Supplementary data for

Acridine-based macrocyclic fluorescent sensors: self-assembly behavior characterized by crystal structures and tunable bathochromic-shift in emission induced by $H_2PO_4^-$ via adjusting the ring size and rigidity

Dawei Zhang,^a Xiaozhi Jiang,^a Haiqiang Yang,^a Alexandre Martinez,^{*b} Meiyun Feng,^a Zhiyun Dong^a and Guohua Gao^{*a}

^aShanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China. Tel and Fax: +86(21)62233323, ghgao@chem.ecnu.edu.cn

^bLaboratoire de Chimie, CNRS, École Normale Supérieure de Lyon, 46, Allée d'Italie, F-69364, Lyon, France. E-mail: alexandre.martinez@ens-lyon.fr

Graphical abstract

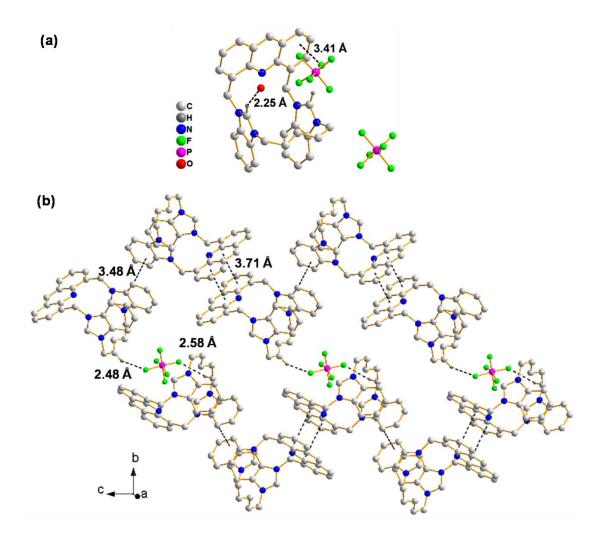


Fig. S1 Crystal structure (a) and the self-assembly network (b) of $2 \cdot 2(PF_6) \cdot 0.5(H_2O)$. Nonacidic hydrogen atoms, some counterions and solvent molecules are omitted for clarity. Dashed lines represent hydrogen bonds, anion- π and π - π interactions.

The crystal structures of $2 \cdot 2(PF_6^-) \cdot 0.5(H_2O)$ shown in Fig. S1 is similar with that of sensor $1 \cdot 2(PF_6^-) \cdot (CH_3COCH_3)$: cave-like conformation of the sensors, hydrogen bonds between a C(2) protons of the benzimidazolium and oxygen atoms (2.25 Å), and anion- π interactions between $[PF_6]^-$ and acridine ring (3.41 Å). Also, for the packing mode, repetitive structure units of the sawtooth-like column were formed by the two types of π - π interactions and were assembled via hydrogen bonds between $[PF_6]^-$ and the adjacent two columns. However, for $2 \cdot 2(PF_6^-) \cdot 0.5(H_2O)$, a C(2) proton of the benzimidazolium did not form the obvious hydrogen bond with $[PF_6]^-$, since the shortest F...H distance is 2.80 Å.

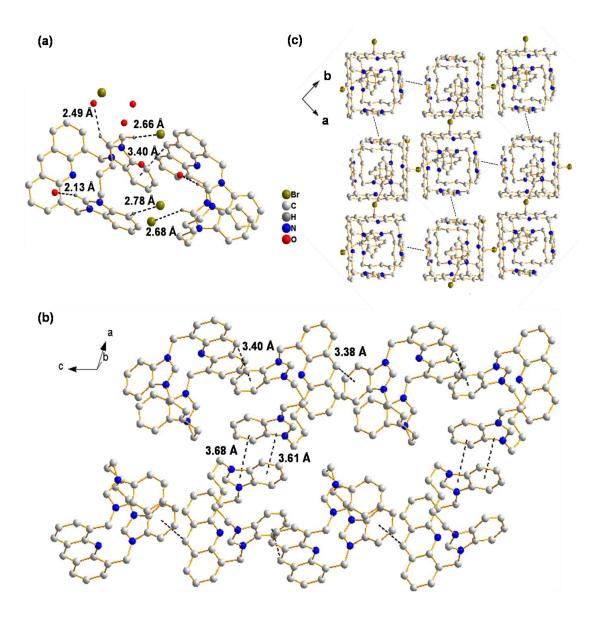
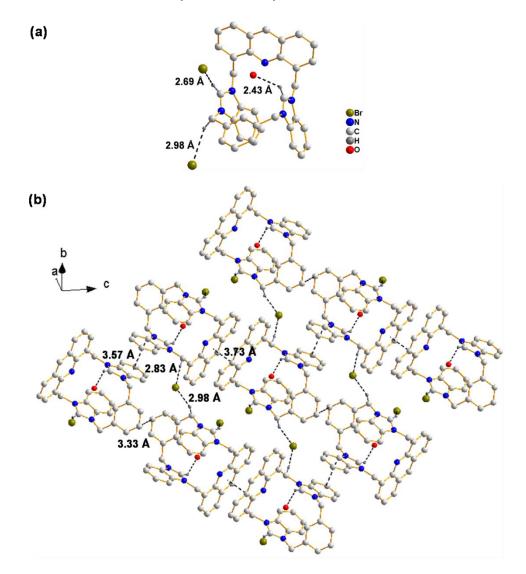
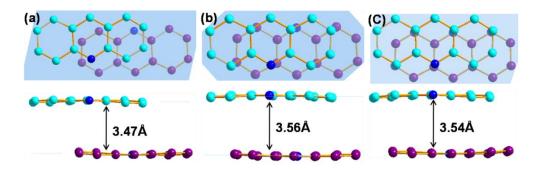
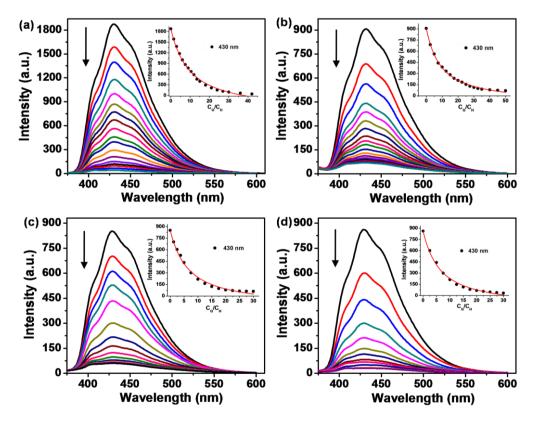


Fig. S2 Crystal structure (a) and the self-assembly network viewing along b (b) and c (c) axes of $2 \cdot 2(Br) \cdot 3(H_2O)$. Nonacidic hydrogen atoms, some counterions and solvent molecules are omitted for clarity. Dashed lines represent hydrogen bonds and π - π interactions.

The crystal structure of $2 \cdot 2(Br) \cdot 3(H_2O)$ was shown in Fig. S2. Two crystallographically distinct conformations with different intramolecular interactions in one unit cell were adopted. In one conformation, two benzimidazolium sites were fully occupied by H₂O molecules. However, in the other, one site was occupied by a H₂O molecule and the other benzimidazolium site preferred to form hydrogen bond with a bromide. The two conformers were connected to each other via intermolecular π - π interaction between an acridine ring and a benzimidazolium, which led to the formation of an infinite column (Fig. S2b). Fig. S2b and 2c showed two sets of $2 \cdot 2(Br^{-}) \cdot 3(H_2O)$ arranged in different orientations. The adjacent columns were assembled through π - π interactions between two anti benzimidazoliums (3.61-3.68 Å) (Fig. S2b) and hydrogen bonds with bromide (Fig.S2c), giving rise to the formation of a three-dimensional network by self-assembly.


Fig. S3 Crystal structure (a) and the self-assembly network (b) of $4 \cdot 2(Br) \cdot (H_2O)$. Nonacidic hydrogen atoms, some counterions are omitted for clarity. Dashed lines represent hydrogen bonds and π - π interactions.

In the crystal structure of $4 \cdot 2(Br) \cdot (H_2O)$ shown in Fig. S3a, a cave-like conformation was also observed. The two directional C(2) protons of the benzimidazoliums formed hydrogen bonds with a bromide counteranion (2.69 Å) and

a oxygen atom of H₂O (2.43 Å) respectively. Another bromide anion formed hydrogen bond with a methylene hydrogen neighboring with benzimidazolium (2.98 Å). A face-to-face π - π interaction between two acridine rings (3.73 Å) and a π - π interaction between two intermolecular benzenes (3.33 Å) keep the three molecules together to form a repetitive structure unit of a column (Fig. S3b). In addition, the two adjacent units were connected to each other by sharing a common bromide anion forming two hydrogen bonds. The combination of the two hydrogen bonds and a π - π interaction between two benzimidazolium in the corresponding two adjacent columns (3.57 Å) led to the formation of a two-dimensional network.

Fig. S4 Comparison on the extent of π - π interactions between two acridine rings of $1 \cdot 2(PF_6^-) \cdot (CH_3COCH_3)$ (a), $2 \cdot 2(PF_6^-) \cdot 0.5(H_2O)$ (b) and $4 \cdot 2(Br^-) \cdot (H_2O)$ (c). Arrow lines represent the plane-to-plane distances between two acridine rings.

Fig. S5 Fluorescence titrations of 5 μ M sensors 1 excited at 362 nm (a), 2 excited at 363 nm (b), 3 excited at 358 nm (c) and 4 excited at 362 nm (d) with TBAF in CH₃CN (excitation and emission slit :5 nm). Inset: intensity developments at 430 nm as a function of added TBAF equivalents.

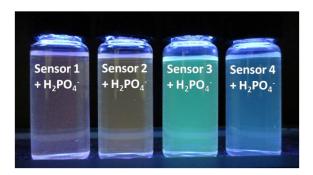


Fig. S6 Fluorescence colors of sensors 1-4 (5 $\mu M)$ after addition of $TBAH_2PO_4$ two months later

(Excitation wavelength of the UV lamp: 365 nm).

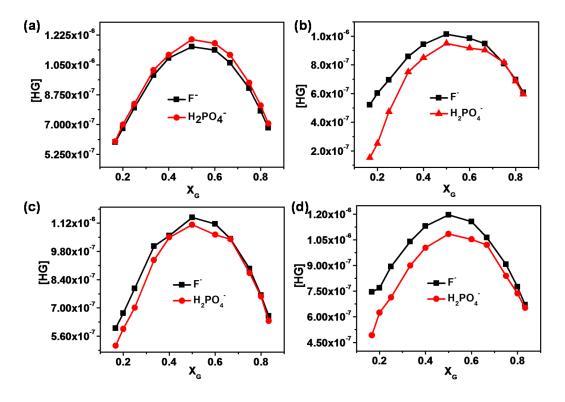


Fig. S7 Fluorescence Job's plots for sensors 1 (a), 2 (b), 3 (c) and 4 (d) with anions.

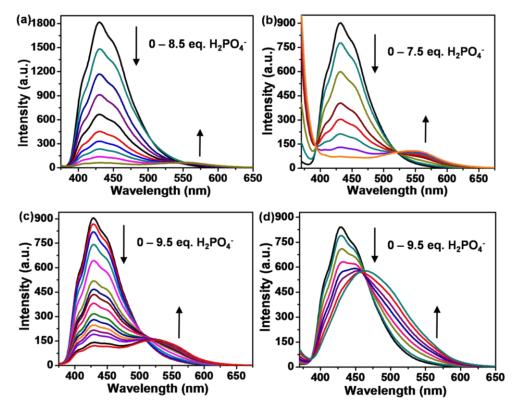
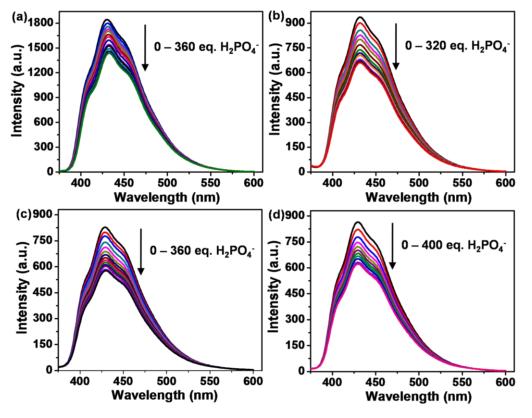
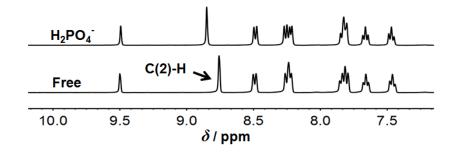
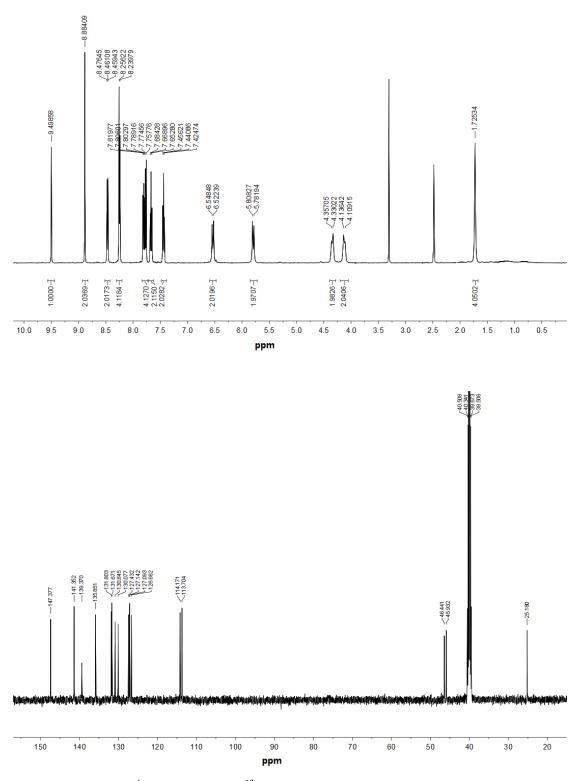



Fig. S8 Fluorescence titrations of 5 μ M sensors 1 excited at 362 nm (a), 2 excited at 363 nm (b), 3 excited at 358 nm (c) and 4 excited at 362 nm (d) with TBAH₂PO₄ in H₂O-CH₃CN (1:99, v/v) (excitation and emission slit :5 nm).

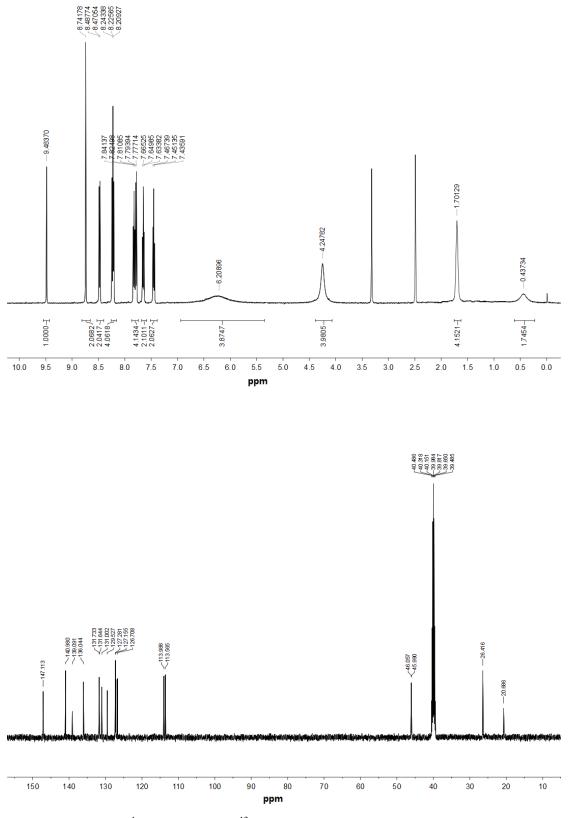
Fig. S9 Fluorescence titrations of 5 μM sensors **1** excited at 362 nm (a), **2** excited at 363 nm (b), **3** excited at 358 nm (c) and **4** excited at 362 nm (d) with TBAH₂PO₄ in H₂O-CH₃CN (3:97, v/v)

(excitation and emission slit :5 nm).

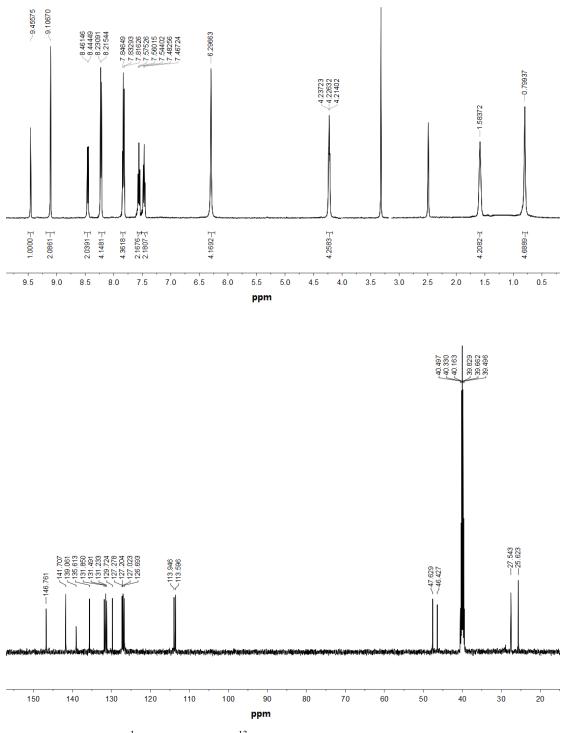


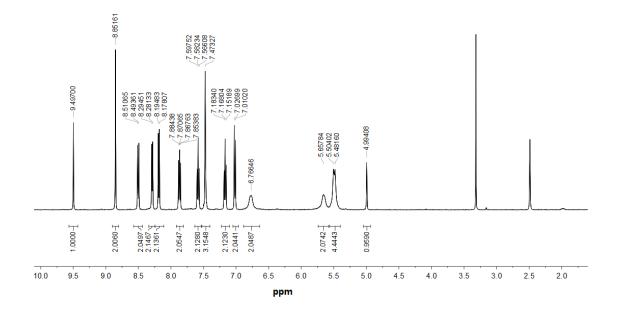

Fig. S10 Partial ¹H NMR spectra of sensor 2 (10 mM) in the absence and presence of $TBAH_2PO_4$ (1 equiv.) in DMSO- d_6 .

Compound	$1 \cdot 2 PF_6$	$2 \cdot 2 PF_6$
CCDC	914120	914121
Empirical formula	$C_{36}H_{35}F_{12}N_5OP_2\\$	$C_{68}H_{56}F_{24}N_{10}OP_4$
$M_{ m r}$	843.63	1609.11
Temperature (K)	296(2)	296(2)
Crystal system	Triclinic	Monoclinic
Space group	$P\overline{1}$	<i>P</i> 2(1)/n
a/Å	10.958(13)	9.6585(4)
$b/{ m \AA}$	11.539(13)	25.7091(12)
$c/{ m \AA}$	16.667(19)	14.0835(7)
$\alpha/^{\circ}$	75.826(13)	90
eta/°	82.501(13)	92.542(2)
$\gamma/^{\circ}$	65.070(12)	90
$V/\text{\AA}^3$	1852(4)	3493.7(3)
Ζ	2	2
Crystal size (mm ³)	$0.10 \times 0.07 \times 0.03$	$0.10 \times 0.07 \times 0.03$
$D_{\rm c}/{ m g~cm}^{-3}$	1.513	1.530
μ/mm^{-1}	0.216	0.224
<i>F</i> (000)	864	1636
θ range (°)	1.99 - 26.01	1.58 - 28.33
Reflections collected	10277	47852
Unique reflections	7067	8538
GOF on F^2	1.034	1.104
R _(int)	0.0173	0.0917
$R_1[I > 2\sigma(I)]$	0.0744	0.0815
wR_2 (all data)	0.2335	0.2533


Table S1. Crystal data and refinement for compounds $1 \cdot 2PF_6$, and $2 \cdot 2PF_6$.

Compound	$2 \cdot 2Br$	4 ·2Br
CCDC	914123	914124
Empirical formula	$C_{34}H_{31}Br_2N_5O_3$	$C_{37}H_{29}Br_2N_5O_{0.5}$
$M_{ m r}$	717.46	711.47
Temperature (K)	173(2)	296(2)
Crystal system	Monoclinic	Triclinic
Space group	<i>P</i> 2(1)	$P\overline{1}$
a/Å	14.481(3)	8.8544(15)
b/Å	13.824(3)	11.0995(19)
$c/{ m \AA}$	16.878(3)	16.475(3)
$\alpha/^{\circ}$	90	91.233(2)
eta/°	109.685(3)	90.453(2)
$\gamma/^{\circ}$	90	105.781(2)
$V/\text{\AA}^3$	3181.2(11)	1557.6(5)
Ζ	4	2
Crystal size (mm ³)	$0.65 \times 0.65 \times 0.25$	0.170 imes 0.110 imes 0.040
$D_{\rm c}/{ m g~cm}^{-3}$	1.498	1.517
μ/mm^{-1}	2.591	2.640
<i>F</i> (000)	1456	720
θ range (°)	1.28 - 27.60	2.25 - 27.55
Reflections collected	22227	9828
Unique reflections	13934	6931
GOF on F^2	1.030	1.082
R _(int)	0.0562	0.0266
$R_1[I > 2\sigma(I)]$	0.0641	$R_1 = 0.0630$
w R_2 (all data)	0.1815	0.2112


Table S2. Crystal data and refinement for compounds $2 \cdot 2Br$ and $4 \cdot 2Br$.


Fig. S11 ¹H NMR (top) and ¹³C NMR (bottom) of sensor **1** in DMSO- d_6 .

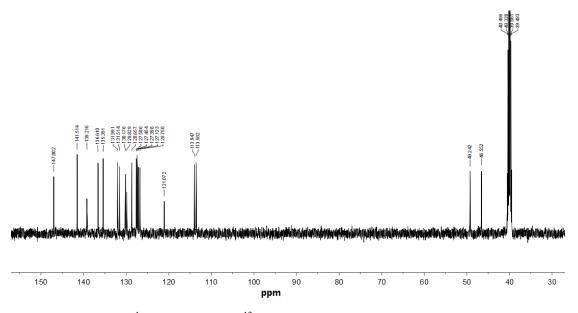


Fig. S12 ¹H NMR (top) and ¹³C NMR (bottom) of sensor **2** in DMSO- d_6 .

Fig. S13 ¹H NMR (top) and ¹³C NMR (bottom) of sensor **3** in DMSO- d_6 .

Fig. S14 ¹H NMR (top) and ¹³C NMR (bottom) of sensor **4** in DMSO- d_6 .