Supporting Information

Table of Contents I. General Information II. Preparation of Substrates III. Reaction Condition Screening IV. General Procedure and Experimental Details of the Formation of Azapolyheterocycle Compounds V. Crystal Data and Structure Refinement for Polyheterocycle Compound VI. HPLC and NMR Spectra

I. General Information

All reactions were carried out under inert atmospheric condition unless otherwise noted, and solvents were dried according to established procedures. Reactions were monitored by thin layer chromatography (TLC) visualizing with ultraviolet light (UV), KMnO₄, p-anisaldehyde stain, and phosphomolybdic acid (PMA) stain; column chromatography purifications were carried out using silica gel. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a 300 or 500 MHz spectrometer in CDCl₃, and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on 75 or 125 MHz spectrometer in CDCl₃ unless otherwise noted. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane (TMS) and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26 ppm). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane (TMS) and are referenced to the carbon resonances of the solvent residual peak (CDCl₃ = δ 77.16 ppm). NMR data are presented as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant in Hertz (Hz), integration. Infrared (IR) spectra were recorded on a spectrometer. Mass spectra were recorded on the Bruker MicrOTOF Q II. Melting points were measured on a melting point apparatus and were uncorrected. The enantiomeric excesses of products were determined by chiral phase HPLC analysis at 30°C.

II Preparation of Substrates

Furfurylamines were prepared according to a published procedure,^{1, 2} the spectral data were in agreement with literature values.

 $\overset{OBoc}{R^1}\overset{R^2}{\longrightarrow} R^2$

MBH carbonates were prepared according to a published procedure,^{3, 4} the spectral data were in agreement with literature values.

III. Reaction Condition Screening

Representative procedure for the synthesis of compounds 4 (Procedure A)

A mixture of sulfonamide 1 (0.1 mmol), MBH carbonate 2a (0.13 mmol), and catalyst (0.02 mmol or 0.01 mmol), was dissolved in toluene (1.0 mL). Reaction mixture was stirred at room temperature and the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (silica gel, EtOAc/petroleum ether) to provide the desired product 4. The major disteroisomers were characterizated, unless otherwise noted.

Table 1. Protecting group R¹ screening.^{*a*}

R ¹ N H	0	OBoc h CC	D₂Me	DABO (20 mo toule	CO DI%) ne MeO ₂ C	N-R ¹
1		2a				4
	Entry	R^1	1	d.r. ^{<i>b</i>}	$\mathbf{Yield}(\%)^{c}$	
	1	PhCO	1a	1:1.1	80 (4aa)	
	2	Ms	1b	>20/1	89 (4ba)	
	3	Tf	1c	>20/1	94 (4ca)	
	4	Ts	1d	>20/1	92 (4da)	
	5	4-Ns	1f	>20/1	93 (4fa)	
	6	2-Ns	1g	>20/1	95 (4ga)	
	7	CF ₃ CO	1j	4/1	92 (4ja)	
	8	Boc	1e	-	< 1	
	9	CBz	1k	1.5/1	56 (4ka)	

^{*a*} Unless otherwise noted, reactions were performed with **1** (0.1 mmol), **2** (0.13 mmol) and DABCO (20 mol %) in solvent (1 mL) at 30°C. ^{*b*} Determined by NMR analysis. ^{*c*} Isolated yields.

Table 2. Screening of Catalysts for Asymmetric Cascade Reaction of Compound 1a.^a

2a: $R^2 = CO_2Me$; **2b**: $R^2 = CO_2Et$; **2c**: $R^2 = CO_2But$; **2d**: $R^2 = CN$;

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Entry	Cat.	\mathbf{R}^1	2	Yield $(\%)^{b}$	d.r. ^{<i>c</i>}	ee [%] ^d
1	quinidine	Ts	2a	84 (4da)	>20/1	67
2	quinidine	Ts	2b	78 (4db)	>20/1	62
3	quinidine	Ts	2c	25 (4dc)	>20/1	62
4^e	quinidine	Ts	2d	97 (4dd)	1.1/1	33(51)
5	hydroquinidine	Ts	2a	75 (4da)	>20/1	76
6	quinine	Ts	2a	80 (4da)	>20/1	-30
7	cinchonine	Ts	2a	10 (4da)	>20/1	52
8	cinchonidine	Ts	2a	68 (4da)	>20/1	20
9	(DHQ) ₂ PHAL	Ts	2a	38 (4da)	>20/1	-50
10	(DHQD) ₂ PHAL	Ts	2a	43 (4da)	18/1	58
11	(DHQ) ₂ PYR	Ts	2a	54 (4da)	>20/1	-49
12	(DHQD) ₂ PYR	Ts	2a	31 (4da)	>20/1	72
13	(DHQ) ₂ AQN	Ts	2a	54 (4da)	19/1	-39
14	(DHQD) ₂ AQN	Ts	2a	46 (4da)	>20/1	89
15	(DHQD) ₂ AQN	Ms	2a	65 (4ba)	15/1	79
16	(DHQD) ₂ AQN	Τf	2a	<1 (4ca)	-	-
17	(DHQD) ₂ AQN	4-Ns	2a	70 (4fa)	15/1	87
18	(DHQD) ₂ AQN	2-Ns	2a	70 (4ga)	9/1	85

^{*a*} Unless otherwise noted, reactions were performed with **1** (0.1 mmol), **2** (0.13 mmol), and catalyst (10 mol %) in toluene (0.5 mL, c = 0.2 M) at 25 °C for 24 hours. ^{*b*} Isolated yields. ^{*c*} Determined by ¹HNMR analysis. ^{*d*} Determined by chiral HPLC analysis. ^{*e*} The d.r. value was calculated by isolated yields.

Table 3. Solvents screening.^{*a*}

Ts∖_N ⊢ H	℃	+ Ph	$(DHQD)_2$ $D_2Me - (10 mc) solve$	AQN 1%) nt N	MeO ₂ C Ph	ך N∼Ts
	1d	2a			4da	
	Entry	Solvent	Yield $(\%)^{b}$	d.r. ^{<i>c</i>}	ee(%) ^{<i>c</i>}	
	1	toluene	46	24/1	89	
	2	xylene	52	18/1	90	
	3	CHCl ₃	87	24/1	68	
	4	DCE	86	19/1	71	
	5	PhCF ₃	84	21/1	83	
	6	benzene	72	18/1	82	
	7	1,4-dioxane	54	32/1	79	
	8	DCM	86	16/1	70	
	9	THF	85	17/1	66	
	10	o-xylene	50	20/1	89	
	11	<i>m</i> -xylene	50	20/1	91	
	12	<i>p</i> -xylene	57	17/1	86	

^{*a*} Unless otherwise noted, reactions were performed with **1d** (0.1 mmol), **2a** (0.13 mmol), and catalyst (10 mol %) in toluene (0.5 mL, c = 0.2 M) at 25°C for 48 hours. ^{*b*} Isolated yields. ^{*c*} Determined by chiral HPLC analysis.

Table 4. Additives screening.^a

Ts∖Ń H	O + Ph	DBoc	(Dł Me <u>(</u> n	HQD) ₂ AQN 10 mol%) n-xylene	eO ₂ C	∽ ∽N~Ts
	1d	2a			4d	a B
Entry	Additives	T (℃)	<i>t</i> (d)	Yield $(\%)^{b}$	d.r. ^c	Ee[%] ^c
1	no	25	2	50	20/1	91
2	FeCl ₂	25	2	n.r.	-	-
3	FeCl ₃	25	2	n.r.	-	-
4	CuSO ₄	25	2	49	20/1	91
5	CuI	25	2	43	23/1	91
6^d	CuI /L	25	2	52	23/1	87
7^{d}	CuCl ₂ /L	25	2	51	23/1	90
8	(s)-(-)BINOL	25	2	35	23/1	91
9	4ÅMS	25	2	47	27/1	91
10	4ÅMS	35	3	61	22/1	91
11	4ÅMS	50	2	93	7/1	89
12^{e}	4ÅMS	25	2	73	26/1	90
13^{e}	4ÅMS	25	4	95	29/1	90

^{*a*} Unless otherwise noted, reactions were performed with **1d** (0.1 mmol), **2a** (0.13 mmol), catalyst (10 mol %) and additives (10 mol%) in toluene (0.5 mL, c = 0.2 M) at 25°C for 48 hours. ^{*b*} Isolated yields. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} Ligand (1,10-phenanthroline, 10 mol%) was added. ^{*e*} Reaction was carried out in solvent (c = 0.4 M)

IV. General Procedure and Experimental Details of the Formation of Azapolyheterocycle Compounds 4

Preparation of compound 4 by Procedure A:

According to the general procedure in which DABCO (20 mol%) was used, colourless oil was obtained as inseparate mixture of **4aa** (*endo-/exo-*) in 80% yield (30 mg, dr =1/1.1). Major isomer: ¹H NMR (300 MHz, CDCl₃) δ 7.58 –6.95 (m, 10H), 6.49 (dd, J = 5.7, 1.4 Hz, 1H), 6.41 (d, J = 5.7 Hz, 1H), 5.02 (s, 1H), 4.77 (dd, J = 4.5, 1.6 Hz, 1H), 4.70 (d, J = 14.0 Hz, 1H), 4.31 (d, J = 14.1 Hz, 1H), 3.74 (s, 3H), 1.85-1.71 (m, 1H), 1.64 – 1.59 (m, 1H). Minor isomer: ¹H NMR (300 MHz, CDCl₃) δ 7.58 –6.95 (m, 10H), 6.45 (dd, J = 5.7, 1.5 Hz, 1H), 6.30 (d, J = 5.7 Hz, 1H), 5.74 (s, 1H), 4.77 (dd, J = 4.5, 1.6 Hz, 1H), 4.74 (s, 3H), 1.85-1.71 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 173.76, 173.37, 171.92, 140.39, 139.72, 139.64, 139.59, 137.10, 136.92, 134.49, 134.07, 131.29, 129.94, 129.29, 128.56, 128.47, 128.37, 128.24, 127.95, 127.88, 127.44, 127.34, 126.85, 126.12, 97.61, 97.35, 80.52, 80.18, 69.33, 66.63, 64.80, 63.27, 52.72, 51.90, 51.62, 49.02,33.60, 33.55. HRMS (ESI): calcd for C₂₃H₂₂NO₄ ([M+H]⁺): 376.1543, found 376.1544.

According to the general procedure in which DABCO (20 mol%) was used, white solid was obtained in 94% yield (38 mg), mp: 101.4-103.8°C. ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.25 (m, 5H), 6.53 (dd, *J* = 5.7, 1.6 Hz, 1H), 6.37 (d, *J* = 5.7 Hz, 1H), 5.36 (s, 1H), 4.82 (dd, *J* = 4.7, 1.7 Hz, 1H), 4.53 (d, *J* = 11.2 Hz, 1H), 4.25 (d, *J* = 11.3 Hz, 1H), 3.79 (s, 3H), 1.84 (d, *J* = 12.4 Hz, 1H), 1.62 (dd, *J* = 12.5, 4.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.78, 140.57, 133.56, 128.36, 80.63, 70.62, 53.07, 51.55, 34.26. ¹⁹F NMR (471 MHz, CDCl₃) δ -77.43 (s). HRMS (ESI): calcd. for C₁₇H₁₇F₃NO₅S ([M+H]⁺): 404.0774, found 404.0775.

4ja

According to the general procedure in which DABCO (20 mol%) was used, colorless oil was obtained as inseparate mixture of **4ja** (*endo-/exo-*) obtained in 92% yield (33.8 mg, dr =4/1). Major isomer: ¹H NMR (300 MHz, CDCl₃) δ 7.35 – 7.25 (m, 3H), 7.17 – 7.11 (m, 2H), 6.51 (dd, J = 5.7, 1.7 Hz, 1H), 6.40-6.34 (m, 1H), 5.50 (s, 1H), 4.80 (dd, J = 4.7, 1.7 Hz, 1H), 4.58 (d, J = 12.2 Hz, 1H), 4.44 (d, J = 12.2 Hz, 1H), 3.73 (s, 3H), 1.83 (d, J = 12.3 Hz, 1H), 1.75-1.67 (m, 1H). Minor isomer: δ 7.35 – 7.25 (m, 3H), 7.17 – 7.11 (m, 2H), 6.51 (dd, J = 5.7, 1.7 Hz, 1H), 6.40-6.34 (m, 1H), 5.47 (s, 1H), 4.77 (dd, J = 4.5, 1.9 Hz, 1H), 4.55 (d, J = 14.4 Hz, 1H), 4.26 (d, J = 14.4 Hz, 1H), 3.74 (s, 3H), 1.88 (d, J = 12.4 Hz, 1H), 1.75-1.67 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 173.31, 140.34, 137.90, 134.33, 133.62, 128.61, 128.08, 128.05, 127.99, 127.80, 97.93, 80.84, 80.63, 68.78, 62.75, 53.09, 50.91, 49.31, 49.28, 49.24,49.21,33.86,33.72. ¹⁹FNMR (471 MHz, CDCl₃) δ -70.76, -72.70. HRMS (ESI): calcd. for C₁₈H₁₇F₃NO₄ ([M+H]⁺): 368.1104, found 368.1105.

According to the general procedure in which DABCO (20 mol%) was used, colorless oil was obtained as inseparate mixture of **4ka** (*endo-/exo-*) in 56% yield (22.7 mg, dr =1.5/1). Major isomer: ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.25 (m, 5H), 7.22-7.10 (m, 4H), 6.71 (d, J = 7.1 Hz, 1H), 6.48-6.44 (m, 1H), 6.40-6.36 (m, 1H), 5.21 (s, 1H), 5.12-5.05 (m, 1H), 4.90 (d, J = 12.6 Hz, 1H), 4.78-4.75 (m, 1H), 4.36-4.30 (m, 1H), 4.23-4.15 (m, 1H), 3.70 (s, 3H), 1.81-1.75 (m, 1H), 1.67-1.61 (m, 1H). Minor isomer: ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.25 (m, 5H), 7.22-7.10 (m, 4H), 6.71 (d, J = 7.1 Hz, 1H), 6.48-6.44 (m, 1H), 6.40-6.36 (m, 1H), 5.29 (s, 1H), 5.12-5.05 (m, 2H), 4.78-4.75 (m, 1H), 4.36-4.30 (m, 1H), 4.23-4.15 (m, 1H), 3.70 (s, 3H), 1.81-1.75 (m, 1H), 1.67-1.61 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.94, 173.90, 154.99, 154.98, 140.87, 139.98, 139.88, 139.81, 139.25, 136.93, 136.49, 136.16, 134.31, 133.64, 128.65, 128.36, 128.33, 128.29, 128.15,

128.08, 127.95, 127.62, 127.52, 127.40, 127.29, 127.06, 97.73, 96.96, 95.07, 80.29, 80.09, 71.47, 71.14, 67.70, 67.44, 67.29, 67.21, 66.99, 64.88, 63.89, 52.82, 52.79, 51.69, 50.48, 50.05, 49.44, 49.17, 37.95, 34.16, 33.94. HRMS (ESI): calcd. for $C_{24}H_{24}NO_5$ ([M+H]⁺): 406.1649, found 406.1650.

According to the general procedure, quinidine (10 mol%) was used. White solid (34.3 mg, 78 %), mp: 103.2-105.0 °C, 62 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 25.7 min (minor) and t_R = 27.5 min (major), minor diastereomer: t_R =33.5 min (major). [α] $_{D}^{25}$ = -33 (C = 1.06, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.66 – 7.52 (m, 2H), 7.26-7.19 (m,, 7H), 6.43 (dd, *J* = 5.7, 1.7 Hz, 1H), 6.28 (d, *J* = 5.7 Hz, 1H), 5.06 (s, 1H), 4.75 (dd, *J* = 4.7, 1.7 Hz, 1H), 4.17 (d, *J* = 10.7 Hz, 1H), 4.08 (d, *J* = 10.8 Hz, 1H), 4.09 – 3.98 (m, 1H), 3.73 (dq, *J* = 10.7, 7.1 Hz, 1H), 2.40 (s, 3H), 1.69 (d, *J* = 12.4 Hz, 1H), 1.51 (dd, *J* = 12.4, 4.8 Hz, 1H), 1.12 (t, *J* =7.4 Hz,3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.72, 143.34, 139.85, 139.79, 135.18, 133.53, 129.36, 127.73, 127.49, 96.96, 79.94, 68.82, 65.12, 61.32, 50.21, 34.60, 21.50, 13.98. HRMS (ESI): calcd. for C₂₄H₂₆NO₅S ([M+H]⁺): 440.1526, found 440.1529.

According to the general procedure, quinidine (10 mol%) was used. Colorless oil (11.7 mg, 25 %), 62 % ee. The ee of the product was determined by HPLC using an OD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 11.4 min (major) and t_R = 12.8 min (minor). [α] $_{D}^{21}$ = -12 (C = 0.49, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.54 – 7.47 (m, 2H), 7.25 – 7.01 (m, 7H), 6.44 (dd, *J* = 5.7, 1.7 Hz, 1H), 6.37 (d, *J* = 5.7 Hz, 1H), 5.11 (s, 1H), 4.72 (dd, *J* = 4.7, 1.7 Hz, 1H), 4.28 (d, *J* = 10.6 Hz, 1H), 3.99 (d, *J* = 10.6 Hz, 1H), 2.37 (s, 3H), 1.65 (d, *J* = 12.4 Hz, 1H), 1.46 (dd, *J* = 12.4, 4.8 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 172.01, 143.15, 139.52, 139.50, 136.05, 133.88, 129.29, 127.50, 127.37, 96.84, 82.11, 79.76, 68.95, 65.94, 50.36, 34.64, 27.79, 21.44.

According to the general procedure, quinidine (10 mol%) was used. The disteroisomers can be separated by column. White solid **4dd** (minor isomer A: 18.1 mg, 46 %), mp: 117.0-119.3 °C, 51 % ee. The ee of the product was determined by HPLC using an OD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 35.5 min (major) and t_R = 40.5

min (minor)). [α] $_{D}^{21}$ = +9 (C = 0.52, CHCl₃). Isomer A: ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, *J* = 8.3 Hz, 2H), 7.32-7.24 (m, 7H), 6.59 (dd, *J* = 5.7, 1.6 Hz, 1H), 6.51 (d, *J* = 5.7 Hz, 1H), 5.32 (s, 1H), 4.88 (dd, *J* = 4.5, 1.6 Hz, 1H), 4.22 (d, *J* = 11.7 Hz, 1H), 4.04 (d, *J* = 11.8 Hz, 1H), 2.43 (s, 3H), 1.76 (dd, *J* = 12.4, 4.6 Hz, 1H), 1.52 (d, *J* = 12.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.20, 140.47, 137.80, 133.99, 133.84, 129.81, 128.46, 128.35, 128.21, 127.67, 121.91, 98.11, 80.85, 69.49, 51.21, 48.80, 37.63, 21.61. HRMS (ESI): calcd. for C₂₂H₂₁N₂O₃S ([M+H]⁺): 393.1267, found 393.1267. Major isomer B: white solid (20.0 mg, 51 %), mp: 111.3-113.1°C, 33 % ee. The ee of the product was determined by HPLC using an OD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 24.0 min (minor) and t_R = 30.6 min (major). [α] $_{D}^{25}$ = +79 (C = 0.88, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.54 – 7.49 (m, 2H), 7.43-7.42 (m, 2H), 7.36-7.33 (m, 3H), 7.27 – 7.22 (m, 2H), 6.61 (dd, *J* = 5.8, 1.7 Hz, 1H), 6.55 (d, *J* = 5.8 Hz, 1H), 5.09 (dd, *J* = 4.4, 1.7 Hz, 1H), 4.37 (d, *J* = 13.2 Hz, 1H), 4.27 (s, 1H), 4.19 (d, *J* = 13.3 Hz, 1H), 2.41 (s, 1H), 2.34 (dd, *J* = 12.2, 4.5 Hz, 1H), 1.64 (d, *J* = 12.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 144.30, 140.57, 137.91, 134.09, 133.95, 129.92, 128.57, 128.46, 128.32, 127.77, 122.02, 98.22, 80.96, 69.60, 51.32, 48.91, 37.73, 21.71. HRMS (ESI): calcd. for C₂₂H₂₁N_{2O3}S ([M+H]⁺): 393.1267, found 393.1266.

Preparation of compound 4 by Procedure B:

4ba

A mixture of sulfonamide 1 (0.1 mmol), MBH carbonate 2 (0.13 mmol), 4Å molecular sieves (20 mg) and $(DHQD)_2AQN$ (0.01 mmol), was dissolved in *m*-xylene (0.25 mL). Reaction mixture was stirred at 25 °C for 96 hrs. Upon completion, the mixture was filtrated through a pad of Celite and the precipitate washed with dichloromethane. The organic phase was evaporated and the residue was purified by flash chromatography (silica gel, EtOAc/petroleum ether) to provide the desired product 4. The major disteroisomers were characterizated, unless otherwise noted.

White solid (23 mg, 65%), mp: 149.2-151.5 °C, 79 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, t_R = 45.2 min (minor) and t_R = 48.0 min (major). [α] $_D^{25}$ = -20 (C = 1.16, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.23 (m, 5H), 6.50 (dd, *J* = 5.7, 1.7 Hz, 1H), 6.36 (d, *J* = 5.7 Hz, 1H), 5.20 (s, 1H), 4.83 (dd, *J* = 4.8, 1.7 Hz, 1H), 4.33 (d, *J* = 11.0 Hz, 1H), 4.08 (d, *J* = 11.0 Hz, 1H), 3.76 (s, 3H), 2.79 (s, 3H), 1.80 (d, *J* = 12.4 Hz, 1H), 1.57 (dd, *J* = 12.4, 4.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.83, 140.21, 139.79, 133.68, 128.65, 128.10, 97.93, 80.35, 69.01, 65.06, 52.98, 50.17, 38.68, 34.32. HRMS (ESI): calcd. for C₁₇H₂₀NO₅S ([M+H]⁺): 350.1057, found 350.1056.

White solid (40.5 mg, 95%), mp: 167.9-168.5 °C, 90 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 30.0 min (minor) and t_R = 36.7 min (major), minor diastereomer: t_R = 46.1min (major). [α] $_{D}^{25}$ = -75 (C = 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.30 – 7.20 (m, 7H), 6.43 (dd, *J* = 5.7, 1.7 Hz,

1H), 6.25 (d, J = 5.7 Hz, 1H), 5.01 (s, 1H), 4.76 (dd, J = 4.7, 1.7 Hz, 1H), 4.12 (s, 2H), 3.32 (s, 3H), 2.43 (s, 3H), 1.69 (d, J = 12.4 Hz, 1H), 1.52 (dd, J = 12.4, 4.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.34, 143.57, 140.14, 140.11, 134.90, 133.57, 129.59, 128.03, 127.72, 97.18, 80.18, 68.95, 65.25, 52.46, 50.36, 34.69, 21.69. HRMS (ESI): calcd. for C₂₃H₂₄NO₅S ([M+H]⁺): 426.1370, found 426.1378.

White solid (32.0 mg, 70%), mp: 39.6-42.1 °C, 87 % ee. The ee of the product was determined by HPLC using an OD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 37.1 min (major) and t_R = 43.9 min (major), minor diastereomer: t_R =50.3min (major). [α] $_{D}^{25}$ = -30 (C = 1.05, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 8.25 – 8.20 (m, 2H), 7.80 – 7.76 (m, 2H), 7.22-7.11 (m, 5H), 6.47 (dd, *J* = 5.7, 1.6 Hz, 1H), 6.29 (d, *J* = 5.7 Hz, 1H), 5.17 (s, 1H), 4.78 (dd, *J* = 4.7, 1.6 Hz, 1H), 4.30 (d, *J* = 10.9 Hz, 1H), 4.11 (d, *J* = 10.9 Hz, 1H), 3.55 (s, 3H), 1.74 (d, *J* = 12.4 Hz, 1H), 1.53 (dd, *J* = 12.4, 4.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.17, 150.04, 144.42, 140.24, 138.68, 133.42, 128.78, 128.38, 128.11, 124.03, 97.41, 80.29, 69.41, 65.07, 52.82, 50.49, 34.33. HRMS (ESI): calcd. for C₂₂H₂₁N₂O₇S ([M+H]⁺): 457.1064, found 457.1066.

Colorless oil (31.5 mg, 70%), 85 % ee. The ee of the product was determined by HPLC using an OD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, t_R = 29.2 min (major) and t_R = 41.8 min (minor). [α] $_D^{25}$ = -127 (C = 1.04, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.52 (m, 2H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.31-7.26 (m, 1H), 7.17-7.10 (m, 5H), 6.48 (d, *J* = 5.8 Hz, 1H), 6.35 (d, *J* = 5.7 Hz, 1H), 5.42 (s, 1H), 4.80 (d, *J* = 4.4 Hz, 1H), 4.45 (d, *J* = 11.2 Hz, 1H), 4.38 (d, *J* = 11.2 Hz, 1H), 3.63 (s, 3H), 1.78 (d, *J* = 12.3 Hz, 1H), 1.57 (dd, *J* = 12.3, 4.7 Hz, 1H, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.25, 140.06, 138.50, 133.66, 133.36, 132.42, 131.26, 131.02, 128.89, 128.21 (brs), 127.86, 123.68, 97.39, 80.27, 69.06, 65.23, 52.80, 50.68, 34.27. HRMS (ESI): calcd. for C₂₂H₂₁N₂O₇S ([M+H]⁺): 457.1064, found 457.1061.

White solid (37.8 mg, 86 %), mp: 151.5-153.7 °C, 95 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 27.0 min (minor) and t_R = 36.1 min (major), minor diastereomer: t_R = 44.4min (major). [α] $_{D}^{25}$ = -83 (C = 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.69 – 7.63 (m, 2H), 7.29

(d, J = 7.9 Hz, 2H), 7.09 (m, 4H), 6.42 (dd, J = 5.7, 1.7 Hz, 1H), 6.23 (d, J = 5.7 Hz, 1H), 4.95 (s, 1H), 4.76 (dd, J = 4.6, 1.7 Hz, 1H), 4.16 – 4.05 (m, 2H), 3.29 (s, 3H), 2.43 (s, 3H), 2.33 (s, 3H), 1.68 (d, J = 12.3 Hz, 1H), 1.55 (dd, J = 12.4, 4.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 173.20, 143.35, 139.91, 137.13, 137.07, 134.63, 133.39, 129.40, 127.88, 96.89, 80.00, 68.62, 65.08, 52.22, 50.18, 34.55, 21.51, 21.17. HRMS (ESI): calcd. for C₂₄H₂₆NO₅S ([M+H]⁺): 440.1526, found 440.1522.

White solid (41.0 mg, 90 %), mp: 148.2-150.1 °C, 94 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 37.8 min (minor) and t_R = 56.7 min (major), minor diastereomer: t_R = 73.9 min (major). [α] $_D^{21}$ = -73 (C = 0.56, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.32 – 7.25 (m, 4H), 6.81 (dd, *J* = 7.5, 1.4 Hz, 2H), 6.42 (dd, *J* = 5.7, 1.7 Hz, 1H), 6.24 (d, *J* = 5.7 Hz, 1H), 4.94 (s, 1H), 4.77 (dd, *J* = 4.6, 1.6 Hz, 1H), 4.14 – 4.06 (m, 2H), 3.80 (s, 3H), 3.29 (s, 3H), 2.42 (s, 3H), 1.68 (d, *J* = 12.3 Hz, 1H), 1.56 (dd, *J* = 12.3, 4.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.35, 159.06, 143.47, 140.05, 134.88, 133.55, 132.28, 129.53, 127.96, 96.98, 80.13, 68.52, 65.27, 55.36, 52.37, 50.29, 34.68, 21.64. HRMS (ESI): calcd. for C₂₄H₂₆NO₆S ([M+H]⁺): 456.1475, found 456.1473.

White solid (46.3 mg, 98 %), mp: 123.3-125.0 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.28 – 7.22 (m, 6H), 6.44 (dd, *J* = 5.7, 1.7 Hz, 1H), 6.28 (d, *J* = 5.7 Hz, 1H), 5.02 (s, 1H), 4.76 (dd, *J* = 4.7, 1.7 Hz, 1H), 4.15 (d, *J* = 10.7 Hz, 1H), 4.06-3.97 (m, 1H), 3.78 – 3.67 (m, 1H), 2.42 (s, 3H), 1.70 (d, *J* = 12.4 Hz, 1H), 1.50 (dd, *J* = 12.4, 4.8 Hz, 1H), 1.10 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.62, 143.76, 140.02, 138.75, 135.11, 133.51, 133.43, 129.60, 127.86, 97.09, 80.08, 68.31, 65.11, 61.56, 50.27, 34.80, 21.66, 14.11. HRMS (ESI): calcd. for C₂₄H₂₅CINO₅S ([M+H]⁺): 474.1136, found 474.1138.

Ee of enantiomers of **4dg** can not be separated by chiral HPLC columns. Therefore, compound **4dg'** was prepared for chiral HPLC analysis. A mixture of sulfonamide **1d** (0.1 mmol), MBH carbonate **2g** (0.13 mmol), 4Å molecular sieves (20 mg) and (DHQD)₂AQN (0.01 mmol), was dissolved in *m*-xylene (0.25 mL). After reaction mixture was stirred at 25 °C for 96 hrs, DIBAL-H (0.25 mL, 1.0 M in hexane) was added dropwise. The solution was stirred at rt for 10hrs. Upon completion, cold water (5 mL) was added at 0°C and the aqueous phase extracted with ethyl acetate (3×8 mL). The combined organic solvent was dried with Na₂SO₄, filtered, concentrated in *vacuo* and purified by flash chromatography to give **4dg'**, which is analyzed by chiral HPLC.

Colorless oil (32.4 mg, 75 %), 93 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 27.1 min (major) and t_R = 22.4 min (minor), minor diastereomer: t_R =21.0min (major) and t_R = 19.7 min (minor). [α] $_{D}^{25}$ = -43 (C = 1.08, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.19-7.09 (m, 4H), 6.41 (dd, *J* = 5.8, 1.5 Hz, 1H), 6.34 (d, *J* = 5.8 Hz, 1H), 5.01 (s, 1H), 4.70 (dd, *J* = 4.9, 1.4 Hz, 1H), 4.01 (d, *J* = 10.8 Hz, 1H), 3.96 (d, *J* = 10.8 Hz, 1H), 3.42 (d, *J* = 10.6 Hz, 1H), 3.03 (d, *J* = 10.5 Hz, 1H), 2.40 (s, 3H), 1.41 (dd, *J* = 12.2, 4.9 Hz, 1H), 0.69 (d, *J* = 12.2 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 143.75, 140.15, 138.63, 135.21, 133.48, 132.83, 129.56, 127.94, 96.71, 79.44, 69.61, 68.10, 60.54, 50.73, 33.79, 21.73. HRMS (ESI): calcd. for C₂₂H₂₃CINO₄S ([M+H]⁺): 432.1031, found 432.1038.

White solid (37.8 mg, 83 %), mp: 182.7-185.0°C, 88 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 24.6 min (minor) and t_R = 35.5 min (major), minor diastereomer: t_R = 27.2 min (major). [α] $_{D}^{25}$ = -128 (C = 0.84, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 8.3 Hz, 2H), 7.30 – 7.18 (m, 1H), 6.95 (t, *J* = 7.4 Hz, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 6.42 (dd, *J* = 5.7, 1.6 Hz, 1H), 6.14 (d, *J* = 5.8 Hz, 1H), 5.36 (s, 1H), 4.70 (dd, *J* = 4.8, 1.6 Hz, 1H), 4.13 (d, *J* = 10.6 Hz, 1H), 4.02 (d, *J* = 10.7 Hz, 1H), 3.79 (s, 3H), 3.19 (s, 3H), 2.45 (s, 3H), 1.82 (d, *J* = 12.3 Hz, 1H), 1.36 (dd, *J* = 12.3, 4.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 172.84, 155.62, 143.31, 140.12, 134.35, 132.65, 129.44, 129.31, 128.59, 128.36, 128.17, 120.50, 109.38, 97.09, 80.03, 64.34, 62.98, 55.37, 51.95, 50.05, 34.03, 21.52. HRMS (ESI): calcd. for C₂₄H₂₆NO₆S ([M+H]⁺): 456.1475, found 456.1481.

White solid (48.9 mg, 97 %), mp: 182.3-184.5 °C, 91 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, t_R = 34.7 min (minor) and t_R =

46.3 min (major). [α] $_{D}^{25}$ = -75 (C = 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.67 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.51 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.34-7.29 (m, 1H), 7.16 – 7.11 (m, 1H), 6.47 (dd, *J* = 5.8, 1.7 Hz, 1H), 6.12 (d, *J* = 5.7 Hz, 1H), 5.39 (s, 1H), 4.76 (dd, *J* = 4.8, 1.7 Hz, 1H), 4.22 (d, *J* = 10.7 Hz, 1H), 3.99 (d, *J* = 10.6 Hz, 1H), 3.16 (s, 3H), 2.46 (s, 3H), 1.94 (d, *J* = 12.5 Hz, 1H), 1.36 (dd, *J* = 12.4, 4.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.32, 143.79, 140.59, 139.57, 133.76, 132.16, 131.91, 131.52, 129.71, 129.07, 128.38, 127.49, 123.27, 97.54, 80.32, 67.53, 64.37, 52.31, 50.20, 34.21, 21.65. HRMS (ESI): calcd. for C₂₃H₂₃BrNO₅S ([M+H]⁺): 504.0475, found 504.0477.

White solid (44.2 mg, 97 %), mp: 65.1-67.3°C, 90 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 31.4 min (minor) and t_R = 40.8 min (major), minor diastereomer: t_R = 44.5 min (major). [α] $_{D}^{25}$ = -72 (C = 0.93, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 7.19 (t, *J* = 7.9 Hz, 1H), 6.94-6.63 (m,3H), 6.43 (dd, *J* = 5.7, 1.7 Hz, 1H), 6.24 (d, *J* = 5.7 Hz, 1H), 4.98 (s, 1H), 4.77 (dd, *J* = 4.7, 1.7 Hz, 1H), 4.11 (s, 2H), 3.72 (s,3H), 3.34 (s, 3H), 2.42 (s, 3H), 1.70 (d, *J* = 12.4 Hz, 1H), 1.54 (dd, *J* = 12.4, 4.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 173.11, 143.39, 141.46, 139.94, 133.31, 129.43, 129.39, 127.82, 113.63, 96.90, 79.95, 68.65, 65.04, 55.12, 52.30, 50.19, 34.49, 21.49. HRMS (ESI): calcd. for C₂₄H₂₆NO₆S ([M+H]⁺): 456.1475, found 456.1479.

White solid (42.3 mg, 98 %), mp: 149.6-151.9 °C, 86 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 90/10, flow rate 0.5 ml/min, λ = 210 nm, t_R = 54.4 min (minor) and t_R = 87.6 min (major). [α] $_{D}^{25}$ = -14 (C = 0.73, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.60 – 7.56 (m, 2H), 7.25 – 7.20 (m, 3H), 6.93 – 6.878 (m, 2H), 6.49 (dd, *J* = 5.7, 1.7 Hz, 1H), 6.27 (d, *J* = 5.7 Hz, 1H), 5.39 (s, 1H), 4.89 (dd, *J* = 3.7, 1.3 Hz, 1H), 4.13 (d, *J* = 10.7 Hz, 1H), 4.00 (d, *J* = 10.7 Hz, 1H), 3.43 (s, 3H), 2.40 (s, 3H), 1.82-1.79 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.91, 143.92, 143.45, 140.18, 135.63, 133.33, 129.53, 127.74, 127.56, 126.62, 126.31, 97.18, 80.24, 64.90, 64.72, 52.66, 49.73, 34.67, 21.70. HRMS (ESI): calcd. for C₂₁H₂₂NO₅S₂ ([M+H]⁺): 432.0934, found 432.0935.

White solid (46.5 mg, 94 %), mp: 145.2-147.0°C, 81 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 30.2 min (minor) and t_R = 46.0 min (major), minor diastereomer: t_R = 36.1min (major) and t_R = 42.7 min (minor). [α] $_{D}^{25}$ = -74 (C = 1.02, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.32(d, *J* = 8.3 Hz, 2H), 6.48 (dd, *J* = 5.7, 1.7 Hz, 1H), 6.29 (dd, *J* = 3.4, 0.8 Hz, 1H), 6.23 (dd, *J* = 3.4, 0.4 Hz, 1H), 6.20 (d, *J* = 5.8 Hz, 1H), 5.07 (s, 1H), 4.88 (dd, *J* = 4.7, 1.7 Hz, 1H), 4.02 (m, 2H), 3.31 (s, 3H), 2.44 (s, 3H), 1.86 (d, *J* = 12.5 Hz, 1H), 1.63 (dd, *J* = 12.5, 4.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 172.11, 155.14, 143.65, 140.01, 134.66, 132.63, 129.55, 127.77, 120.50, 112.62, 112.31, 97.12, 80.09, 64.23, 62.24, 52.40, 49.31, 34.16, 21.55. HRMS (ESI): calcd. for C₂₁H₂₁BrNO₆S ([M+H]⁺): 494.0267, found 494.0257.

4dm

4do

White solid (47.0 mg, 99 %), mp: 152.6-154.7 °C, 94 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 38.5 min (minor) and t_R = 50.0 min (major), minor diastereomer: t_R =56.6min (major). [α] $_{D}^{21}$ = -99 (C = 0.74, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.81 – 7.73 (m, 3H), 7.64 (d, *J* = 7.9 Hz, 3H), 7.46-7.43 (m, 2H), 7.24-7.21 (m, 3H), 6.41 (dd, *J* = 5.7, 1.4 Hz, 1H), 6.26 (d, *J* = 5.7 Hz, 1H), 5.18 (s, 1H), 4.71 (brs, 1H), 4.19 (s, 2H), 3.35 (s, 3H), 2.36 (s, 3H), 1.69 (d, *J* = 12.4 Hz, 1H), 1.51 (dd, *J* = 12.4, 4.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 173.26, 143.57, 140.06, 133.41, 133.06, 129.51, 128.12, 128.08, 128.05, 128.04, 127.92, 127.83, 127.71, 126.07, 80.09, 69.00, 52.47, 50.39, 34.69, 21.56. HRMS (ESI): calcd. for C₂₇H₂₆NO₅S ([M+H]⁺): 476.1526, found 476.1529.

According to the general procedure, compound **4do** was isolated as an unstable compound which resulted in a endo-/exo-mixture of **4do** at room temperature. Therefore, compound **4do**' was prepared for characterization and chiral HPLC analysis. A mixture of sulfonamide **1d** (0.1 mmol), MBH carbonate **2o** (0.13 mmol), 4Å molecular sieves (20 mg) and (DHQD)₂AQN (0.01 mmol), was dissolved in *m*-xylene (0.25 mL). After reaction mixture was stirred at 25 °C for 48 hrs, DIBAL-H (0.25 mL, 1.0 M in hexane) was added dropwise. The solution was stirred at rt

4do'

for 10hrs. Upon completion, cold water (5 mL) was added at 0° C and the aqueous phase extracted with ethyl acetate (3×8 mL). The combined organic solvent was dried with Na₂SO₄, filtered, concentrated in *vacuo* and purified by flash chromatography to give **4do'**, which is stable and analyzed by chiral HPLC.

Yellow oil (28.8 mg, 70 %), 91 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, t_R = 17.5 min (minor) and t_R = 22.5 min (major). [α] $_{D}^{25}$ = -49 (C = 0.95, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.1 Hz, 2H), 7.45 (d, *J* = 6.6 Hz, 1H), 7.25 – 7.14 (m, 5H), 6.99 (d, *J* = 6.1 Hz, 1H), 6.42 (d, *J* = 5.7 Hz, 1H), 6.38 (d, *J* = 5.7 Hz, 1H), 4.99 (s, 1H), 4.64 (d, *J* = 4.8 Hz, 1H), 4.04 (d, *J* = 10.2 Hz, 1H), 3.96 (d, *J* = 10.2 Hz, 1H), 3.23-3.18 (m, 1H), 2.37 (s, 3H), 1.38 (dd, *J* = 12.1, 4.9 Hz, 1H), 1.20 (d, *J* = 6.3 Hz, 3H), 0.54 (d, *J* = 12.1 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 143.33, 141.70, 138.24, 135.40, 133.92, 129.41, 129.33, 128.52, 128.01, 127.60, 127.31, 126.83, 97.83, 78.81, 73.90, 64.10, 63.49, 51.09, 34.60, 21.65, 21.02. HRMS (ESI): calcd. for C₂₃H₂₆NO₄S ([M+H]⁺): 412.1577, found 412.1577.

White solid (39.5 mg, 87 %), mp: 118.5-120.2°C, 89 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 90/10, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 33.9 min (minor) and t_R = 37.2 min (major), minor diastereomer: t_R =45.3min (major). [α] $_{D}^{25}$ = -48 (C = 0.95, CHCl₃). ¹H NMR (300 MHz,CDCl₃) δ 7.67 – 7.63 (m, 2H), 7.35 – 7.15 (m, 7H), 6.32 (d, *J* = 5.7 Hz, 1H), 6.24 (d, *J* = 5.7 Hz, 1H), 5.00 (s, 1H), 4.10 (s, 2H), 3.32 (s, 3H), 2.42 (s, 3H), 1.70 (d, *J* = 12.3 Hz, 1H), 1.60 (q, *J* = 7.2, 2H), 1.27 (d, *J* = 12.3 Hz, 1H), 0.73 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.24, 143.33, 142.00, 139.97, 134.83, 133.76, 129.39, 127.82, 127.51, 96.37, 92.11, 68.80, 67.55, 52.22, 50.41, 38.01, 25.18, 21.50, 8.69. HRMS (ESI): calcd. for C₂₅H₂₈NO₅S ([M+H]⁺): 454.1683, found 454.1684.

White solid (50.0 mg, 99 %), mp: 164.7-167.1°C, 91 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 18.7 min (minor) and t_R = 25.6 min (major), minor diastereomer: t_R =24.3min (major) and t_R = 27.4 min (minor). [α] $_D^{25}$ = -42 (C = 0.86, CHCl₃). ¹H NMR (300 MHz,CDCl₃) δ 7.65 – 7.53 (m, 2H), 7.37 – 7.17 (m, 7H), 6.45 (d, *J* = 5.5 Hz, 1H), 6.30 (d, *J* = 5.5 Hz, 1H), 4.19 – 4.06 (m, 2H), 3.42 (s, 3H), 2.42 (s, 3H), 2.30 (d, *J* = 12.6 Hz, 1H), 1.80 (d, *J* = 12.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.96, 143.59, 143.42, 138.99, 134.77, 134.34, 129.44, 128.06, 127.75, 95.54, 88.95, 68.76, 68.13, 52.67, 49.96, 45.36, 21.52. HRMS (ESI): calcd. for C₂₃H₂₃BrNO₅S ([M+H]⁺): 504.0475, found 504.0478.

7

Yellow oil (28.2 mg, 55 %), 83 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 90/10, flow rate 0.5 ml/min, λ = 210 nm, t_R = 43.5 min (major) and t_R = 49.7 min (minor). [α] $_{D}^{21}$ = +2 (C = 0.3, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 6.64 (s, 1H), 6.34 (d, *J* = 5.7 Hz, 1H), 6.29 (d, *J* = 0.7 Hz, 1H), 6.04 (d, *J* = 5.7 Hz, 1H), 4.82 (s, 1H), 4.47 (d, *J* = 9.4 Hz, 1H), 3.81 (s, 3H), 3.60 (s, 3H), 3.11 (d, *J* = 9.4 Hz, 1H), 2.45 (s, 3H), 2.33 (d, *J* = 12.0 Hz, 1H), 2.27 (d, *J* = 11.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.15, 165.91, 144.34, 139.33, 136.03, 133.62, 131.96, 130.55, 129.85, 128.04, 97.98, 88.21, 60.36, 59.92, 56.75, 52.55, 52.23, 50.40, 21.63. HRMS (ESI): calcd. for C₂₁H₂₃BrNO₇S ([M+H]⁺): 512.0373, found 512.0378.

A mixture of sulfonamide **8** (0.1 mmol),⁵ MBH carbonate **2d** (0.13 mmol), 4Å molecular sieves (20 mg) and (DHQD)₂AQN (0.01 mmol), was dissolved in *m*-xylene (0.25 mL). After reaction mixture was stirred at 25 °C for 4 days, the reaction was allowed to warm to 50 °C for 5 days. The mixture was filtrated through a pad of Celite and the precipitate washed with dichloromethane. The organic phase was evaporated in vapor and the residue was purified by flash chromatography (silica gel, EtOAc/petroleum ether) to provide the desired product **9**.

Light yellow oil (29.0 mg, 60 %, dr = 6/1), 59 % ee. The ee of the product was determined by HPLC using an OD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 27.3 min (minor) and t_R = 30.1 min (major). minor diastereomer: t_R =45.7 min (the peaks of minor diastereomer are overlapped). [α] $_{D}^{25}$ = +14 (C = 1.11, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.47 – 7.16 (m, 7H), 7.11 (d, *J* = 8.4 Hz, 2H), 6.64 (d, *J* = 5.5 Hz, 1H), 6.42 (d, *J* = 5.5 Hz, 1H), 4.23 (s, 1H), 4.31 – 4.19 (m, 1H), 3.60 – 3.51 (m, 1H), 2.75-2.66 (m, 1H), 2.39 (s, 3H), 2.45 – 2.35 (m, 1H), 2.22 (d, *J* = 12.6 Hz, 1H), 2.13 (d, *J* = 12.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 143.68, 143.45, 138.02, 136.89, 133.70, 130.93, 129.52, 129.27, 128.16, 127.51, 120.52, 88.24, 88.05, 67.45, 50.53, 48.81, 44.47, 27.60, 21.71. HRMS (ESI): calcd. for C₂₃H₂₂BrN₂O₃S ([M+H]⁺): 485.0529, found 485.0535.

A solution of **4da** (42.6 mg, 0.1 mmol) and *m*-CPBA (69.0 mg, 0.4 mmol) in CH_2Cl_2 (2 mL) was stirred at 25 °C for 16 hrs. ⁶ Upon completion, the reaction mixture was poured into water (30 mL) and basified with sa. NaHCO₃ (aq.) to pH=9-10.The organic layer was separated and the water layer was extracted with CH_2Cl_2 (3*30 mL). The combined organic layers were washed with water (2*20 mL). Then the organic phase was dried by anhydrous Na₂SO₄ and evaporated in vapor. The residue was purified by flash chromatography (silica gel, petroleum ether/ EtOAc: 10/1 to 3/1 gradient) to provide the desired product **10**.

White solid (38.6 mg, 88%), mp: 118.4-120 °C, 90 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 70/30, flow rate 0.5 ml/min, λ = 210 nm, t_R = 43.3 min (minor) and t_R = 53.9 min (major). [α] $_D^{25}$ = -129 (C = 1.10, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.35 – 7.13 (m, 7H), 4.94 (s, 1H), 4.26 (d, *J* = 5.3 Hz, 1Ha), 4.11 (d, *J* = 10.9 Hz, 1H), 4.02 (d, *J* = 10.9 Hz, 1H), 3.48 (s, 3H), 3.35 (d, *J* = 3.3 Hz, 1H), 3.30 (d, *J* = 3.3 Hz, 1H), 2.43 (s, 3H), 1.90 (d, *J* = 13.4 Hz, 1H), 1.49 (dd, *J* = 13.4, 5.4 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.20, 143.64, 139.16, 134.71, 129.52, 128.48, 127.90, 127.85, 92.27, 75.96, 69.34, 67.22, 52.81, 49.80, 49.16, 48.29, 34.99, 21.59. HRMS (ESI): calcd. for C₂₃H₂₄NO₆S ([M+H]⁺): 442.1319, found 442.1319.

Because the corresponding $J_{Ha ext{-}Hb}$ value is really small (the bridged H_b is a doublet), the relative stereochemistry between H_a and H_b could be assigned to be syn, which is also confirmed by NOESY-spectrum.

Reference

1. A. Kamal, J. S. Reddy, E. V. Bharathi, D. Dastagiri, Tetrahedron Letters. 2008, 49, 348.

2. C. Ouairy, P. Michel, B. Delpech, D. Crich, C. Marazano, J. Org. Chem. 2010, 75, 4311.

3. J. Feng, X. Lu, A. Kong, X. Han, Tetrahedron, 2007, 63, 6035.

4. D. J. V. C. van Steenis, T. Marcelli, M. A. L. Lutz, Spek, J. H. Van Maarseveen, H. Hiemstra, Adv. Synth. Catal. 2007, 349, 281.

5. M.E. Jung, S, J. Miller, Heterocycles. 1990, 30, 839.

6. J. Hu, B. Tian, X.-Y. Wu, X.-F. Tong, Org. Lett. 2012, 14, 5074.

WeO₂C C₆H₄-Br-o

V. Crystal data and structure refinement for enantiopure 4df

Table 1. Crystal data and structure refinement for compound 4di.

Identification code	4di
Empirical formula	C ₂₃ H ₂₂ Br N O ₅ S
Formula weight	504.39
Temperature	291(2) K
Wavelength	0.71073 A
Crystal system, space gro	oup Orthorhombic, P2(1)2(1)2(1)
Unit cell dimensions b = c =	a = 7.7952(16) A alpha = 90 deg. 13.733(3) A beta = 90 deg. 21.171(4) A gamma = 90 deg.
Volume	2266.4(8) A^3
Z, Calculated density	4, 1.478 Mg/m^3
Absorption coefficient	1.940 mm^-1
F(000) 1	032
Crystal size	0.45 x 0.32 x 0.31 mm
Theta range for data colle	ection 3.00 to 27.47 deg.

Limiting indices -10<=h<=9, -17<=k<=17, -27<=l<=27
Reflections collected / unique $21522 / 5156 [R(int) = 0.0416]$
Completeness to theta = 27.47 99.7 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.5837 and 0.4776
Refinement method Full-matrix least-squares on F ²
Data / restraints / parameters 5156 / 0 / 282
Goodness-of-fit on F^2 1.039
Final R indices [I>2sigma(I)] $R1 = 0.0357$, wR2 = 0.0870
R indices (all data) $R1 = 0.0475$, $wR2 = 0.0922$
Absolute structure parameter 0.008(7)
Largest diff. peak and hole 0.724 and -0.408 e.A^-3

Result rable

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%			
1	45.153	60984.555	3832883.000	50.2898			
2	48.080	57498.477	3788711.000	49.7102			
total		118483.031	7621594.000	100.0000			

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%
1	45.182	22255.029	1347499.375	10.6944
2	47.957	170169.313	11252524.000	89.3056
total		192424.342	12600023.375	100.0000

79 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, λ = 210 nm, t_R = 45.2 min (minor) and t_R = 48.0 min (major).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	30.100	224475.453	9761292.000	48.8656
2	36.998	196715.766	9773942.000	48.9289
3	43.268	4145.165	213888.891	1.0707
4	46.555	4099.804	226685.203	1.1348
total		429436.188	19975808.094	100.0000

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	29.972	16721.637	701972.500	4.6784
2	36.710	290777.656	13876680.000	92.4830
3	46.105	7802.701	425918.031	2.8386
total		315301.994	15004570.531	100.0000

90 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 30.0 min (minor) and t_R = 36.7 min (major); minor diastereomer: t_R = 46.1 min (major)).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	29.660	4213.453	266619.219	1.1923
2	37.538	127425.555	11010751.000	49.2391
3	43.462	108030.078	10845840.000	48.5016
4	52.052	1387.826	238592.203	1.0670
total		241056.912	22361802.422	100.0000

Result	Table
Result	1 auto

Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%
1	37.142	408497.094	34997016.000	88.9544
2	43.863	24291.643	2333555.000	5.9314
3	50.275	16680.131	2012056.000	5.1142
total		449468.867	39342627.000	100.0000

87 % ee. The ee of the product was determined by HPLC using an OD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 37.1 min (major) and t_R = 43.9 min (major); minor diastereomer: t_R = 50.3 min (major)).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	29.573	299217.594	18426690.000	50.8677
2	41.373	174693.813	17798062.000	49.1323
total		473911.406	36224752.000	100.0000

	Result Table				
Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%	
1	29.215	629436.125	39220368.000	92.3797	
2	41.793	32800.453	3235267.750	7.6203	
total		662236.578	42455635.750	100.0000	

85 % ee. The ee of the product was determined by HPLC using an OD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, $\lambda = 210$ nm, $t_R = 29.2$ min (major) and $t_R = 41.8$ min (minor)).

Result Table

		result	1 4010	
Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	27.008	258501.453	10723273.000	48.7726
2	36.272	214068.125	10758660.000	48.9335
3	42.153	4482.442	248310.031	1.1294
4	44.648	4759.710	256029.219	1.1645
total		481811.730	21986272.250	100.0000

		-			
0011	1	11	0	h	I۸
งธรณ	ιι	1	а	U.	IC

	Result Table				
Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%	
1	26.993	13086.258	550023.625	2.2093	
2	36.062	463819.813	23418028.000	94.0623	
3	44.360	16390.871	928247.625	3.7285	
total		493296.941	24896299.250	100.0000	

95 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, $\lambda = 210$ nm, major diastereomer: $t_R = 27.0$ min (minor) and $t_R = 100$ 36.1 min (major); minor diastereomer: $t_R = 44.4 \text{ min (major)}$).

Result Table

		10000000		
Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	37.300	132017.641	7532526.000	48.3792
2	56.282	102076.305	7555149.500	48.5245
3	60.713	2912.635	221037.266	1.4197
4	73.357	2862.256	261049.281	1.6766
total		239868.836	15569762.047	100.0000

Result Table

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%
1	37.780	7094.938	406248.281	2.6130
2	56.725	196767.266	14738271.000	94.7969
3	73.890	4484.458	402686.406	2.5901
4		208346.662	15547205.688	100.0000

94 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 37.8 min (minor) and t_R = 56.7 min (major); minor diastereomer: t_R = 73.9 min (major)).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	19.485	2112.966	66047.438	0.1766
2	20.722	2721.152	99710.469	0.2667
3	21.928	403420.156	18443324.000	49.3228
4	27.078	415135.719	18784038.000	50.2339
total		823389.993	3733119.906	100.0000

	Result Table				
Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%	
1	19.710	3094.359	102536.203	1.4100	
2	20.958	8720.529	284160.594	3.9076	
3	22.443	4277.871	242337.578	3.3325	
4	27.093	141614.375	6642964.000	91.3499	
total		157707.134	7271998.375	100.0000	

93 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 27.1 min (major) and t_R = 22.4 min (minor); minor diastereomer: t_R = 19.7 min (minor) and t_R = 21.0 min (major)).

Result Table

		10000000		
Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	24.663	253327.984	10177489.000	49.6329
2	27.290	3184.516	114296.797	0.5574
3	33.912	2674.826	111681.203	0.5446
4	35.702	204266.109	10102049.000	49.2650
total		463453.436	20505516.000	100.0000

|--|

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	24.605	38109.066	1518231.000	5.9731
2	27.185	8802.259	323236.688	1.2717
3	35.478	469468.875	23576374.000	92.7552
total		516380.875	25417841.688	100.0000

88 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 24.6 min (minor) and t_R = 35.5 min (major); minor diastereomer: t_R = 27.2 min (major)).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%
1	34.715	610399.938	29920894.000	50.2445
2	46.475	470414.875	29629650.000	49.7555
total		1080814.813	59550544.000	100.0000

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%		
1	34.740	32734.779	1579884.375	4.1597		
2	46.318	572155.875	36401096.000	95.8403		
total		604890.654	37980980.375	100.0000		

91 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, λ = 210 nm, t_R = 34.7 min (minor) and t_R = 46.3 min (major)).

Result Table

		result	1 4010	
Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	31.365	578819.938	30616952.000	48.2379
2	41.080	538235.125	30640518.000	48.2750
3	44.722	19419.924	1081257.375	1.7036
4	51.060	17128.479	1132018.750	1.7835
total		1153603.465	63470746.125	100.0000

lesult	Table

	Result Table				
Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%	
1	31.365	45572.168	2497960.000	4.7241	
2	40.822	850890.875	48434696.000	91.5996	
3	44.462	34233.177	1943899.750	3.6763	
total		930696.160	52876555.750	100.0000	

90 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, $\lambda = 210$ nm, major diastereomer: $t_R = 31.4$ min (minor) and $t_R = 100$ 40.8 min (major); minor diastereomer: $t_R = 44.5 \text{ min (major)}$).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	53.540	148364.063	11283139.000	50.7498
2	87.112	102508.305	10949733.000	49.2502
total		250872.367	22232872.000	100.000

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%
1	54.430	32077.158	2317846.750	6.8096
2	87.610	300495.281	31720076.000	93.1904
total		332572.439	34037922.750	100.0000

86 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 90/10, flow rate: 0.5 ml/min, λ = 210 nm, t_R = 54.4 min (minor) and t_R = 87.6 min (major)).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%	
1	30.282	178655.906	7489916.000	49.5436	
2	36.217	1543.372	58134.750	0.3845	
3	42.835	1474.556	69844.195	0.4620	
4	46.073	135068.125	7499939.500	49.6099	
total		316741.959	15117834.445	100.0000	

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	30.230	32380.061	1344509.250	9.2305
2	36.105	4739.546	197958.500	1.3590
3	42.745	2483.156	121434.477	0.8337
4	46.003	230777.391	12902113.000	88.5768
total		270380.154	14566015.227	100.0000

81 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 30.2 min (minor) and t_R = 46.0 min (major); minor diastereomer: t_R = 36.1 min (major) and t_R = 42.7 min (minor)).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%
1	38.522	422599.250	23426912.000	48.8033
2	49.953	352864.875	23305530.000	48.5505
3	56.765	9136.372	659178.250	1.3732
4	59.850	8024.069	611074.188	1.2730
total		792624.069	48002694.438	100.0000

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	38.502	18786.201	1016015.938	3.0096
2	49.855	467070.719	31172042.000	92.3356
3	56.647	21705.254	1571458.750	4.6549
total		507562.174	33759516.688	100.0000

94 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 38.5 min (minor) and t_R = 50.0 min (major); minor diastereomer: t_R = 56.6 min (major)).

Result	Table
Result	1 auto

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	17.440	297114.000	11404918.000	50.0760
2	22.468	283792.656	11370318.000	49.9240
total		580906.656	22775236.000	100.0000

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	17.527	13095.306	500193.094	4.2651
2	22.520	272274.219	11227432.000	95.7349
total		285369.524	11727625.094	100.0000

91 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, λ = 210 nm, t_R = 17.5 min (minor) and t_R = 22.5 min (major).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%
1	31.710	17012.391	783076.313	1.9390
2	33.782	359628.750	19255998.000	47.6802
3	37.178	354992.469	19433048.000	48.1186
4	45.337	14255.497	913584.625	2.2621
total		745889.106	40385706.938	100.0000

	Result Table				
Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%	
1	33.878	21337.295	1154179.750	5.2665	
2	37.160	348337.438	19600382.000	89.4369	
3	45.303	18176.340	1160754.625	5.2965	
total		387851.072	21915316.375	100.0000	

89 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 90/10, flow rate: 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 33.9 min (minor) and t_R = 37.2 min (major); minor diastereomer: t_R = 45.3 min (major)).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%	
1	18.568	483812.250	14752231.000	49.0348	
2	24.163	5627.479	166542.219	0.5536	
3	25.462	415208.063	14897884.000	49.5190	
4	27.313	7560.078	268557.563	0.8927	
total		912207.870	30085214.781	100.0000	

	Result Table				
Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%	
1	18.663	41877.977	1234057.375	4.5217	
2	24.262	8924.072	263707.813	0.9662	
3	25.570	708686.875	25689556.000	94.1287	
4	27.385	3427.698	104617.617	0.3833	
total		762916.622	27291938.805	100.0000	

91 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 18.7 min (minor) and t_R = 25.6 min (major); minor diastereomer: t_R = 24.3 min (major) and t_R = 27.4 min (minor)).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	44.545	159841.859	10143288.000	49.3813
2	51.048	149367.132	10397460.000	50.6187
total		309209.031	20540748.000	100.0000

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	43.460	325604.250	20670614.000	91.5229
2	49.730	28011.938	1914563.125	8.4771
total		353616.188	22585177.125	100.0000

-83 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 90/10, flow rate 0.5 ml/min, λ = 210 nm, t_R = 43.5 min (major) and t_R = 49.7 min (minor).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%
1	27.220	71196.828	4114852.250	41.0202
2	30.910	62805.309	4028233.750	40.1567
3	45.365	16216.535	1888201.375	18.8231
total		150218.672	10031287.375	100.0000

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%
1	27.332	26144.596	1429539.250	18.8184
2	30.890	87343.570	5568706.000	73.3064
3	45.682	5067.264	598237.188	7.8752
total		118555.430	7596482.438	100.0000

59 % ee. The ee of the product was determined by HPLC using an OD-H column (n-Hexane / i-PrOH = 80/20, flow rate 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 27.3 min (minor) and t_R = 30.1 min (major). minor diastereomer: t_R =45.7 min (the peaks of minor diastereomer are overlapped).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%	
1	25.618	474526.219	18382238.000	48.2814	
2	27.467	433443.406	18378514.000	48.2716	
3	30.237	15385.043	663340.500	1.7423	
4	33.472	14424.449	649025.688	1.7047	
total		937779.117	38073118.188	100.0000	

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%
1	25.720	97901.484	3769689.750	18.6831
2	27.518	380256.375	16317654.000	80.8727
3	33.540	2395.879	89626.766	0.4442
total		480553.739	20176970.516	100.0000

62 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 25.7 min (minor) and t_R = 27.5 min (major); minor diastereomer: t_R = 33.5 min (major)).

4dc

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%
1	11.538	301177.906	9784586.000	50.1941
2	12.783	259598.828	9708902.000	49.8059
total		560776.734	19493488.000	100.0000

	Result Table				
Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%	
1	11.367	244207.453	8227607.000	80.7897	
2	12.830	54377.145	1956376.000	19.2103	
total		298584.598	10183983.000	100.0000	

62 % ee. The ee of the product was determined by HPLC using an OD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, $\lambda = 210$ nm, major diastereomer: $t_R = 11.4$ min (major) and $t_R = 100$ 12.8 min (minor).

Result Table

	Result Table			
Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	36.668	97655.555	8225971.000	50.2043
2	41.110	81767.148	8159028.000	49.7957
total		179422.703	16384999.000	100.0000

Resul	t	Т	ał	51	e
cobul	·		uı	/1	U

	Result Table			
Peak#	Ret. Time/min	Height/µV	Area/µV·s	Area%
1	35.453	636859.875	56993408.000	75.3692
2	40.523	188398.703	18625568.000	24.6308
total		825258.578	75618976.000	100.0000

51 % ee. The ee of the product was determined by HPLC using an OD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, $\lambda = 210$ nm, major diastereomer: $t_R = 35.5$ min (major) and $t_R = 100$ 40.5 min (minor)).

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	23.557	326284.188	16041656.000	50.5284
2	29.973	204694.266	15706119.000	49.4716
toal		530978.453	31747775.000	100.0000

Result Table

Peak#	Ret. Time/min	Height/µV	Area/µV [.] s	Area%
1	24.063	127796.508	6464587.000	33.6380
2	30.627	161091.859	12753523.000	66.3620
total		288888.367	19218110.000	100.0000

33 % ee. The ee of the product was determined by HPLC using an OD-H column (n-Hexane / i-PrOH = 80/20, flow rate: 0.5 ml/min, λ = 210 nm, major diastereomer: t_R = 24.0 min (minor) and t_R = 30.6 min (major)).

Peak#	Ret.	Height/µV	Area∕µV∙s	Area%
	Time/min			
1	43.260	10379.087	581593.125	4.9692
2	53.940	134120.984	11122454.000	95.0308
total		144500.071	11704047.125	100.0000

90 % ee. The ee of the product was determined by HPLC using an AD-H column (n-Hexane / i-PrOH = 70/30, flow rate 0.5 ml/min, λ = 210 nm, t_R = 43.3 min (minor) and t_R = 53.9 min (major). Spectra of NMR:

SI

Spectra-42

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Spectra-44

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Spectra-47

Spectra-49

3zou13b1-C-1

200

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Spectra-52

Spectra-55

Spectra-56

Spectra-57

Spectra-58

2zou531a

Spectra-59

Spectra-60

Spectra-62

Spectra-65

Spectra-70

Spectra-71

Spectra-72

Spectra-73

Spectra-74

Spectra-75

Spectra-76

Spectra-77

Spectra-78

Spectra-79

4pf122a-C

Spectra-81

Spectra-82

Spectra-83

Spectra-85

Spectra-87

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

桌面

Spectra-90

Spectra-91

Spectra-93

Spectra-94

Spectra-95

Spectra-96

Spectra-98

Spectra-99

Spectra-100