ELECTRONIC SUPPORTING INFORMATION (ESI)

to:

Formation, structure, and reactivity of meso-tetraarylchloro¬lactones, porpholactams, and –chlorolactams, porphyrin and chlorin analogues incorporating oxazolone or imidazolone moieties

> Joshua Akhigbe[†], John Haskoor[†], Jeanette A. Krause[&], Matthias Zeller[§], and Christian Brückner^{†,*}

Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, U.S.A. Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, U.S.A. Department of Chemistry, Youngstown State University, Youngstown, OH 44555-3663, U.S.A.

* author to whom inquiries should be addressed to:
E-mail: c.bruckner@uconn.edu
Tel: +01 860-908-2743

ESI Table of Contents:

Figure 1.	¹ H NMR Spectrum (400 MHz, CDCl ₃) of 7a	4
Figure 2.	¹³ C NMR Spectrum (100 MHz, CDCl ₃ , D1 = 3s) of 7a	5
Figure 3.	FT-IR Spectrum (neat, diffuse reflectance) of 7a	6
Figure 4.	¹ H NMR Spectrum (400 MHz, CDCl ₃) of 7b	7
Figure 5.	¹³ C NMR Spectrum (100 MHz, CDCl ₃ , D1 = 5s) of 7b	8
Figure 6.	FT-IR Spectrum (neat, diffuse reflectance) of 7b	9
Figure 7.	¹ H NMR Spectrum (400 MHz, CDCl ₃) of 8a	10
Figure 8.	¹³ C NMR Spectrum (100 MHz, CDCl ₃ , D1 = 3s) of 8a	11
Figure 9.	FT-IR Spectrum (neat, diffuse reflectance) of 8a	12
Figure 10.	¹ H NMR Spectrum (400 MHz, CD ₂ Cl ₂) of 8b	13
Figure 11.	¹³ C NMR Spectrum (100 MHz, CD ₂ Cl ₂ , D1 = 5s) of 8b	14
Figure 12.	FT-IR Spectrum (neat, diffuse reflectance) of 8b	15
Figure 13.	¹ H NMR Spectrum (400 MHz, CDCl ₃) of 8c	16
Figure 14.	¹³ C NMR Spectrum (100 MHz, CDCl ₃ , D1 = 5s) of 8c	17
Figure 15.	FT-IR Spectrum (neat, diffuse reflectance) of 8c	18
Figure 16.	¹ H NMR Spectrum (400 MHz, CDCl ₃) of 9a	19
Figure 17.	¹³ C NMR Spectrum (100 MHz, CDCl ₃ , D1 = 3s) of 9a	20
Figure 18.	FT-IR Spectrum (neat, diffuse reflectance) of 9a	21
Figure 19.	¹ H NMR Spectrum (400 MHz, CD ₂ Cl ₂) of 9b	22
Figure 20.	¹³ C NMR Spectrum (100 MHz, CD ₂ Cl ₂ , D1 = 5s) of 9b	23
Figure 21.	FT-IR Spectrum (neat, diffuse reflectance) of 9b	24
Figure 22.	¹ H NMR Spectrum (400 MHz, CDCl ₃) of 9c	25
Figure 23.	¹³ C NMR Spectrum (100 MHz, CDCl ₃ , D1 = 5s) of 9c	26
Figure 24.	FT-IR Spectrum (neat, diffuse reflectance) of 9c	27
Figure 25.	¹ H NMR Spectrum (400 MHz, CDCl ₃) of 10a	28
Figure 26.	¹³ C NMR Spectrum (100 MHz, CDCl ₃ , D1 = 3s) of 10a	29
Figure 27.	FT-IR Spectrum (neat, diffuse reflectance) of 10a	30
Figure 28.	¹ H NMR Spectrum (400 MHz, CD ₂ Cl ₂) of 10a	31
Figure 29.	¹³ C NMR Spectrum (100 MHz, CD ₂ Cl ₂) of 10b	32
Figure 30.	FT-IR Spectrum (neat, diffuse reflectance) of 10b	33
Figure 31.	¹ H NMR Spectrum (400 MHz, CDCl ₃) of 10c	34

Figure 32.	¹³ C NMR Spectrum (100 MHz, CDCl ₃ , D1 = 3s) of 10c	35
Figure 33.	FT-IR Spectrum (neat, diffuse reflectance) of 10c	
Figure 34.	¹ H NMR Spectrum (400 MHz, CDCl ₃) of 11c	
Figure 35.	¹³ C NMR Spectrum (100 MHz, CDCl ₃ , D1 = 3s) of 11c	
Figure 36.	FT-IR Spectrum (neat, diffuse reflectance) of 11c	
Figure 37.	¹ H NMR Spectrum (400 MHz, CDCl ₃) of 15a	40
Figure 38.	¹³ C NMR Spectrum (100 MHz, CDCl ₃ , D1 = 3s) of 15a	41
Figure 39.	FT-IR Spectrum (neat, diffuse reflectance) of 15a	

Figure 1. ¹H NMR Spectrum (400 MHz, CDCl₃) of 7a

Figure 2. ¹³C NMR Spectrum (100 MHz, $CDCl_3$, D1 = 3s) of 7a

Figure 3. FT-IR Spectrum (neat, diffuse reflectance) of 7a

Figure 4. ¹H NMR Spectrum (400 MHz, CDCl₃) of 7b

Figure 5. ¹³C NMR Spectrum (100 MHz, $CDCl_3$, D1 = 5s) of 7b

Figure 6. FT-IR Spectrum (neat, diffuse reflectance) of 7b

Figure 7. ¹H NMR Spectrum (400 MHz, CDCl₃) of 8a

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Figure 8. ¹³C NMR Spectrum (100 MHz, $CDCl_3$, D1 = 3s) of 8a

Figure 9. FT-IR Spectrum (neat, diffuse reflectance) of 8a

Figure 10. ¹H NMR Spectrum (400 MHz, CD₂Cl₂) of 8b

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Figure 11. ¹³C NMR Spectrum (100 MHz, CD_2Cl_2 , D1 = 5s) of **8b**

Figure 12. FT-IR Spectrum (neat, diffuse reflectance) of 8b

Figure 13. ¹H NMR Spectrum (400 MHz, CDCl₃) of 8c

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Figure 14. ¹³C NMR Spectrum (100 MHz, $CDCl_3$, D1 = 5s) of 8c

Figure 15. FT-IR Spectrum (neat, diffuse reflectance) of 8c

Figure 16. ¹H NMR Spectrum (400 MHz, CDCl₃) of 9a

Figure 17. ¹³C NMR Spectrum (100 MHz, $CDCl_3$, D1 = 3s) of **9a**

Figure 18. FT-IR Spectrum (neat, diffuse reflectance) of 9a

Figure 19. ¹H NMR Spectrum (400 MHz, CD₂Cl₂) of 9b

Figure 20. ¹³C NMR Spectrum (100 MHz, CD_2Cl_2 , D1 = 5s) of **9b**

Figure 21. FT-IR Spectrum (neat, diffuse reflectance) of 9b

Figure 22. ¹H NMR Spectrum (400 MHz, CDCl₃) of 9c

Figure 23. ¹³C NMR Spectrum (100 MHz, $CDCl_3$, D1 = 5s) of 9c

Figure 24. FT-IR Spectrum (neat, diffuse reflectance) of 9c

Figure 25. ¹H NMR Spectrum (400 MHz, CDCl₃) of 10a

Figure 26. ¹³C NMR Spectrum (100 MHz, $CDCl_3$, D1 = 3s) of 10a

Figure 27. FT-IR Spectrum (neat, diffuse reflectance) of 10a

Figure 28. ¹H NMR Spectrum (400 MHz, CD₂Cl₂) of 10a

Figure 29. ¹³C NMR Spectrum (100 MHz, CD₂Cl₂) of 10b

Figure 30. FT-IR Spectrum (neat, diffuse reflectance) of 10b

Figure 31. ¹H NMR Spectrum (400 MHz, CDCl₃) of 10c

Figure 32. ¹³C NMR Spectrum (100 MHz, $CDCl_3$, D1 = 3s) of 10c

Figure 33. FT-IR Spectrum (neat, diffuse reflectance) of 10c

Figure 34. ¹H NMR Spectrum (400 MHz, CDCl₃) of 11c

Figure 35. ¹³C NMR Spectrum (100 MHz, $CDCl_3$, D1 = 3s) of 11c

Figure 36 FT-IR Spectrum (neat, diffuse reflectance) of 11c

Figure 37. ¹H NMR Spectrum (400 MHz, CDCl₃) of 15a

Figure 38. ¹³C NMR Spectrum (100 MHz, $CDCl_3$, D1 = 3s) of **15a**

Figure 39. FT-IR Spectrum (neat, diffuse reflectance) of 15a