure S1. ¹H NMR of compound 4 (CDCl₃, 400 MHz, 298 K).

Figure S2. ¹³C NMR of compound **4** (CD₂Cl₂, 100 MHz, 298 K).

Figure S3. ¹H NMR of **T** (CD₂Cl₂, 400 MHz, 298 K).

Figure S4. ¹H-¹H COSY of **T** (CD₂Cl₂, 400 MHz, 298 K).

Figure S5. ¹³C NMR of T (CD₂Cl₂, 100 MHz, 298 K).

Figure S6. ¹H NMR of **G** (CD₂Cl₂, 400 MHz, 298 K).

Figure S7. ¹H-¹H COSY of **G** (CD₂Cl₂, 400 MHz, 298 K).

Figure S8. ¹³C NMR of **G** (CD₂Cl₂, 100 MHz, 298 K).

Figure S9. ¹H NMR of **P** (CDCl₃, 400 MHz, 298 K).

Figure S10. ¹H-¹H COSY of **P** (CDCl₃, 400 MHz, 298 K).

Figure S11. ¹³C NMR of **P** (CDCl₃, 100 MHz, 298 K).

Figure S12. ¹³C NMR of C₆₀@T (toluene-d₈, 100 MHz, 298 K).

Figure S13. ¹³C NMR of C_{60} @G (toluene-d₈, 100 MHz, 298 K).

Figure S14. ¹³C NMR of C₆₀@**P** (toluene-d₈, 100 MHz, 298 K)

ESI-MS

Figure S15. ESI-MS spectrum of T.

Figure S16. ESI-MS spectrum of G.

Figure S17. ESI-MS spectrum of P.

Figure S18. Experimental isotopic distributions (black lines) along with calculated isotopic distributions (red lines) for various charged species obtained after loss of the counter anions in the ESI-MS of **P**.

Figure S19. ESI-MS spectrum of $C_{60}@T (= M)$ complex.

Figure S20. ESI-MS spectrum of $C_{60}@G (= M)$ complex.

Figure S21. ESI-MS spectrum of $C_{60}@P (= M)$ complex.

Figure S22. ESI-MS spectrum of coronene@P (= M) complex.

Figure S23. ESI-MS spectrum of mixture of coronene@P with C_{60} after refluxing for 2h.

Absorption Spectral Data

 K_{assoc} values were evaluated by applying nonlinear curve-fitting to absorbance changes (ΔAbs) observed for the host upon titration with C₆₀ or coronene:

 $\Delta Abs = (L(1 + K_{assoc}X + K_{assoc}A) - (L^2(K_{assoc}X + K_{assoc}A + 1)^2 - 4K_{assoc}^2AXL^2)^{0.5})/2K_{assoc}A$ where X and A represent [Guest]_{total} and [Host]_{total}, respectively; L denotes ΔAbs at 100% complexation; L and K_{assoc} are parameters.

Figure S24. (Left) Absorption changes of **T** in toluene at 298 K upon titration with C₆₀. (Inset : nonlinear curve-fitting of UV-vis absorption data at $\lambda = 420$ nm: $K_{assoc} = (2.9 \pm 0.3) \times 10^4 \text{ M}^{-1}$). (Right) Job plot analysis using UV-vis absorption data for C₆₀@**T** complex at $\lambda = 420$ nm.

Figure S25. (Left) Absorption changes of **G** in toluene at 298 K upon titration with C₆₀. Inset: Nonlinear curve fitting of the UV-vis absorption data at $\lambda = 420$ nm: $K_{assoc} = (9.1 \pm 0.4) \times 10^4$ M⁻¹). (Right) Job plot analysis using UV-vis absorption data for C₆₀@**G** complex at $\lambda = 420$ nm.

Figure S26. Absorption changes of **P** in toluene at 298 K upon titration with C_{60} : $K_{assoc} = (3.3 \pm 0.3) \times 10^6 \text{ M}^{-1}$. Inset: Job plot analysis using UV-vis absorption data for C_{60} (**P** complex at $\lambda = 420 \text{ nm}$.

Figure S27. (Left) Absorption changes of **P** in CH₂Cl₂ at 298 K upon titration with coronene. Inset: Nonlinear curve fitting of the UV-vis absorption data at $\lambda = 420$ nm: $K_{assoc} = (1.1 \pm 0.6) \times 10^4 \text{ M}^{-1}$). (Right) Job plot analysis using UV-vis absorption data for coronene@**P** complex at $\lambda = 420$ nm.

Energy Minimised Structures

Figure S28. MM+ computed structure of $C_{60}@T$.

Figure S29. MM+ computed structure of $C_{60}@G$.

Figure S30. MM+ computed structure of C_{60} @P. (left) topview and (right) sideview.

Figure S31. MM+ computed structure of coronene@P, (left) sideview and (right) topview.

Figure S32. ¹H DOSY of T in CD₂Cl₂.

Figure S34. ¹H DOSY of P in CD₂Cl₂.