SUPPORTING INFORMATION

Expeditious Synthesis of Bacterial, Rare Sugar Building Blocks to Access the Prokaryotic Glycome

Madhu Emmadi, and Suvarn S. Kulkarni*

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India. Email: <u>suvarn@chem.iitb.ac.in</u>

Table of Contents

I. Experimental Procedures	S4
Synthesis of compound 2a.	
Synthesis of compound 2b	S5
Synthesis of compound 3a	S6
Synthesis of compound 3b	S6
Synthesis of compound 7	
Synthesis of compound 9a	
Synthesis of compound 9b	S8
Synthesis of compound 11bα/11bβ	S9
Synthesis of compound $11a\alpha$	
Synthesis of compound 12	S13
Synthesis of compound 14	S15
Synthesis of compound 16	S15
Synthesis of compound 17	S16
Synthesis of compound 18	S17
Synthesis of compound 19	S18
II. Spectra:	
¹ H NMR spectrum of compound 2a	
¹³ C NMR spectrum of compound 2a	
¹ H- ¹ H COSY spectrum of compound 2a	
¹ H NMR spectrum of compound 2b	S24
¹³ C NMR spectrum of compound 2b	
¹ H- ¹ H COSY spectrum of compound 2b	S26

¹ H NMR spectrum of compound 3a	S27
¹³ C NMR spectrum of compound 3a	S28
¹ H NMR spectrum of compound 3b	S29
¹³ C NMR spectrum of compound 3b	S30
¹ H- ¹ H COSY spectrum of compound 3b	S31
¹ H NMR spectrum of compound 4	S32
¹³ C NMR spectrum of compound 4	S33
¹ H- ¹ H COSY spectrum of compound 4	S34
¹ H NMR spectrum of compound 5	S35
¹³ C NMR spectrum of compound 5	S36
¹ H- ¹ H COSY spectrum of compound 5	S37
¹ H NMR spectrum of compound 6	S38
¹³ C NMR spectrum of compound 6	S39
¹ H- ¹ H COSY spectrum of compound 6	S40
¹ H NMR spectrum of compound 7	S41
¹³ C NMR spectrum of compound 7	S42
¹ H- ¹ H COSY spectrum of compound 7	
¹ H NMR spectrum of compound 9a	S44
¹³ C NMR spectrum of compound 9a	S45
¹ H NMR spectrum of compound 9b	S46
¹³ C NMR spectrum of compound 9b	S47
¹ H NMR spectrum of compound $11a\alpha$	S48
¹³ C NMR spectrum of compound $11a\alpha$	S49
¹ H- ¹ H COSY spectrum of compound 11aα	
¹ H NMR spectrum of compound 11bα	S51
¹³ C NMR spectrum of compound 11bα	S52
¹ H- ¹ H COSY spectrum of compound 11bα	S53
¹ H NMR spectrum of compound 11bβ	S54
¹³ C NMR spectrum of compound 11bβ	
¹ H NMR spectrum of compound 12	S56
¹³ C NMR spectrum of compound 12	S57
¹ H- ¹ H COSY spectrum of compound 12	S58
¹ H NMR spectrum of compound 14	S59

S60
S61
S62
S63
S64
S65
S66
S67
S68
S69
S70
S71
S72
S74

I. Experimental Procedures

Synthesis of diols 2a and 2b:

Phenyl 6-*O*-Tosyloxy-1-thio-β-D-mannopyranoside (1a):

To a cooled solution of phenyl-1-thio- β -D-mannopyranoside **1** (9.5 g, 35.1 mmol) in pyridine (80 mL) was added a solution of TsCl (7.3 g, 38.6 mmol) in pyridine (54 mL) at 0 °C. The reaction mixture was gradually brought to rt and stirred for 6 h. After completion of starting material, solvents were evaporated under reduced pressure and the crude product was chromatographed (ethyl acetate/pet ether = 3/2, v/v) to obtain the desired product **1a** as a foam (12.5 g, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.3 Hz, 2H, ArH), 7.36-7.33 (m, 2H, ArH), 7.18-7.16 (m, 6H, ArH), 4.81 (s, 1H, H-1), 4.34-4.32 (m, 2H), 4.22 (d, *J* = 3.0 Hz, 1H), 3.79 (t, *J* = 9.6 Hz, 1H, H-4), 3.68-3.65 (m, 1H), 3.50-3.45 (m, 1H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 134.7, 132.4, 130.5, 130.0, 128.9, 128.0, 127.0, 87.0, 77.7, 74.7, 72.5, 69.7, 66.9, 21.6; HR-ESI-MS (*m*/*z*): [M + Na]⁺ calcd. for C₁₉H₂₂O₇NaS₂, 449.0705; found, 449.0746.

Phenyl 6-Deoxy-1-thio-β-D-mannopyranoside (1b):

A solution of **1a** (6.2 g, 14.6 mmol) in THF (110 mL) was added dropwise to a suspension of LAH (1.7 g, 43.8 mmol) in THF (38 mL) at 0 °C and the solution was refluxed for 2 h at 80 °C. After complete consumption of starting material the reaction mixture was brought to 0 °C and LAH was quenched with a drop wise addition of EtOAc followed by water, the so formed precipitate was dissolved in 2N H₂SO₄ (100 mL) and extracted with EtOAc (300 mL x 2). Separated organic layer was dried over Na₂SO₄, concentrated and chromatographed (ethyl acetate/pet ether = 3/2, v/v) to obtain **1b** as a white solid (3.73 g, 72%). ¹H NMR (400 MHz, (CD₃)₂CO) δ 7.45-7.43

(m, 2H, ArH), 7.31-7.28 (m, 2H, ArH), 7.22-7.18 (m, 1H, ArH), 5.04 (s, 1H, H-1), 4.20 (bs, 3H, OH), 4.09 (s, 1H), 3.58 (dd, J = 9.0, 3.2 Hz, 1H), 3.44 (t, J = 9.0 Hz, 1H), 3.40-3.34 (m, 1H), 1.29 (d, J = 6.0 Hz, 3H); ¹³C NMR (100 MHz, (CD₃)₂CO) δ 137.6, 130.0, 129.7, 127.0, 87.5, 77.0, 75.7, 73.8, 73.3, 18.4; HR-ESI-MS (*m/z*): [M + Na]⁺ calcd. for C₁₂H₁₆O₄NaS, 279.0667; found, 279.0663.

Phenyl 3-O-Acetyl-6-deoxy-1-thio-β-D-mannopyranoside (2a):

Me₂SnCl₂ (85 mg, 0.39 mmol) and DIPEA (2.7 mL, 15.6 mmol) were sequentially added to a stirred solution of **1b** (2.0 g, 7.8 mmol) in THF (40 mL). To this, AcCl (0.61 mL, 8.58 mmol) was added, after 1h the reaction mixture was quenched with 3% HCl and extracted with EtOAc (100 mL x 2). The combined organic layers were dried over Na₂SO₄, concentrated *in vacuo*, and purified by column chromatography (40% ethyl acetate: pet ether) to afford **2a** as a white solid (89%, 2.08 g). ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.44 (m, 2H, ArH), 7.31-7.24 (m, 3H, ArH), 4.88 (d, *J* = 0.8 Hz, 1H, H-1), 4.75 (dd, *J* = 9.6, 3.2 Hz 1H, H-3), 4.28 (dd, *J* = 3.2, 0.8 Hz, 1H, H-2), 3.71 (t, *J* = 9.6 Hz, 1H, H-4), 3.45-3.38 (m, 1H, H-5), 2.15 (s, 3H, CH₃), 1.39 (d, *J* = 6.0 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 133.8, 131.6, 129.2, 127.8, 87.0, 77.0, 76.9, 70.1, 70.5, 21.3, 18.0; HR-ESI-MS (*m*/*z*): [M + Na]⁺ calcd. for C₁₄H₁₈O₅NaS, 321.0773; found, 321.0776.

Phenyl 3-O-Benzoyl-6-deoxy-1-thio-β-D-mannopyranoside (2b):

Me₂SnCl₂ (85 mg, 0.39 mmol) and DIPEA (2.7 mL, 15.6 mmol) were added to a stirred solution of **1b** (2.0 g, 7.8 mmol) in THF (40 mL). To this, BzCl (1.0 mL, 8.58 mmol) was added, after 1h the reaction mixture was quenched with 3% HCl and extracted with EtOAc (100 mL x 2). The combined organic layers were dried over Na₂SO₄, concentrated *in vacuo*, and purified by column chromatography (25% ethyl acetate: pet ether) to afford **2b** as a white solid (92%, 2.6 g). ¹H NMR (400 MHz, CDCl₃) δ 8.05-8.03 (m, 2H, ArH), 7.56-7.54 (m, 1H, ArH), 7.48-7.46 (m, 2H, ArH), 7.41-7.37 (m, 2H, ArH), 7.32-7.25 (m, 3H, ArH), 5.00 (dd, *J* = 9.6, 3.2 Hz, 1H, H-3), 4.93 (d, *J* = 0.8 Hz, 1H, H-1), 4.40 (dd, *J* = 3.2, 0.8 Hz, 1H, H-2), 3.86 (t, *J* = 9.6 Hz, 1H, H-4), 3.48-3.44 (m, 1H, H-5), 1.41 (d, *J* = 6.0 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 134.0, 133.7, 131.5, 130.0, 129.4, 129.2, 128.6, 127.8, 87.1,

77.6, 76.8, 71.1, 70.7, 18.1; HR-ESI-MS (m/z): $[M + Na]^+$ calcd. for C₁₉H₂₀O₅NaS, 383.0929; found, 383.0941.

Phenyl 3-O-Acetyl-2,4-diazido-2,4,6-trideoxy-1-thio-β-D-galactopyranoside (3a):

Trifluoromethanesulfonic anhydride (6.1 mL, 36.9 mmol) was added dropwise at -10 $^{\circ}$ C to a stirred solution of **2a** (1.8 g, 6.0 mmol) and pyridine (6.3 mL, 78.4 mmol) in CH₂Cl₂ (55 mL) and this solution was gradually brought to 10 $^{\circ}$ C over 2 h. After complete consumption of starting material, as indicated by TLC, the reaction mixture was concentrated *in vacuo* and the crude product was used for the next step without any purification.

The crude product which was obtained in the above step was dissolved in DMF (40 mL) and to this, NaN₃ (3.9 g, 60 mmol) was added. The reaction mixture was stirred at rt for 8 h and then it was diluted with EtOAc (50 mL) and washed with water. Separated aqueous layer was washed with EtOAc (50 mL x 2). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The desired product was purified by column chromatography (10% ethyl acetate: pet ether) to obtain **3a** as a pale yellowish liquid (1.72 g, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.58 (m, 2H, ArH), 7.34-7.33 (m, 3H, ArH), 4.90 (dd, *J* = 10.0, 3.4 Hz, 1H, H-3), 4.40 (d, *J* = 10.0 Hz, 1H, H-1), 3.82 (d, *J* = 3.4 Hz, 1H, H-4), 3.70-3.65 (m, 2H, H-2 & H-5), 2.16 (s, 3H, CH₃), 1.35 (d, *J* = 6.2 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 170.1, 133.5, 131.2, 129.2, 128.6, 86.5, 75.5, 73.4, 63.0, 59.3, 20.7, 17.8; HR-ESI-MS (*m/z*): [M + Na]⁺ calcd. for C₁₄H₁₆N₆O₃NaS, 371.0902; found, 371.0905.

Phenyl2,4-Diazido-3-O-benzoyl-2,4,6-trideoxy-1-thio-β-D-galactopyranoside(3b):

Trifluoromethanesulfonic anhydride (3.4 mL, 20.0 mmol) was added drop wise at -10 $^{\circ}$ C to a stirred solution of **2b** (1.2 g, 3.3 mmol) and pyridine (3.5 mL, 43.1 mmol) in CH₂Cl₂ (42 mL) and the solution was gradually brought to 10 $^{\circ}$ C over 2 h. After complete consumption of starting material, reaction mixture was concentrated *in vacuo* and the crude product was used for the next step without any purification.

The crude product which was obtained in the above step was dissolved in DMF (28 mL) and to this, NaN₃ (2.15 g, 33.2 mmol) was added. This reaction mixture was stirred at rt for 8 h and then it was diluted with EtOAc (50 mL) and washed with water. Separated aqueous layer was washed with EtOAc (50 mL x 2). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The desired product was purified by column chromatography (10% ethyl acetate: pet ether) to obtain **3b** as a pale yellowish liquid (1.15 g, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.07 (m, 2H, ArH), 7.64-7.59 (m, 3H, ArH), 7.50-7.46 (m, 2H, ArH), 7.38-7.35 (m, 3H, ArH), 5.18 (dd, *J* = 10.0, 3.5 Hz 1H, H-3), 4.49 (d, *J* = 10.0 Hz, 1H, H-1), 3.85 (dd, *J* = 3.5, 1.0 Hz, 1H, H-4), 3.80-3.77 (m, 2H, H-2 & H-5), 1.39 (d, *J* = 6.3 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 133.9, 133.4, 131.2, 130.1, 129.1, 128.7, 128.5, 128.4, 86.6, 75.8, 73.6, 63.1, 59.8, 17.8; HR-ESI-MS (*m/z*): [M + Na]⁺ calcd. for C₁₉H₁₈N₆O₃NaS, 433.1059; found, 433.1039.

Phenyl 2,4-Diazido-3-O-benzoyl-2,4,6-trideoxy-1-thio-β-D-glucopyranoside (7):

HO
BZO SPh
$$\frac{1. \text{ Tf}_2\text{O}, \text{ Py, DCM}}{2. \text{ NaN}_3, \text{ DMF, RT}}$$
 $N_3 = 0$
BZO N3 SPh $\frac{1. \text{ Tf}_2\text{O}, \text{ Py, DCM}}{2. \text{ NaN}_3, \text{ DMF, RT}}$ $N_3 = 0$
BZO N3 SPh $\frac{1. \text{ Tf}_2\text{O}, \text{ Py, DCM}}{7}$ SPh $\frac{1. \text{ Tf}_2\text{O}, \text{Py, DCM}}{7}$ SPh $\frac{1. \text{ Tf}_2\text{O}, \text{ Py,$

Trifluoromethanesulfonic anhydride (30 μ L, 0.18 mmol) was added drop wise at -10 °C to a stirred solution of **5** (58 mg, 0.15 mmol) and pyridine (75 μ L, 0.9 mmol) in CH₂Cl₂ (1 mL) and this solution was gradually brought to 10 °C over 2 h. After complete consumption of starting material, reaction mixture was concentrated *in vacuo* and the crude product was used for the next step without purification.

The crude product which was obtained in above step was dissolved in DMF (1.2 mL) and to this, NaN₃ (0.1 g, 1.5 mmol) was added. The reaction mixture was stirred at rt for 10 h and then it was diluted with EtOAc and washed with water. Separated organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (10% ethyl acetate: pet ether) to

afford 7 as a white solid (51 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 8.08-8.06 (m, 2H, ArH), 7.63-7.59 (m, 3H, ArH), 7.49-7.45 (m, 2H, ArH), 7.38-7.35 (m, 3H, ArH), 5.28 (t, *J* = 10.0 Hz, 1H, H-3), 4.57 (d, *J* = 10.0 Hz, 1H, H-1), 3.49-3.44 (m, 2H, H-2 & H-5), 3.29 (t, *J* = 10.0 Hz, 1H, H-4), 1.45 (d, *J* = 6.2 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 133.9, 133.8, 130.9, 130.1, 129.3, 128.9, 128.8, 128.7, 86.3, 75.3, 75.1, 65.9, 63.6, 18.8; HR-ESI-MS (*m/z*): [M + Na]⁺ calcd. for C₁₉H₁₈N₆O₃NaS, 433.1059; found, 433.1055.

3-O-Acetyl-2,4-diazido-2,4,6-trideoxy-*a*-D-galactopyranoside

Trichloroacetimidate (9a):

NBS (1.0 g, 6.0 mmol) was added at 0 °C to a cooled solution of **3a** (0.7 g, 2.0 mmol) in THF: H₂O (30 mL, 4:1). After 10 min. reaction mixture was brought to rt and stirred for 30 min. Then solvents were evaporated and the crude product was purified by column chromatography on silica gel (20% ethyl acetate: pet ether) to afford the desired hemiacetal as a viscous liquid (0.45 g, 88%).

DBU (70 µL, 0.47 mmol) was added at -5 °C to the solution of hemiacetal (0.4 g, 1.56 mmol) and Cl₃CCN (1.9 mL, 19.0 mmol) in CH₂Cl₂ (10 mL) and the reaction mixture was stirred at the same temperature for 1 h. The mixture was concentrated under reduced pressure and the crude product was purified by column chromatography on silica gel (10% ethyl acetate: pet ether) to afford **9a** as a white foam (0.5 g, 80%). ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H, NH), 6.39 (d, *J* = 3.6 Hz, 1H, H-1), 5.39 (dd, *J* = 10, 3.4 Hz, 1H, H-3), 4.27 (q, *J* = 6.4 Hz, 1H, H-5), 4.10-4.03 (m, 2H, H-2 & H-4), 2.22 (s, 3H, CH₃), 1.29 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.3, 160.8, 94.8, 90.9, 71.6, 67.6, 63.5, 57.1, 20.8, 17.3.

3-O-Benzoyl-2,4-diazido-2,4,6-trideoxy-α-D-galactopyranoside

Trichloroacetimidate (9b):

NBS (0.34 g, 1.9 mmol) was added at 0 °C to a cooled solution of **3b** (0.26 g, 0.64 mmol) in THF: H₂O (9.5 mL, 4:1). After 10 min. reaction mixture was brought to rt and stirred for 30 min. Then solvents were evaporated and the crude product was purified by column chromatography on silica gel (20% ethyl acetate: pet ether) to afford the desired hemiacetal as a viscous liquid (0.18 g, 91%).

DBU (26 µL, 0.17 mmol) was added at -5 °C to the solution of hemiacetal (0.18 g, 0.57 mmol) and Cl₃CCN (0.7 mL, 7.0 mmol) in CH₂Cl₂ (3.5 mL) and the reaction mixture was stirred at the same temperature for 1 h. The mixture was concentrated under reduced pressure and the crude product was purified by column chromatography on silica gel (10% ethyl acetate: pet ether) to afford **9b** as a white foam (0.22 g, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H, NH), 8.12 (d, *J* = 7.8 Hz, 2H, ArH), 7.63 (t, *J* = 7.8 Hz, 1H, ArH), 7.52 (t, *J* = 7.8 Hz, 2H, ArH), 6.47 (d, *J* = 3.6 Hz, 1H, H-1), 5.67 (dd, *J* = 10.8, 3.4 Hz, 1H, H-3), 4.38 (q, *J* = 6.4 Hz, 1H, H-5), 4.23 (dd, *J* = 10.8, 3.6 Hz, 1H, H-2), 4.18-4.17 (m, 1H, H-4), 1.33 (d, *J* = 6.4 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 160.8, 134.1, 130.2, 128.8, 128.5, 94.9, 90.9, 71.7, 67.9, 63.8, 57.6, 17.3.

Stereoselective glycosylation of L-serine acceptor 10 with various donors:

A. Thioglycoside 3b using Ph₂SO/Tf₂O as promoter:

Tf₂O (6 μ L, 0.34 mmol) was added at -60 °C to a cooled solution of 3b (0.1 g, 0.24 mmol) and Ph₂SO (0.15 g, 0.68 mmol) in CH₂Cl₂ (10 mL). After 10 min. aminoacid (0.12 g, 0.48 mmol) in DCM (3 mL) added slowly and after stirring the reaction mixture at the same temperature for 1 h, diluted with DCM and washed with aq. NaHCO₃ and brine. Separated organic layer dried over Na₂SO₄, concentrated and

chromatographed to yield the desired product **11b** as white solid (0.11 g, 78%, α/β = 2.2:1); ¹H NMR (400 MHz, CDCl₃) δ (for α -isomer **11b** α) 8.10 (d, J = 7.2 Hz, 2H, ArH), 7.63-7.59 (m, 1H, ArH), 7.50-7.46 (m, 2H, ArH), 7.38-7.32 (m, 5H, ArH), 5.82 (d, J = 8.2 Hz, 1H, NH), 5.57 (dd, J = 10.0, 3.0 Hz, 1H, H-3), 5.18 (s, 2H, CH₂) of Cbz), 4.91 (d, J = 3.6 Hz, 1H, H-1), 4.57-4.55 (m, 1H, -CH), 4.15-3.98 (m, 4H, H-4, H-5, CH₂), 3.79 (s, 3H, CH₃), 3.69 (dd, *J* = 10.0, 3.6 Hz, 1H, H-2), 1.25 (d, *J* = 6.4 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 165.7, 156.0, 134.0, 130.2, 128.8, 128.7, 128.4, 128.3, 99.3, 70.8, 69.5, 67.3, 65.6, 64.2, 57.8, 54.5, 53.1, 17.2. ¹H NMR (400 MHz, CDCl₃) δ (for β -isomer **11b** β) 8.09 (d, J = 7.8 Hz, 2H, ArH), 7.63-7.60 (m, 1H, ArH), 7.50-7.46 (m, 2H, ArH), 7.36-7.30 (m, 5H, ArH), 5.80 (d, J = 8.2 Hz, 1H, NH), 5.13 (s, 2H, CH₂ of Cbz), 5.07 (dd, J = 10.4, 3.6 Hz, 1H, H-3), 4.56-4.54 (m, 1H, -CH), 4.35-4.32 (m, 1H, -CH₂), 4.30 (d, J = 8.0 Hz, 1H, H-1), 3.92-3.80 (m, 3H, H-2, H-4, 1H of -CH₂), 3.77 (s, 3H, CH₃), 3.66 (q, J = 6.4 Hz, H-5), 1.33 (d, J = 6.4 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 165.6, 136.4, 134.0, 130.1, 128.7, 128.64, 128.60, 128.2, 128.1, 102.6, 73.5, 69.7, 69.5, 67.1, 63.0, 61.0, 54.3, 52.9, 17.3; HR-ESI-MS (m/z): $[M + Na]^+$ calcd. for C₂₀H₂₅N₇O₈Na, 576.5137; found, 576.5129.

B. Glycosyl bromide 8 using AgOTf as promoter:

Bromine (0.08 mL, 1.5 mmol) was added to a solution of 3b (0.28 g, 0.68 mmol) in CH_2Cl_2 (10 mL). After 1 h, toluene was added, the mixture was concentrated, and the residue was co-evaporated twice with toluene.

The residue which was obtained after solvents removal was dissolved in CH_2Cl_2 (3 mL) and added to a solution of aminoacid **10** (0.10 g, 0.4 mmol) in CH_2Cl_2 (5 mL) containing molecular sieves. The mixture was stirred under nitrogen for 30 min at rt, after which the temperature was lowered to -50 °C and silver triflate (0.19 g, 0.75 mmol) was added. After 2 h triethylamine was added, and the stirring

was continued for 10 min. The mixture was diluted with CH_2Cl_2 , filtered through celite, and concentrated. The residue was purified by silica gel chromatography to give the desired product 11b as a white solid (0.1 g, 65%, $\alpha/\beta = 1.8:1$)

C. Glycosyl bromide 8 using AgClO₄ as promoter:

Bromine (0.07 mL, 1.4 mmol) was added to a solution of 3b (0.24 g, 0.64 mmol) in CH_2Cl_2 (8 mL). After 1 h, toluene was added, the mixture was concentrated, and the residue was co-evaporated twice with toluene.

A premixed solution of aminoacid acceptor **10** (0.10 g, 0.38 mmol) and glycosyl bromide **8** in CH₂Cl₂ (5 mL) was added to a solution of AgClO₄,(0.16 g, 0.76 mmol) and MS in CH₂Cl₂ (6 mL) over aperiod of 20 min. After 8 h, triethylamine was added, and the stirring was continued for 10 min. The mixture was diluted with CH₂Cl₂, filtered through celite, and concentrated. The residue was purified by silica gel chromatography to give the desired product 11b as a white solid (0.1 g, 69%, $\alpha/\beta = 2.0$:1)

D. Glycosyl bromide 8 using TBAI as promoter:

Bromine (35 μ L, 0.66 mmol) was added to a solution of 3b (0.12 g, 0.29 mmol) in CH₂Cl₂ (4mL). After 1 h, toluene was added, the mixture was concentrated, and the residue was co-evaporated twice with toluene.

The residue in CH_2Cl_2 (1.5 mL) was added to a solution of aminoacid acceptor **10** (0.11 g, 0.4 mmol), MS, TBAI (0.33 g, 0.87 mmol), and DIPEA (40 μ L, 0.33

mmol) in CH₂Cl₂ (2 mL). After 6 h the mixture was diluted with CH₂Cl₂, filtered through celite, and concentrated. The residue was purified by silica gel chromatography to give the desired product **11b** as a white solid (0.05 g, 29%, only α -isomer).

E. Imidate 9a/9b using TMSOTf as promoter: *N*-(Benzyloxycarbonyl)-*O*-(3-*O*-acetyl-2,4-diazido-2,4,6-trideoxy-α-D-galactopyranosyl)-L-serine methylester (11aα):

TMSOTf (75 μL, 0.38 mmol, diluted with 1.2 mL of THF) was added drop wise to a suspension of imidate **9a** (0.3 g, 0.76 mmol), the aminoacid derivative **10** (0.29 g, 1.1 mmol) and 3 Å MS (1.0 g) in THF (6.5 mL) at -78 °C and the reaction mixture was allowed to stir at the same temperature for 4 h. The mixture was diluted with CH₂Cl₂, filtered through celite, and concentrated. The residue was purified by silica gel chromatography (20% ethyl acetate: pet ether) to give the desired product **11aα** as a viscous liquid (0.35 g, 92%, only α-isomer). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.30 (m, 5H, ArH), 5.85 (d, J = 8.0 Hz, 1H, NH), 5.28 (dd, J = 10.0, 3.4 Hz, 1H, H-3), 5.12 (s, 2H, CH₂ of Cbz), 4.83 (d, J = 3.6 Hz, 1H, H-1), 4.55-4.52 (m, 1H, -CH), 4.05-4.00 (m, 3H, H-5 & -CH₂), 3.87 (d, J = 3.4 Hz, 1H, H-4), 3.77 (s, 3H, CH₃), 3.60 (dd, J = 10.0, 3.6 Hz, 1H, H-2), 2.16 (s, 3H, CH₃), 1.20 (d, J = 6.4 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 170.2, 156.0, 136.2, 128.7, 128.4, 128.2, 99.0, 77.4, 70.6, 69.3, 67.3, 65.3, 63.9, 57.3, 54.4, 53.0, 20.7, 17.1; HR-ESI-MS (m/z): [M + Na]⁺ calcd. for C₂₀H₂₅N₇O₈Na, 514.1662; found, 514.1635.

N-(Benzyloxycarbonyl)-*O*-(3-*O*-benzoyl-2,4-diazido-2,4,6-trideoxy-α-D-galactopyranosyl)-L-serine methylester (11bα):

TMSOTf (29 μ L, 0.14 mmol, diluted with 0.5 mL of THF) was added drop wise to a suspension of imidate **9b** (0.13 g, 0.29 mmol), the aminoacid derivative **10** (0.11 g, 0.43 mmol) and 3 Å MS (0.4 g) in THF (2.5 mL) at -78 °C and the reaction mixture was allowed to stir at the same temperature for 4 h. The mixture was diluted with CH₂Cl₂, filtered through celite, and concentrated. The residue was purified by silica gel chromatography (20% ethyl acetate: pet ether) to give the desired product **11ba** as a viscous liquid (0.15 g, 93%, only α -isomer).

N-(Benzyloxycarbonyl)-*O*-(2,4-diazido-2,4,6-trideoxy-α-D-galactopyranosyl)-Lserine methylester (12):

Et₃N (1 mL) was added to a clear solution of **11a** α (0.2 g, 0.4 mmol) in MeOH (4 mL) and the reaction mixture kept for stirring at rt overnight in dark. After complete consumption of starting material solvents were removed *in vacuo* and the crude product was chromatographed by silica gel column chromatography (30% ethyl acetate: pet ether) to afford **12** as a viscous liquid (0.152 g, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.30 (m, 5H, ArH), 5.80 (d, *J* = 8.0 Hz, 1H, NH), 5.12 (d, *J* = 2.0 Hz, 2H, CH₂ of Cbz), 4.83 (d, *J* = 3.6 Hz, 1H, H-1), 4.56-4.52 (m, 1H, -CH), 4.14

(dd, J = 10.0, 3.6 Hz, 1H, H-3), 4.10-3.93 (m, 3H, H-5 & -CH₂), 3.77 (s, 3H, CH₃), 3.70 (d, J = 3.6 Hz, 1H, H-4), 3.39 (dd, J = 10.0, 3.6 Hz, 1H, H-2), 1.24 (d, J = 6.4 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 156.1, 136.1, 128.6, 128.4, 128.2, 98.8, 68.9, 68.2, 67.3, 66.5, 65.8, 60.0, 54.4, 52.3, 17.2; HR-ESI-MS (*m/z*): [M + Na]⁺ calcd. for C₁₈H₂₃N₇O₇Na, 472.1557; found, 472.1578.

p-Methoxyphenyl 2,3,4,6-Tetra-*O*-acetyl- β -D-galctopyranosyl-(1 \rightarrow 4)-6-*O*-Benzoyl-2,3-dibenzyl- α -D-galactopyranoside (16):

p-Methoxyphenyl 4,6-Benzylidene-2,3-dibenzyl-α-D-galactopyranoside (13a):

Camphorsulfonic acid (0.38 g, 1.6 mmol) was added to a solution of *p*-methoxyphenyl α -D-galactopyranoside **13** (1.9 g, 6.6 mmol) in acetonitrile (25 mL). After 10 min, benzaldehyde dimethyl acetal (1.2 mL, 8.0 mmol) was added drop wise to it and the mixture was kept for stirring at rt for 30 min. Then the reaction was quenched with triethylamine until the pH was adjusted to 7, and then the solvents were removed *in vacuo*.

The crude product which was obtained after removal of solvents was dissolved in DMF (25 mL) and to this, NaH (0.8 g, 33.3 mmol) was added at 0 °C. After 10 min, BnBr (3.4 mL, 20.0 mmol) was added and kept for stirring at rt overnight. Then reaction mixture was quenched with water and extracted with EtOAc twice. Combined orgnic layers were concentrated and chromatographed on silica gel (10% ethyl acetate: pet ether) to afford **13a** as a white solid (3.3 g, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.29 (m, 15H, ArH), 7.03 (d, *J* = 9.0 Hz, 2H, ArH), 6.78 (d, *J* = 9.0 Hz, 2H, ArH), 5.53 (d, J = 2.0 Hz, 1 H, H-1), 5.51 (s, 1H, benzylidene), 4.91-4.69 (m, 4H, ArCH₂), 4.27-4.17 (m, 4H), 3.99 (dd, J = 12.0, 1.6 Hz, 1H), 3.78 (s, 3H, CH₃), 3.75 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 151.0, 138.8, 138.5, 137.7, 128.9, 128.6, 128.4, 128.2, 127.9, 127.7, 127.69, 127.64, 126.3, 117.7, 114.5, 101.0, 97.3, 76.0, 75.3, 74.6, 73.6, 72.2, 69.4, 63.2, 55.6; HR-ESI-MS (*m*/*z*): [M + Na]⁺ calcd. for C₃₄H₃₄O₇Na, 577.2202; found, 577.2192.

p-Methoxyphenyl 6-Benzoyl-2,3-dibenzyl-α-D-galactopyranoside (14):

A solution of **13a** (0.65 g, 1.1 mmol) in 80% aq. acetic acid solution (26 mL) was stirred at 80 °C for 1.5 h. After complete consumption of starting material solvents were removed *in vacuo* and the residue was azeotroped with toluene twice. The crude product which was obtained after solvent removal was dissolved in CH₂Cl₂ (20 mL) and to this, Et₃N (1.5 mL, 10.6 mmol), and Bz₂O (0.37 g, 1.6 mmol) were added. After 6 h, solvents were evaporated *in vacuo* and the residue was chromatographed on silica gel (10% ethyl acetate: pet ether) to obtain the desired compound **14** as a white solid (0.5 g, 75%); ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.87 (m, 2H, ArH), 7.56-7.52 (m, 1H, ArH), 7.42-7.27 (m, 12H, ArH), 7.02 (d, *J* = 9.0 Hz, 2H, ArH), 6.67 (d, *J* = 9.0 Hz, 2H, ArH), 5.38 (d, *J*=3.6 Hz, 1H, H-1), 4.91-4.72 (m, 4H, ArCH₂), 4.54-4.46 (m, 2H), 4.29-4.26 (m, 1H), 4.12-4.09 (m, 2H), 4.02-3.99 (m, 1H), 3.70 (s, 3H, CH₃), 2.61 (s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 155.2, 150.7, 138.2, 138.0, 133.2, 129.9, 128.5, 128.7, 128.6, 128.4, 128.2, 128.1, 128.0, 118.7, 114.5, 97.0, 75.6, 73.5, 73.2, 68.5, 68.0, 64.3, 55.6; HR-ESI-MS (*m*/*z*): [M + Na]⁺ calcd. for C₃₄H₃₄O₈Na, 593.2151; found, 593.2129.

p-Methoxyphenyl 2,3,4,6-Tetra-*O*-acetyl- β -D-galctopyranosyl-(1 \rightarrow 4)-6-*O*-Benzoyl-2,3-dibenzyl- α -D-galactopyranoside (16):

TMSOTf (3 μ L, 0.015 mmol) was added drop wise to a suspension of imidate **15** (0.25 g, 0.5 mmol), acceptor **14** (0.23 g, 0.4 mmol) and 3 Å MS (0.3 g) at rt and the reaction mixture was stirred at the same temperature for 4 h. The mixture was diluted with CH₂Cl₂ filtered through celite and concentrated. The residue was purified by silica gel chromatography (30% ethyl acetate: pet ether) to give the desired product **16** as a foam (0.32 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.83 (m, 2H, ArH), 7.55-7.53 (m, 1H, ArH), 7.51-7.27 (m, 12H, ArH), 6.96 (d, *J* = 9.0 Hz, 2H, ArH),

6.61 (d, J = 9.0 Hz, 2H, ArH), 5 .37 (d, J = 3.3 Hz, 1H, H-4'), 5 .33 (d, J = 3.6 Hz, 1H, H-1), 5.22 (ap.t, J = 10.0, 7.8 Hz, IH, H-2'), 5.02 (dd, J = 10.0, 3.3 Hz, 1H, H-3'), 4.91-4.61 (m, 5H, H-1' & ArCH₂), 4.52 (dd, J = 12.0, 3.4 Hz, 1H, H-6b), 4.27 (ap.t, J = 12.0, 8.4 Hz, 1H, H-6a), 4.25 (dd, J = 8.4, 3.4 Hz, 1H, H-5), 4.10-4.08 (m, 4H, H-3, H-4, H-6'a & H-6'b), 3.94 (dd, J = 10.0, 3.6 Hz, 1H, H-2), 3.83 (t, J = 6.4 Hz, 1H, H-5'), 3.68 (s, 3H, CH₃), 2.14 (s, 3H, CH₃), 2.00 (s, 3H, CH₃), 1.99 (s, 3H, CH₃), 1.83 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 170.3, 170.2, 169.7, 166.2, 155.0, 150.6, 138.3, 138.2, 132.9, 129.9, 129.6, 128.54, 128.50, 128.23, 127.97, 127.92, 127.8, 118.6, 114.3, 102.3, 97.0, 77.81, 76.8, 76.7, 76.4, 73.9, 73.6, 70.8, 70.4, 68.9, 68.6, 66.8, 64.8, 61.4, 55.4, 20.8, 20.7, 20.6; HR-ESI-MS (*m/z*): [M + Na]⁺ calcd. for C₄₈H₅₂O₁₇Na, 923.3102; found, 923.3087.

2,3,4,6-Tetra-*O*-acetyl-β-D-galctopyranosyl-(1→4)-6-*O*-Benzoyl-2,3-dibenzyl-α-D-galactopyranoside Chloride (17):

BF₃·Et₂O (90 μL, 0.7 mmol) was added to a solution of disacharide **16** (0.18 g, 0.2 mmol), and AcCl (0.14 mL, 1.9 mmol) in CHCl₃ (4 mL) at 0 °C. After 5 min, ZnI₂ (3 mg) was added and the reaction mixture was brought to rt. After stirring at rt for 45 min., the reaction mixture was diluted with CH₂Cl₂ and washed with aq. NaHCO₃ and brine. Separated organic layer was dried over Na₂SO₄, concentrated and chromatographed on silica gel (30% ethyl acetate: pet ether) to afford the glycosyl chloride **17** as a foam (0.12 g, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.2 Hz, 2H, ArH), 7.49-7.47 (m, 1H, ArH), 7.38-7.11 (m, 12H, ArH), 5.99 (d, J = 3.6 Hz, 1H, H-1), 5.28 (d, J = 3.4 Hz, 1H, H-4'),), 5.22 (ap.t, J = 10.0, 7.8 Hz, 1H, H-2'), 4.93 (dd, J = 10.0, 3.4 Hz, 1H, H-3'), 4.79-4.53 (m, 6H, H-1', H-5 & ArCH₂), 4.32-4.27 (m, 2H, H-6a & H-6b), 4.02-3.84 (m, 5H, H-2, H-3, H-4, H-6'a & H-6'b), 3.74 (t, J = 6.4 Hz, IH, H-5'), 2.06 (s, 3H, CH₃), 1.92 (s, 3H, CH₃), 1.90 (s, 3H, CH₃), 1.74 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 170.5, 170.3, 169.9, 166.3, 138.1, 137.7, 133.3, 129.9, 129.8, 129.1, 128.7, 128.5, 128.3, 128.2, 128.07, 128.03, 125.4, 102.5, 94.4, 77.27, 76.57, 76.4, 74.2, 73.5, 71.5, 70.8, 70.5, 69.1, 66.8, 64.1,

61.4, 20.9, 20.8, 20.78, 20.7; HR-ESI-MS (m/z): $[M + Na]^+$ calcd. for C₄₁H₄₅O₁₅NaCl, 835.2345; found, 835.2369.

N-(Benzyloxycarbonyl)-*O*-(2,3,4,6-tetra-*O*-acetyl- β -D-galctopyranosyl-(1 \rightarrow 4)-6-*O*-Benzoyl-2,3-dibenzyl- α -D-galactopyranosyl-(1 \rightarrow 3)-2,4-diazido-2,4,6-trideoxy- α -D-galactopyranosyl)-L-serine methylester (18):

AgOTf (0.18 g, 0.7 mmol) was added to a premixed solution of glycosyl chloride 17 (0.28 g, 0.35 mmol), acceptor **12** (0.13 g, 0.29 mmol), sym. collidene (45 μ L, 0.32 mmol) and 3 Å MS in CH₂Cl₂ (8 mL) at -30 °C and the reaction mixture was stirred at the same temperature for 3 h. The reaction mixture was quenched with Et_3N and the mixture was filtered through celite. Filtrate was concentrated in vacuo and chromatograped on silica gel (35% ethyl acetate: pet ether) to obtain 18 as a viscous liquid (0.28 g, 80%). ¹H NMR (400 MHz, CDCl₃) δ 8.03-8.01 (m, 2H, ArH), 7.56-7.54 (m, 1H, ArH), 7.44-7.30 (m, 17H, ArH), 5.78 (d, J = 8.0 Hz, 1H, NH), 5.33 (d, J= 3.0 Hz, 1H, H-4''), 5.22 (ap.t, J = 10.0, 7.8 Hz, 1H, H-2''), 5.11 (s, 2H, CH₂ of Cbz), 5.01-4.98 (m, 2H, H-3" & H-1), 4.86-4.79 (m, 2H, ArCH₂), 4.74 (d, J = 3.6 Hz, 1H, H-1'), 4.68-4.54 (m, 4H, H-1", H-6'a & ArCH₂), 4.48-4.46 (m, 1H, CH), 4.41-4.30 (m, 2H), 4.06-3.82 (m, 5H), 3.78-3.70 (m, 5H), 3.68 (s, 3H, CH₃), 3.60 (s, 1H), 3.34 (dd, J = 10.0, J = 3.6 Hz, 1H, H-2'), 2.12 (s, 3H, CH₃), 1.98 (s, 3H, CH₃), 1.93(s, 3H, CH₃), 1.88 (s, 3H, CH₃), 1.04 (d, J = 6.4 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): 8 170.5, 170.4, 170.3, 170.2, 169.8, 166.4, 156.0, 138.5, 138.4, 136.2, 133.0, 130.3, 129.7, 128.7, 128.68, 128.65, 128.46, 128.43, 128.2, 128.16, 128.13, 128.10, 127.7, 102.3, 101.0, 99.6, 77.9, 77.87, 76.7, 74.6, 73.8, 70.9, 70.4, 69.6, 69.2, 67.3, 66.9, 65.7, 64.3, 63.9, 61.3, 58.8, 54.5, 52.9, 21.0, 20.8, 20.7, 20.6, 17.1; HR-ESI-MS (m/z): $[M + Na]^+$ calcd. for C₅₉H₆₇O₂₂N₇Na, 1248.4237; found, 1248.4272.

N-(Benzyloxycarbonyl)-*O*-(β -D-galctopyranosyl-(1 \rightarrow 4)- α -D-galactopyranosyl-(1 \rightarrow 3)-2,4-diacetimido-2,4,6-trideoxy- α -D-galactopyranosyl)-L-serine (19):

N-(Benzyloxycarbonyl)-*O*-(2,3,4,6-tetra-*O*-acetyl- β -D-galctopyranosyl-(1 \rightarrow 4)-6-*O*-Benzoyl-2,3-dibenzyl- α -D-galactopyranosyl-(1 \rightarrow 3)-2,4-diacetimido-2,4,6trideoxy- α -D-galactopyranosyl)-L-serine methylester (18a):

Pyridine (0.15 mL, 1.9 mmol) and water (35 μ L, 1.9 mmol) were added to a clear solution of trisaccharide **18** (0.23 g, 0.19 mmol) and PPh₃ (0.2 g, 0.77 mmol) in THF (4 mL) and then the reaction mixture was kept for reflux for 4 h at 70 °C. Then solvents were removed *in vacuo* and the crude product was dissolved in pyridine (3 mL) and Ac₂O (0.36 mL, 3.8 mmol) was added. After stirring the reaction mixture at rt for 10 h solvents were removed under reduced pressure and the crude product was chromatographed on silica gel (60% ethyl acetate: pet ether) to obtain **18a** as a foam (0.175 g, 72%). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 7.4 Hz, 2H, ArH), 7.60 (t, *J* = 7.4 Hz, 1H, ArH), 7.46 (t, *J* = 7.4 Hz, 1H, ArH), 7.33-7.14 (m, 16H, ArH), 6.82 (d, *J* = 9.4 Hz, 1H, NH), 6.33 (d, *J* = 9.6 Hz, 1H, NH), 6.18 (d, *J* = 9.6 Hz, 1H, NH), 5.43 (d, *J* = 3.2 Hz, 1H, H-4²), 5.32 (d, *J* = 2.7 Hz, 1H, H-1), 5.22 (ap.t, *J* = 10.0, 8.0 Hz, IH, H-2²), 5.03 (dd, *J* = 10.0, 3.2 Hz, 1H, H-3²), 4.96 (d, *J* = 12.0 Hz, 1H, ArCH₂), 4.81-4.76 (m, 2H), 4.71-4.66 (m, 3H), 4.57-4.46 (m, 6H), 4.30-4.26 (m, 2H), 4.14-3.75 (m, 9H), 3.72 (s, 3H, CH₃), 3.68-3.66 (m, 1H), 2.17 (s, 3H, CH₃), 2.00 (s, 3H, CH₃), 1.99 (s, 3H, CH₃), 1.76 (s, 3H, CH₃), 1.71 (s, 3H, CH₃), 1.63 (s, 3H, CH₃),

1.10 (d, J = 6.4 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 171.0, 170.4, 170.3, 170.2, 169.7, 169.0, 156.3, 138.4, 136.2, 134.0, 130.2, 129.1, 128.8, 128.5, 128.3, 128.0, 127.9, 127.7, 127.5, 127.4, 102.2, 99.0, 91.6, 77.4, 76.8, 75.4, 74.1, 73.0, 70.9, 70.3, 68.9, 68.5, 68.3, 66.7, 66.07, 66.0, 62.8, 60.8, 54.6, 52.6, 48.1, 47.5, 22.97, 22.94, 20.8, 20.7, 16.7; HR-ESI-MS (*m/z*): [M + Na]⁺ calcd. for C₆₃H₇₅O₂₄N₃Na, 1280.4638; found, 1280.4702.

N-(Benzyloxycarbonyl)-*O*-(2,3,4,6-tetra-*O*-acetyl- β -D-galctopyranosyl-(1 \rightarrow 4)-6-*O*-Benzoyl- α -D-galactopyranosyl-(1 \rightarrow 3)-2,4-diacetimido-2,4,6-trideoxy- α -D-galactopyranosyl)-L-serine methylester (18b):

A solution of NaBrO₃ (0.07 g, 0.47 mmol) in water (1.5 mL) was added to a clear solution of 18a (0.1 g, 0.08 mmol) in EtOAc (1.1 mL). To this biphasic layer a solution of Na₂S₂O₄ (0.07 g, 0.0.4 mmol) in water (2 mL) was added dropwise over 5 min. After 45 min. reaction mixture was quenched with aq. $Na_2S_2O_3$ solution and extracted with EtOAc (30 mL x 3). Combined organic layers dried over Na_2SO_4 , concentrated and chromatographed on silica gel (5% methanol: ethyl acetate) to afford the desired product 18b as a white solid (70 mg, 82%). ¹H NMR (400 MHz, CD_3OD) δ 8.07 (d, J = 7.4 Hz, 2H, ArH), 7.51 (t, J = 7.4 Hz, 1H, ArH), 7.47 (t, J =7.4 Hz, 2H, ArH), 7.30-7.28 (m, 5H, ArH), 5.43 (d, J = 1.8 Hz, 1H), 5.14-5.01 (m, 5H), 4.90 (m, 1H), 4.74 (d, J = 1.8 Hz, 1H), 4.57 (t, J = 9.2 Hz, 1H), 4.46 (t, J = 4.0Hz, 1H), 4.40-4.39 (m, 1H), 4.28-4.22 (m, 2H), 4.10-3.85 (m, 8H), 3.79-3.75 (m, 1H), 3.72 (s, 3H, CH₃), 3.71-3.68 (m, 1H), 3.57 (dd, J = 10.0, 3.6 Hz, 1H), 2.11 (s, 3H, CH₃), 2.09 (s, 3H, CH₃), 2.05 (s, 3H, CH₃), 1.94 (s, 3H, CH₃), 1.88 (s, 3H, CH₃), 1.85 (s, 3H, CH₃), 1.09 (d, J = 6.4 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CD₃OD) δ 173.3, 171.7, 170.7, 170.4, 170.3, 170.2, 169.9, 166.5, 156.7, 136.2, 133.0, 129.4, 129.2, 128.2, 127.9, 127.5, 127.3, 101.7, 98.4, 96.8, 76.3, 73.3, 70.6, 69.8, 69.4, 69.0, 68.7, 67.4, 66.9, 66.2, 64.9, 62.4, 60.6, 54.2, 51.4, 49.5, 21.5, 21.0, 19.5, 18.9, 18.8, 15.3; HR-ESI-MS (m/z): $[M + Na]^+$ calcd. for C₄₉H₆₄O₂₄N₃Na, 1078.3880; found, 1078.3940.

N-(Benzyloxycarbonyl)-*O*-(β -D-galctopyranosyl-(1 \rightarrow 4)- α -D-galactopyranosyl-(1 \rightarrow 3)-2,4-diacetimido-2,4,6-trideoxy- α -D-galactopyranosyl)-L-serine (19):

A solution of NaOMe (35 mg) in MeOH (2 mL) was added to a clear solution of **18b** (33 mg, 0.03 mmol) in MeOH (2 mL) and water (2 mL) at 50 °C (pH 10). After stirring the reaction mixture at the same temperature for 20 h, the reaction miture was neutralized with AcOH until the pH adjusted to 6. Then solvents were removed under reduced pressure and the crude product was chromatographed on silica gel (7:2:1 ethyl acetate: MeOH: H₂O) to afford the desired product **19** as a white solid (20 mg, 87%). ¹H NMR (400 MHz, CD₃OD) δ 7.38-7.29 (m, 5H, ArH), 5.12-5.08 (m, 2H), 4.99-4.90 (m, 2H), 4.74-4.69 (m, 1H), 4.43 (d, *J* = 8.0 Hz, 1H), 4.35-4.32 (m, 1H), 4.24-4.15 (m, 2H), 4.06-3.94 (m, 3H), 3.87-3.79 (m, 2H), 3.77-3.61 (m, 8H), 3.58-3.45 (m, 2H), 2.03, 2.02 (2s, 3H, CH₃), 2.02, 1.89 (2s, 3H, CH₃), 1.05, 1.03 (2d, *J* = 6.4 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CD₃OD) δ 176.8, 174.9, 174.0, 173.8, 170.5, 158.3, 158.1, 138.3, 129.15, 129.09, 129.02, 107.0, 99.7, 99.1, 98.2, 97.9, 80.5, 77.1, 75.3, 74.5, 74.2, 73.3, 72.0, 71.9, 71.1, 71.0, 70.5, 67.7, 67.1, 66.3, 66.1, 62.9, 62.7, 61.5, 57.7, 51.3, 51.1, 50.1, 24.1, 23.2, 23.1, 22.7, 17.0; HR-ESI-MS (*m*/*z*): [M + Na]⁺ calcd. for C₃₃H₄₉O₁₉N₃Na, 814.2858; found, 814.2849.

II.Spectra:

S31

_

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Elemental Composition Report

Page 1

۰.

Single Mass Analysis (displaying only valid results) Tolerance = 20.0 PPM / DBE: min = -1.5, max = 200.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 307 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

,OH но 0 ЮH но -Q NHAc нò но ACHN CbzHN CO2H

19

