Supporting Information for Water-Soluble Argentivorous Molecule

Yoichi Habata*, Yoko Okeda, Mari Ikeda, and Shunsuke Kuwahara

Department of Chemistry, Faculty of Science & Research Center for Materials with Integrated Properties, Toho University 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

Table of Contents

Figure S1 (¹ H NMR of 3) and Figure S2 (¹³ C NMR of 3)	2
Figure S3 (¹ H NMR of Cs_4L) and Figure S4 (¹³ C NMR of Cs_4L)	3
Figure S5 (¹ H NMR of 5) and Figure S6 (¹³ C NMR of 5)	4
Figure S7. (¹ H NMR of cesium 4-methylbenzoate)	5
Figure S8 (X-ray structure of Cs_4L)	6
Figure S9. Cold ESI-MS of Cs ₄ L.	6
Figure S10. IR spectrum of Cs ₄ L (KBr disk).	6
Table S1 (Crystal data and structure refinement for Cs_4L)	7
Figure S11a and 11b (Ag ⁺ -ion-induced Cold ESI-Mass spectral changes of Cs_4L)	8
Figure S12, S13, and S14 (Ag ⁺ -ion-induced ¹ H NMR spectral changes of Cs_4L)	9
Table S2 (Ag ⁺ -ion-induced ¹ H NMR spectral changes of Cs_4L)	9
Figure S15 and S16 (Pd ²⁺ -ion-induced UV-vis spectral changes of Cs_4L)	10
Figure S17 and S18 (Metal-ion-induced ¹ H NMR spectral changes of Cs_4L)	11
Table S3 (Metal-ion-induced ¹ H NMR spectral changes of Cs_4L)	12
Figure S19 (1 H- 1 H HOHAHA 2D-NMR of a mixture of Cs ₄ L and Pb(NO ₃) ₂)	12
Figure S20 (¹ H NMR spectrum of a 1:1 mixture of 3 and AgCF ₃ SO ₃)	13
Figure S21 (¹³ C NMR spectrum of a 1:1 mixture of 3 and AgCF ₃ SO ₃)	13
Figure S22 (Ag ⁺ -ion-induced ¹ H NMR spectral changes of 3)	14
Table S4 (Crystal data and structure refinement for 3/AgCF3SO3)	15
Figure S23 (X-ray structure of 5)	16
Table S5 (Crystal data and structure refinement for 5)	16
Figure S24 (X-ray structure of 3)	17
Table S6 (Crystal data and structure refinement for 3)	17
Figure S25 (Calculations of log <i>K</i> from UV-vis titration experiments)	18

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Figure S1. ¹H NMR of tetramethy 4,4',4",4"'-[1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayltetrakis (methylene)]tetrabenzoate (**3**) in CDCl₃ (298 K).

Figure S2. ¹³C NMR of tetramethy 4,4',4",4"'-[1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayltetrakis (methylene)]tetrabenzoate (**3**) in CDCl₃ (298 K).

Figure S3. ¹H NMR of tetracesium 4,4',4",4"'-((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl) tetrakis (methylene))tetrabe-nzoate (Cs_4L) in D_2O . DSS(standard): Sodium 2,2-dimethyl-2-silapentane-5-sulfonate (298 K).

Figure S4. ¹³C NMR of tetracesium 4,4',4",4"'-((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl) tetrakis (methylene))tetrabe-nzoate (Cs₄L) in D₂O. DSS(standard): Sodium 2,2-dimethyl-2-silapentane-5-sulfonate (298

Figure S5. ¹H NMR of 1,4,7,10-tetrakis(4-bromobenzyl)-1,4,7,10-tetraazacyclododecane (5) in CDCl₃ (298 K).

Figure S6. ¹³C NMR of 1,4,7,10-tetrakis(4-bromobenzyl)-1,4,7,10-tetraazacyclododecane (5) in CDCl₃ (298 K).

Figure S7. ¹H NMR of cesium 4-methylbenzoate in D₂O. DSS(standard): Sodium 2,2-dimethyl-2-silapentane-5-sulfonate (298 K).

Figure S8. ORTEP diagrams of Cs_4L . (top) Packing diagram and (bottom) expanded diagram. Two waters and two DMSOs bind the cesium ions in Cs_4L . Hydrogen atoms omitted.

Figure S9. Cold ESI-MS of Cs_4L (H₂O:CH₃OH = 1:7).

Figure S10. IR spectrum of Cs₄L (KBr disk). The IR data suggests that Cs₄L includes H₂O and DMSO.

Table S1. Crystal data and structure refinement for	CS_4L .	
Identification code	Cs_4L	
Empirical formula	C22 H30 Cs2 N2 O7 S	
Formula weight	732.36	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.9076(5) Å	$\alpha = 97.8800(10)^{\circ}.$
	b = 9.0591(5) Å	$\beta = 103.7500(10)^{\circ}.$
	c = 17.7228(10) Å	$\gamma = 102.0670(10)^{\circ}.$
Volume	1331.93(13) Å ³	
Z	2	
Density (calculated)	1.826 Mg/m ³	
Absorption coefficient	2.858 mm ⁻¹	
F(000)	716	
Crystal size	0.26 x 0.17 x 0.03 mm3	
Theta range for data collection	1.21 to 27.48°.	
Index ranges	-11<=h<=11, -8<=k<=11, -22<	<=l<=20
Reflections collected	8549	
Independent reflections	6039 [R(int) = 0.0161]	
Completeness to theta = $27.48 -$	98.7 %	
Absorption correction	Empirical	
Max. and min. transmission	0.9091 and 0.5203	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	6039 / 0 / 325	
Goodness-of-fit on F2	1.134	
Final R indices [I>2sigma(I)]	R1 = 0.0233, $wR2 = 0.0621$	
R indices (all data)	R1 = 0.0287, wR2 = 0.0723	
Largest diff. peak and hole	0.672 and -0.840 e. ${\rm \AA}^{\text{-3}}$	

Figure S11a. Ag⁺-ion-induced Cold ESI-Mass spectral changes (CH₃OH, 298 K).

Figure S11b. Observed ion peaks (top) and theoretical distributions (bottom) in Figure S10a.

Figure S12. AgCF₃SO₃-induced ¹H-NMR spectral changes (D₂O, 298 K)

Figure S13. AgPF₆-induced ¹H-NMR spectral changes (D₂O, 298 K)

Figure S15. Pb^{2+} -induced UV spectral changes. (Cyclen : Cesium 4-methylbenzoate=1:4) [Cesium 4-methylbenzoate] = 2.0 x 10⁻⁴ mol/L (in water).

Figure S16. Pb^{2+} -induced UV spectral changes. [Cesium 4-methylbenzoate] = 5.0 x 10⁻⁵ mol/L (in water).

Figure S17. Pb(NO₃)₂-induced ¹H-NMR spectral changes (D₂O, 298 K).

Figure S18. Zn(NO₃)₂-induced ¹H-NMR spectral changes (D₂O, 298 K).

LiNO ₃	-0.01
NaNO ₃	-0.01
KNO ₃	-0.01
Mg(NO ₃) ₂	-0.04
Ca(NO ₃) ₂	-0.06
Sr(NO ₃) ₂	-0.01
Co(NO ₃) ₂	-0.00
Ni(NO ₃) ₂	-0.03
AgNO ₃	-0.72
Zn(NO ₃) ₂	-0.06
Na wati ya yaku sa alawata ki ukan fi alalakifta	

Table S3 ¹H NMR chemical shift changes of the protons at 2'-/6'- positions (δ /ppm).

Figure S19. 1 H- 1 H HOHAHA NMR [Pb²⁺]/[Cs₄L] = 0.5 in CDCl₃/CD₃OD.

Figure S20. ¹H NMR of a 1:1 mixture of tetramethy 4,4',4'',4'''-[1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayltetrakis(m-ethylene)]tetrabenzoate (**3**) and AgCF₃SO₃ (CDCl₃/CD₃OD, 298 K).

Figure S21. ¹³C NMR of a 1:1 mixture of tetramethy 4,4',4",4"'-[1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayltetrakis(m-ethylene)]tetrabenzoate (**3**) and AgCF₃SO₃ (CDCl₃/CD₃OD, 298 K). The ¹³C siglnals of the CF₃SO₃ anions was not observed under the conditions.

Figure S22. AgCF₃SO₃-induced ¹H-NMR spectral changes (CD₃OD/CDCl₃, 298 K). The H_b (2'-/6'-positions) and H_a (3'-/5'-positions) protons were shifted to higher and lower field by ca. -0.87, and +0.08 ppm, respectively.

$3/\text{AgCF}_3\text{SO}_3.$	
C90 H106 Ag2 F6 N8 O23 S2	
2061.69	
120 K	
0.71073 Å	
Tetragonal	
P4/n	
a = 13.997(4) Å	$\alpha = 90^{\circ}$.
b = 13.997(4) Å	$\beta = 90^{\circ}$.
c = 23.804(6) Å	$\gamma=90^{\circ}.$
4664(2) Å ³	
2	
1.468 Mg/m ³	
0.553 mm ⁻¹	
2132	
$0.21 \text{ x } 0.20 \text{ x } 0.10 \text{ mm}^3$	
0.86 to 28.33°.	
-18<=h<=18, -18<=k<=18, -31	l<=l<=18
34383	
5822 [R(int) = 0.0542]	
99.6 %	
Empirical	
0.9462 and 0.8913	
Full-matrix least-squares on F ²	2
5822 / 0 / 332	
1.130	
R1 = 0.0562, wR2 = 0.1381	
R1 = 0.0723, $wR2 = 0.1502$	
1.793 and -0.814 e.Å ⁻³	
	3/AgCF ₃ SO ₃ . C90 H106 Ag2 F6 N8 O23 S2 2061.69 120 K 0.71073 Å Tetragonal P4/n a = 13.997(4) Å b = 13.997(4) Å c = 23.804(6) Å 4664(2) Å ³ 2 1.468 Mg/m ³ 0.553 mm ⁻¹ 2132 0.21 x 0.20 x 0.10 mm ³ 0.86 to 28.33°. -18<=h<=18, -18<=k<=18, -31 34383 5822 [R(int) = 0.0542] 99.6 % Empirical 0.9462 and 0.8913 Full-matrix least-squares on F ² 5822 / 0 / 332 1.130 R1 = 0.0562, wR2 = 0.1381 R1 = 0.0723, wR2 = 0.1502 1.793 and -0.814 e.Å ⁻³

Table S4. Crystal data and structure refinement for 3/AgCF₃SO₃.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Figure S23. ORTEP diagram of 5. Hydrogen atoms are omitted.

Table S5. Crystal data and structure refinement for 5.		
Identification code	5	
Empirical formula	C36 H40 Br4 N4	
Formula weight	848.36	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.399(3) Å	$\alpha = 95.954(8)^{\circ}.$
	b = 9.641(5) Å	$\beta = 96.675(8)^{\circ}.$
	c = 12.392(6) Å	$\gamma = 96.258(8)^{\circ}.$
Volume	866.7(7) Å ³	
Z	1	
Density (calculated)	1.625 Mg/m ³	
Absorption coefficient	4.675 mm-1	
F(000)	424	
Crystal size	0.29 x 0.22 x 0.20 mm ³	
Theta range for data collection	1.67 to 27.48°.	
Index ranges	-9<=h<=8, -12<=k<=11, -14<=	=l<=16
Reflections collected	5174	
Independent reflections	3794 [R(int) = 0.0420]	
Completeness to theta = 27.48 -	95.4 %	
Absorption correction	Empirical	
Max. and min. transmission	0.4579 and 0.3442	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3794 / 12 / 199	
Goodness-of-fit on F2	1.022	
Final R indices [I>2sigma(I)]	R1 = 0.0966, wR2 = 0.2542	
R indices (all data)	R1 = 0.1281, wR2 = 0.2815	
Largest diff. peak and hole	3.941 and -2.395 e. Å ⁻³	
	16	

Figure S24. X-ray structure of 3. Hydrogen atoms are omitted.

Table S6. Crystal data and structure refinement for	r 3 .
Identification code	3
Empirical formula	C44 H52 N4 O8
Formula weight	764.90
Temperature	173 K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 10.0192(9) Å α = 110.849(2)°.
	$b = 10.1213(9) \text{ Å} \qquad \qquad \beta = 103.926(2)^{\circ}.$
	$c = 11.6590(11) \text{ \AA} \qquad \qquad \gamma = 103.909(2)^{\circ}.$
Volume	1000.74(16) Å ³
Z	1
Density (calculated)	1.269 Mg/m ³
Absorption coefficient	0.088 mm ⁻¹
F(000)	408
Crystal size	0.48 x 0.36 x 0.21 mm ³
Theta range for data collection	2.30 to 28.27°.
Index ranges	-13<=h<=13, -11<=k<=13, -15<=l<=12
Reflections collected	7524
Independent reflections	4903 [R(int) = 0.0181]
Completeness to theta = 28.27 -	98.7 %
Absorption correction	Empirical
Max. and min. transmission	0.9817 and 0.9594
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4903 / 0 / 255
Goodness-of-fit on F ²	1.022
Final R indices [I>2sigma(I)]	R1 = 0.0529, $wR2 = 0.1359$
R indices (all data)	R1 = 0.0693, $wR2 = 0.1477$
Largest diff. peak and hole	0.342 and -0.195 e. Å $^{\text{-3}}$

Figure S25. Calculation of log K from UV-vis titration experiments. $[Cs_4L] = 5.0 \times 10^{-5} \text{ mol/L}$ (in water)

Figures S25 shows Ag^+ -ion-induced UV spectral changes of Cs_4L . Nonlinear least-squares analyses of the titration profiles clearly indicated the formation of 1:1 complexes, and allowed us to estimate the association constants. The log*K* value between Cs_4L and Ag^+ ions in wate was estimated to be ca.10.9.