Supporting Information

L-Proline Catalyzed Stereoselective Synthesis of (*E*)-Methyl α -Indol-2-yl- β -Aryl/Alkyl Acrylates: Easy Access of Substituted Carbazoles, γ -Carbolines and Prenostodione

Soumen Biswas, Pradeep Kumar Jaiswal, Shivendra Singh, Shaikh M. Mobin, and Sampak Samanta*

Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 452017, India.

General Information:

All reactions were carried out either under inert atmosphere or air and monitored by TLC using Merck 60 F₂₅₄ pre coated silica gel plates (0.25 mm thickness) and the products were visualized by UV detection. Flash chromatography was carried out with silica gel (200-300 mesh). FT-IR spectra were recorded on a BrukerTensor-27 spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance (III) 400 MHz spectrometer. Data for ¹H NMR are reported as a chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, q = quartet, m = multiplet), coupling constant *J* (Hz), integration, and assignment, data for ¹³C are reported as a chemical shift. High resolutions mass spectral analyses (HRMS) were carried out using ESI-TOF-MS. Single crystal X-ray structural studies were performed on a CCD Agilent Technologies (Oxford Diffraction) SUPER NOVA diffractometer. Data were collected at 293(2) K using graphite-monochromoated Mo K α radiation ($\lambda_{\alpha} = 0.71073$ Å). The strategy for the Data collection was evaluated by using the CrysAlisPro CCD software. The data were collected by the standard 'phi-omega scan techniques, and were scaled and reduced using CrysAlisPro RED software. The structures were solved by direct methods using SHELXS-97 and refined by full matrix least-squares with SHELXL-97, refining on $F^{2.1}$

The positions of all the atoms were obtained by direct methods. All non-hydrogen atoms were refined anisotropically. The remaining hydrogen atoms were placed in geometrically constrained positions and refined with isotropic temperature factors, generally $1.2U_{eq}$ of their parent atoms.

Materials: All these starting materials and catalysts were either purchased from commercial sources or synthesized by literature known procedures.² All the solvents dried and distilled under reduced pressure before prior used.

General procedure for the synthesis of (*E*)-methyl α -(3-formyl-1*H*-indol-2-yl)- β -aryl/heteroarylsubstituted acrylates: To a stirred solution of methyl 2-(3-formyl-1*H*-indol-2-yl)acetate (0.2 mmol), aldehydes (0.3 mmol) and L-proline (0.05 mmol) in dry DMSO (1.0 mL) at room temperature under argon atmosphere. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was extracted with ethyl acetate (3 × 10 mL), washed with water and brine respectively and dried with Na₂SO₄. The organic phase was evaporated by rotary evaporator under reduced pressure to give the crude product. The crude product was purified by column chromatography over silica gel to furnish the pure product. The product was characterized by corresponding spectroscopic data (¹H and ¹³C NMR, HRMS).

(*E*)-Methyl α-(3-formyl-1*H*-indol-2-yl)-β-phenylacrylate (3aa): Yield 83%; ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 8.70 (br s, 1H), 8.32-8.35 (m, 1H), 8.21 (s, 1H), 7.40-7.42 (m, 1H), 7.30-7.35 (m, 3H), 7.18-7.22 (m, 2H), 7.09-7.11 (m, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.5, 166.5, 147.3, 141.7, 136.0, 132.8, 130.8, 130.4, 129.0, 125.4, 124.3,

123.1, 122.1, 120.1, 115.5, 111.5, 52.9; **HRMS** (ESI) m/z calcd. For C₁₉H₁₅NO₃ [M+Na]⁺: 328.0950; Found 328.0944.

(E)-Methyl α -(3-formyl-1*H*-indol-2-yl)- β -(3-methylphenyl)acrylate (3ab): Yield 75%; ¹H NMR

(400 MHz, CDCl₃) δ 9.85 (s, 1H), 8.81 (br s, 1H), 8.31-8.34 (m, 1H), 8.17 (s, 1H), 7.38-7.41 (m, 1H), 7.30-7.34 (m, 2H), 7.01-7.09 (m, 2H), 6.95 (s, 1H), 6.81 (d, *J* = 7.56 Hz, 1H), 3.82 (s, 3H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.5, 166.5, 147.6, 141.7, 138.6, 135.9, 132.8, 131.7, 131.6, 128.8, 127.0, 125.3, 124.3, 123.1, 122.2, 119.9, 115.6, 111.4, 52.9, 21.2; HRMS (ESI) m/z calcd. For C₂₀H₁₇NO₃ [M+Na]⁺: 342.1106; Found 342.1101.

(*E*)-Methyl α -(3-formyl-1*H*-indol-2-yl)- β -(4-methylphenyl)acrylate (3ac): Yield 78%; ¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 8.86 (br s, 1H), 8.32-8.35 (m, 1H), 8.18 (s, 1H), 7.39-7.41 (m, 1H), 7.31-7.34 (m, 2H), 6.98 (s, 4H), 3.81 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.6, 166.6, 147.5, 142.0, 141.6, 135.9, 130.5, 130.0, 129.7, 125.4, 124.3, 123.1, 122.2, 118.9, 115.5, 111.4, 52.8, 21.4; HRMS (ESI) m/z calcd. For C₂₀H₁₇NO₃ [M+Na]⁺: 342.1106; Found 342.1101.

(*E*)-Methyl α -(3-formyl-1*H*-indol-2-yl)- β -(2-methoxyphenyl)acrylate (3ad): Yield 71%; ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.84 (br s, 1H), 8.55 (s, 1H), 8.28-8.30 (m, 1H), 7.37-7.39 (m, 1H), 7.28-7.31 (m, 2H), 7.22-7.24 (m, 1H), 6.86 (d, J =8.28 Hz, 1H), 6.76 (d, J =7.8 Hz, 1H), 6.61(t, J = 8.0 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.7, 166.7, 158.5, 142.7, 142.0, 135.8, 132.2, 129.7, 125.4, 124.2, 122.9, 122.2, 122.1, 120.7, 119.9, 115.3, 111.3, 111.0, 55.6, 52.8; HRMS (ESI) m/z calcd. For C₂₀H₁₇NO₄ [M+Na]⁺: 358.1055; Found

358.1050. (E)-Methyl α-(3-formyl-1*H*-indol-2-yl)-β-(4-methoxyphenyl)acrylate (3ae): Yield 74%: ¹H NMR

CHO CO₂Me (400 MHz, CDCl₃) δ 9.88 (s, 1H), 8.63 (br s, 1H), 8.35-8.37 (m, 1H), 8.17 (s, 1H), 7.41-7.43 (m, 1H), 7.33-7.35 (m, 2H), 7.05 (d, *J* = 8.76 Hz, 2H), 6.70 (d, *J* = 8.56 Hz, 2H), 3.82 (s, 3H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.7, 166.8, 161.7, 147.2, 142.6, 136.0, 132.6, 125.3 (2C), 124.2, 123.0, 122.2, 117.0, 115.4, 114.5, 111.5, 55.3, 52.7; HRMS (ESI) m/z calcd. For C₂₀H₁₇NO₄ [M+Na]⁺: 358.1055; Found 358.1050.

(*E*)-Methyl α-(3-formyl-1*H*-indol-2-yl)-β-(2,5-dimethoxyphenyl)acrylate (3af): Yield 72%; ¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 9.05 (br s, 1H), 8.51 (s, 1H), 8.27-8.29 (m, 1H), 7.32-7.35

(m, 1H), 7.25-7.28 (m, 2H), 6.75-6.78 (m, 2H), 6.16 (s, 1H), 3.83 (s, 3H), 3.77 (s, 3H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.7, 166.7, 153.1, 153.0, 142.3, 142.2, 135.8, 125.3, 124.3, 123.0, 122.1, 122.0, 119.8, 119.4, 115.6, 112.8, 112.3, 111.3, 56.1, 55.0, 52.8; HRMS (ESI) m/z calcd. For C₂₁H₁₉NO₅ [M+Na]⁺: 388.1161; Found 388.1155.

(*E*)-Methyl α -(3-formyl-1*H*-indol-2-yl)- β -(4-benzyloxy-3-methoxyphenyl)acrylate (3ag): Yield CHO CO₂Me N 3ag H BnO OMe (*A*) OME (*A*) OME $(400 \text{ MHz, CDCl}_3) \delta 9.91 (s, 1H), 8.68 (br s, 1H), 8.33-8.36 (m, 1H), 8.11(s, 1H), 7.38-7.41 (m, 2H), 7.30-7.35 (m, 6H), 6.72-6.82 (m, 2H), 6.31 (s, 1H), 5.10 (s, 2H), 3.82 (s, 3H), 3.15 (s, 3H); ¹³C NMR (100 MHz, CDCl_3) \delta 185.6, 166.7, 150.6, 149.3, 147.3, 142.5, 136.1, 135.8, 128.6, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 112.9, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 125.8, 125.3, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 117.2, 115.8, 125.4, 128.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 127.1, 126.1, 125.8, 125.3, 124.4, 123.2, 122.1, 125.4, 123.2, 125.4, 123.2, 125.4, 123.2, 125.4, 123.2, 125.4, 123.2, 125.4, 125.4, 123.2, 125.4, 1$

111.8, 111.4, 70.6, 55.0, 52.8; **HRMS** (ESI) m/z calcd. For $C_{27}H_{23}NO_5 [M+Na]^+$: 464.1474; Found 464.1468.

(E)-Methyl α-(3-formyl-1H-indol-2-yl)-β-(4-benzyloxy-3-methoxyphenyl)acrylate (3ah): Yield

52.7 HRMS (ESI) m/z calcd. For C₁₉H₁₅NO₄ [M-H]⁻: 320.0923; Found 320.0917.

Figure 1. The molecular structure of compound 3ah (CCDC 952076)

Table 1. Crystal data and structure refinement for 3ah

Compound	Compound 3ah
Empirical formula	C_{19} H ₁₅ NO ₄
Molecular weight	321.32
Temperature	150(2) K
Wavelength (Å)	0.71073 A
Crystal system, space group	orthorhombic, p b c a
a (Å)	a = 9.3019(5) A
<i>b</i> (Å)	b = 16.7028(18) A
c (Å)	c = 20.7326(14) A
α (°)	alpha = 90 deg.
$\beta(^{\circ})$	beta = 90 deg.
γ (°)	gamma = 90 deg.
Volume $(Å^3)$	3221.2(4) A^3
Z, Calculated density (mg/m^3)	8, 1.325 Mg/m^3
Absorption coefficient (mm ⁻¹)	0.094 mm^-1
F(000)	1344
Crystal size (mm)	0.23 x 0.18 x 0.14 mm
θ range (deg)	2.94 to 25.00 deg
Limiting indices	-11<=h<=11, -19<=k<=19, -24<=l<=24
Reflections collected / unique	23304 / 2829 [R(int) = 0.0988]
Completeness to $\theta = 25.00$	99.9 %
Max. and min. transmission	0.9870 and 0.9788
Data / restraints / parameters	2829 / 0 / 222
Goodness-of-fit on F^2	1.062
Final R indices [I>2sigma(I)]	R1 = 0.0594, $wR2 = 0.1613$
R indices (all data)	R1 = 0.0743, $wR2 = 0.1796$
Absolute structure parameter	0.43 (3)
Largest diff. peak and hole $(e.A^{-3})$	0.244 and -0.242 e.A^-3
CCDC	952076

(E)-methyl α-(3-formyl-1H-indol-2-yl)-β-(4-hydorxy-3-methoxyphenyl)acrylate (3ai): Yield 77%;

¹H NMR (400 MHz, Acetone-d₆) δ 11.21 (br s, 1H), 9.89 (s, 1H), 8.34 (s, 1H), 8.26 (d, J = 7.04 Hz, 1H), 8.13 (s, 1H), 7.54 (d, J = 7.28 Hz, 1H), 7.26-7.32 (m, 2H), 6.88 (d, J = 7.04 Hz, 1H), 6.74 (d, J = 8.28 Hz, 1H), 6.38 (s, 1H), 3.77 (s, 3H), 3.13 (s, 3H); ¹³C NMR (100 MHz, Acetone-d₆) δ 185.3, 167.1, 150.4, 148.2, 147.6, 144.5, 137.4, 127.4, 126.4, 126.0, 124.6, 123.3, 122.2, 118.2, 116.1, 116.0, 112.9, 112.7, 55.2, 52.7; HRMS (ESI) m/z calcd.

For C₂₀H₁₇NO₅ [M-H]⁻: 350.1029; Found 350.1023.

(*E*)-Methyl α -(3-formyl-1*H*-indol-2-yl)- β -(2-chlorophenyl)acrylate (3aj): Yield 82%; ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.93 (br s, 1H), 8.43 (s, 1H), 8.25-8.27 (m, 1H), 7.39-7.41(m, 2H), 7.28-7.33 (m, 2H), 7.19 (t, J = 8.28 Hz, 1H), 6.91 (t, J = 7.52 Hz, 1H), 6.81-6.83 (m, 1H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 166.2, 143.5, 140.1, 135.8, 135.4, 132.0, 131.3, 130.1, 127.0, 125.3, 124.5, 123.1, 122.8, 122.1, 115.7, 111.4, 53.1; HRMS (ESI) m/z calcd. For $C_{19}H_{14}CINO_3 [M+Na]^+$: 362.0560; Found 362.0554.

(E)-Methyl α-(3-formyl-1H-indol-2-yl)-β-(4-chlorophenyl)acrylate (3ak): Yield 85%; ¹H NMR

(400 MHz, CDCl₃) δ 9.85 (s, 1H), 8.78 (br s, 1H), 8.31-8.33 (m, 1H), 8.14 (s, 1H), 7.41-7.43 (m, 1H), 7.33-7.36 (m, 2H), 7.17 (d, J = 8.52Hz, 2H), 7.02 (d, J = 8.52Hz, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 166.2, 145.7, 140.8, 137.0, 135.9, 131.5, 131.3, 129.3, 125.3, 124.6, 123.3, 122.2, 120.7, 115.6, 111.5, 53.0; HRMS (ESI) m/z calcd. For C₁₉H₁₄ClNO₃ [M+Na]⁺: 362.0560; Found 362.0554.

(E)-Methyl α-(3-formyl-1*H*-indol-2-yl)-β-(3-bromophenyl)acrylate (3al): Yield 78%; ¹H NMR

(400 MHz, CDCl₃) δ 9.87 (s, 1H), 8.72 (br s, 1H), 8.31-8.33 (m,1H), 8.10 (s, 1H), 7.39-7.44 (m, 2H), 7.31-7.36 (m, 3H), 7.01 (t, *J* = 8.04 Hz, 1H), 6.90-6.92 (m, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.2, 166.1, 145.2, 140.6, 135.9, 134.9, 133.8, 133.5, 130.4, 127.8, 125.3, 124.6, 123.2, 122.9, 122.1, 121.9, 115.6, 111.5, 53.1; HRMS (ESI) m/z calcd. For

 $C_{19}H_{14}NO_{3}Br [M+Na]^{+}: 406.0055; Found 406.0049, 408.0030.$

(E)-Methyl α-(3-formyl-1H-indol-2-yl)-β-(4-bromophenyl)acrylate (3am): Yield 81%; ¹H NMR

(400 MHz, CDCl₃) δ 9.84 (s, 1H), 8.92 (br s, 1H), 8.30-8.32 (m, 1H), 8.11 (s, 1H), 7.40-7.42 (m, 1H), 7.31-7.34 (m, 4H), 6.94 (d, *J* = 8.52 Hz, 2H), 3.83(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 166.3, 145.8, 140.9, 135.9, 132.3, 131.7, 131.7, 125.4, 125.3, 124.6, 123.3, 122.2, 120.9, 115.6, 111.5, 53.0; HRMS (ESI) m/z calcd. For C₁₉H₁₄NO₃Br [M+Na]⁺: 406.0055; Found 406.0049, 408.0030.

Figure 2. The molecular structure of compound 3am (CCDC 952075)

Table 2. Crystal data and structure refinement for	3am
--	-----

Compound	Compound 3am
Empirical formula	C_{19} H ₁₄ N O ₃ Br
Molecular weight	384.22
Temperature	150(2) K
Wavelength (Å)	0.71073 A
Crystal system, space group	Monoclinic, P 21
a (Å)	a = 11.3964(9) A
b (Å)	b = 7.3357 (6) A
c (Å)	c = 20.4793(7) A
α (°)	alpha = 90 deg.
$\beta(^{\circ})$	beta = 103.585 (5) deg.
γ (°)	gamma = 90 deg.
Volume $(Å^3)$	1664.2 (2) A^3
Z, Calculated density (mg/m^3)	4, 1.534 Mg/m^3
Absorption coefficient (mm ⁻¹)	2.486 mm^-1
F(000)	776
Crystal size (mm)	$0.16 \times 0.08 \times 0.06 \text{ mm}$
θ range (deg)	2.96 to 27.50 deg
Limiting indices	-13<=h<=14, -9<=k<=8, -26<=l<=25
Reflections collected / unique	15880 / 7267 [R(int) = 0.0589]
Completeness to $\theta = 25.00^{\circ}$	99.8 %
Max. and min. transmission	0.8651 and 0.6918
Data / restraints / parameters	7267 / 1/ 436
Goodness-of-fit on F^2	1.026
Final R indices [I>2sigma(I)]	R1 = 0.0574, $wR2 = 0.01295$
R indices (all data)	R1 = 0.0988, $wR2 = 0.01596$
Absolute structure parameter	0.43 (3)
Largest diff. peak and hole (e.A ⁻³)	0.469 and -0.679 e.A^-3
CCDC	952075

S-7

(*E*)-Methyl α -(3-formyl-1*H*-indol-2-yl)- β -(2-nitrophenyl)acrylate (3an): Yield 68%; ¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 9.06 (br s, 1H), 8.43 (s, 1H), 8.19 (d, J =7.52 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H) 7.38-7.44 (m, 2H), 7.28-7.35 (m, 3H), 6.99 (d, J = 7.52 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 165.9, 148.1, 143.8, 139.3, 135.9, 133.9, 130.9, 130.4, 130.3, 125.3, 125.2, 124.6, 123.3, 123.1, 121.9, 116.5, 111.4, 53.2; HRMS (ESI) m/z calcd. For C₁₉H₁₄N₂O₅ [M+Na]⁺: 373.0800; Found 373.0795.

(*E*)-Methyl α -(3-formyl-1*H*-indol-2-yl)- β -[2-(tert-butoxycarbonyl)aminophenyl]acrylate (3ao): Yield 72%; ¹H NMR (400 MHz, CDCl₃) δ 10.11 (s, 1H), 10.02 (br s, 1H), 8.24 (d, *J* = 7.52 Hz,

1H), 8.13 (s, 1H), 7.20-7.24 (m, 5H), 6.90-6.94 (m, 1H), 6.83-6.85 (m, 1H), 6.66 (s, 1H), 3.81 (s, 3H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 166.2, 154.5, 144.2, 140.8, 135.6, 135.6, 131.8, 130.1, 129.2, 126.8, 125.8, 125.2, 124.7, 123.8, 122.7, 121.1, 116.8, 111.8, 81.7, 52.8, 28.1; HRMS (ESI) m/z calcd. For C₂₄H₂₄N₂O₅ [M+H]⁺: 421.1764; Found

421.1758.

(*E*)-Methyl α -(3-formyl-1*H*-indol-2-yl)- β -(N-(tert-butoxycarbonyl-indol-3-yl)acrylate (3ap): Yield 75%; ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 8.66 (br s, 1H), 8.46 (s, 1H), 8.36-8.39 (m, 1H), 8.14 (d, *J* = 7.96 Hz, 1H), 7.66 (d, *J* = 7.76 Hz, 1H), 7.43-7.45 (m, 1H), 7.27-7.37 (m, 4H), 6.73 (s, 1H), 3.85 (s, 3H), 1.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 166.4, 148.3, 142.7, 137.8, 136.0, 135.1, 129.1, 127.9, 125.5, 125.3, 124.5, 123.7, 123.2, 122.3, 118.3, 118.2, 115.4, 115.3, 113.7, 111.4, 84.6, 52.8, 27.5; HRMS (ESI) m/z calcd. For

 $C_{26}H_{24}N_2O_5$ [M+H]⁺: 445.1764; Found 445.1758.

(*E*)-Methyl α -(3-formyl-1*H*-indol-2-yl)- β -(2-furyl)acrylate (3aq): Yield 76%; ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.83 (br s, 1H), 8.36-8.38 (m, 1H), 8.00 (s, 1H), 7.42-7.44 (m, 1H), 7.32-7.35 (m, 3H), 6.34-6.38 (m, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.5, 166.4, 149.3, 146.5, 141.8, 135.8, 133.2, 125.3, 124.3, 123.0, 122.2, 118.5, 116.2, 115.7, 112.9, 111.3, 52.9; HRMS (ESI) m/z calcd. For C₁₇H₁₃NO₄ [M+Na]⁺: 318.0742; Found 318.0737. (*E*)-Methyl α -(3-formyl-1*H*-indol-2-yl)- β -(2-thiophenyl)acrylate (3ar): Yield 78%; ¹H NMR (400 MHz, DMSO-d₆) δ 12.30 (br s, 1H), 9.78 (s, 1H), 8.47 (s, 1H), 8.17 (d, J = 7.28Hz, 1H), 7.66 (s, 2H), 7.52 (d, J = 7.52 Hz, 1H), 7.26-7.33 (m, 2H), 7.08-7.10 (m, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 184.5, 165.8, 142.0, 139.9, 136.7, 136.6, 134.0, 127.5, 125.2, 123.7, 122.4, 121.0, 116.6, 115.1, 112.3, 52.5; HRMS (ESI) m/z calcd. For C₁₇H₁₃NO₃S [M+Na]⁺: 334.0514; Found 334. 0508.

General procedure for the synthesis of (*E*)-methyl α -(3-formyl-1*H*-indol-2-yl)- β -alkyl-substituted acrylates: To a stirred solution of methyl 2-(3-formyl-1*H*-indol-2-yl)acetate (0.2 mmol), aldehydes (0.6 mmol) and L-proline (0.05 mmol) in dry DMSO (1.0 mL) at room temperature under argon atmosphere. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was extracted with ethyl acetate (3 × 10 mL), washed with water and brine respectively and dried with Na₂SO₄. The organic phase was evaporated by rotary evaporator under reduced pressure to give the crude product. The crude product was purified by column chromatography over silica gel to furnish the pure product. The product was characterized by corresponding spectroscopic data (¹H NMR, ¹³C NMR and HRMS).

(*E*)-Methyl α-(3-formyl-1*H*-indol-2-yl)-β-dimethoxymethylacrylate (3as): Yield 86%; dr (82:18);

¹H NMR (400 MHz, CDCl₃) δ (major isomer) 9.97 (s, 1H), 9.51 (br s, 1H), 8.31-8.34 (m, 1H), 7.42-7.45 (m, 1H), 7.30-7.34 (m, 2H), 7.25 (d, J = 7.28 Hz, 1H), 4.84 (d, J = 7.56 Hz, 1H), 3.81 (s, 3H), 3.34 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (major isomer) 185.5, 165.5, 143.6, 138.6, 135.6, 126.5, 125.4, 124.6, 123.2, 121.6, 117.1, 111.5, 99.6, 53.1, 53.0; HRMS (ESI) m/z calcd.

For C₁₆H₁₇NO₅ [M+Na]⁺: 326.1004; Found 326.0999.

(*E*)-Methyl α -(3-formyl-1*H*-indol-2-yl)- β -propylacrylate (3at): Yield 81%; dr (4:1) ¹H NMR (400 CHO MHz, CDCl₃) δ 9.86 (s, 1H), 9.11 (br s, 1H), 8.34-8.36 (m, 1H), 7.46 (t, J = 7.80 Hz, 1H), 7.39-7.42 (m, 1H), 7.29-7.33 (m, 2H), 3.79 (s, 3H), 2.18-2.24 (m, 2H), 1.43-1.52 (m, 2H), 0.86 (t, J = 7.28 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (major isomer) 185.6, 166.0, 153.1, 141.8, 135.8, 125.0, 124.3, 123.0, 122.8, 121.9, 116.4, 111.3, 52.6, 32.4, 21.7, 13.7; HRMS (ESI) m/z

calcd. For C₁₆H₁₇NO₃ [M+Na]⁺: 294.1106; Found 294.1101.

(*E*)-Methyl α-(3-formyl-1*H*-indol-2-yl)-β-butylacrylate (3au): Yield 85%; dr (4:1); ¹H NMR (400 MHz, CDCl₃) δ (major isomer) 9.86 (s, 1H), 9.21 (br s, 1H), 8.34-8.36 (m, 1H), 7.46 (t, J = 7.52 Hz, 1H), 7.39-7.41 (m, 1H), 7.29-7.31 (m, 2H), 3.78 (s, 3H), 2.20-2.24 (m, 2H), 1.38-1.46 (m, 2H), 1.22-1.29 (m, 2H), 0.81 (t, J = 7.24 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (major isomer) 185.6, 166.0, 153.3, 141.9, 135.8, 125.0, 124.3, 123.0, 122.6, 121.9,

116.4, 111.3, 52.6, 30.5, 30.2, 22.3, 13.7; **HRMS** (ESI) m/z calcd. For $C_{17}H_{19}NO_3$ [M+Na]⁺: 308.1263; Found 308.1257.

(E)-Methyl α -(3-formyl-1*H*-indol-2-yl)- β -(2-phenylethyl)acrylate (3av): Yield 83%; dr 4:1; ¹H

NMR (400 MHz, CDCl₃) δ (major isomer) 9.71 (s, 1H), 8.19-8.21 (m, 1H), 7.54 (br s, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.25-7.27 (m, 3H), 7.17-7.22 (m, 2H), 7.11-7.13 (m, 1H), 6.98-7.00 (m, 2H), 3.67(s, 1H), 2.73 (t, J = 6.76 Hz, 2H), 2.37-2.43(m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (major isomer) 185.4, 165.6, 151.1, 141.3, 140.2, 135.5, 128.8, 128.7, 126.5, 125.0, 124.1, 124.1,

122.9, 121.6, 116.3, 111.4, 52.6, 34.2, 32.4; **HRMS** (ESI) m/z calcd. For $C_{21}H_{19}NO_3$ [M+H]⁺: 334.1443; Found 334.1438.

(E)-Methyl α-(3-formyl-1H-indol-2-yl)-β-(2-phenylethyl)acrylate (3ba): Yield 55%; ¹H NMR

(400 MHz, CDCl₃) δ 11.30 (s, 1H), 8.50 (br s, 1H), 7.99 (s, 1H), 7.82-7.84 (m, 1H), 7.31-7.35 (m, 2H), 7.18-7.21 (m, 2H), 6.97-6.99 (m, 3H), 3.79 (s, 3H); **HRMS** (ESI) m/z calcd. For C₁₉H₁₄INO₃ [M+Na]⁺: 453.9916; Found 453.9911.

General procedure for the synthesis of carabazole derivatives: To a stirred solution of (*E*)-methyl α -(3-formyl-1*H*-indol-2-yl)- β -aryl/alky substituted acrylate (0.15 mmol), nitromethane (0.45 mmol) and DBU (35 mol%) in dry THF (0.4 mL) at room temperature under air or oxygen. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was extracted with ethyl acetate (3 × 10 mL), washed with dilute HCl (1N), brine and dried with Na₂SO₄. The organic phase was evaporated by rotary evaporator under reduced pressure to give the crude product. The crude product was purified by column chromatography over silica gel to furnish the pure product. The product was fully characterized by their corresponding spectroscopic data (¹H NMR, ¹³C NMR and HRMS).

1-Methoxycarbonyl-2-phenyl-3-nitro-9*H*-carbazole (4aa): Yield 81%: ¹H NMR (400 MHz, **CDCl**₃) δ 9.94 (s, 1H), 8.65 (s, 1H), 8.05 (d, J = 7.76 Hz, 1H), 7.50-7.48 (m, NØ2 2H), 7.35-7.28 (m, 4H), 7.22-7.19 (m, 2H), 3.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) § 167.6, 143.7, 141.4, 140.6, 137.0, 135.4, 128.5, 128.2, 128.0, 127.8, CO₂Me 488 123.3, 122.2, 121.4, 121.0, 120.1, 112.7, 111.8, 52.2; HRMS (ESI) m/z calcd For C₂₀H₁₄N₂O₄[M+Na]⁺ 369.0851; Found 369.0846.

1-Methoxycarbonyl-2-(4-methylphenyl)-3-nitro-9H-carbazole (4ac): Yield 78%; ¹H NMR (400

H

MHz, **CDCl**₃) δ 9.95 (s, 1H), 8.68 (s, 1H), 8.13-8.11 (m, 1H), 7.57-7.54 (m, 2H), 7.39-7.35 (m, 1H), 7.23-7.16 (m, 4H), 3.59 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 144.0, 141.3, 140.6, 137.5, 135.4, 133.9, 128.6, 128.4, 128.1, 123.1, 122.2, 121.3, 121.0,

119.9, 112.8, 111.7, 52.2, 21.4; HRMS (ESI) m/z calcd For $C_{21}H_{16}N_2O_4[M+Na]^+$ 383.1008; Found 383.1002.

1-Methoxycarbonyl-2-(4-methoxyphenyl)-3-nitro-9H-carbazole (4ae): Yield 76%; ¹H NMR (400

MHz, CDCl₃) δ 9.97 (s, 1H), 8.67 (s, 1H), 8.12 (d, J = 8.04 Hz, 1H), 7.59-7.56 (m, 2H), 7.39-7.35 (m, 1H), 7.20 (d, J = 8.52 Hz, 2H), 6.94 (d, J = 8.52 Hz, 2H), 3.87 (s, 3H), 3.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 159.3, 144.2, 141.3, 140.6, 135.0, 129.7, 129.0,

128.1, 123.1, 122.2, 121.3, 120.1, 119.9, 113.4, 112.9, 111.7, 55.3, 52.3; HRMS (ESI) m/z calcd For C₂₁H₁₆N₂O₅[M+Na]⁺ 399.0957; Found 399.0951.

1-Methoxycarbonyl-2-(4-benzyloxy-3-methoxyphenyl)-3-nitro-9H-carbazole (4ag): Yield 74%;

¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 8.66 (s, 1H), 8.11 (dd, J = 0.8, 8.0 Hz, 1H), 7.53-7.58 (m, 2H), 7.47-7.49 (m, 2H), 7.29-7.40 (m, 4H), 6.92 (d, J = 8.4 Hz, 1H), 6.84-6.85 (m, 1H), 6.74-6.76 (m, 1H), 5.20-5.22 (m, 2H), 3.87 (s, 3H), 3.54 (s, 3H); ¹³C NMR (100

MHz, CDCl₃) δ 167.8, 149.2, 147.9, 144.0, 141.3, 140.6, 137.1, 134.7, 129.9, 128.6, 128.1, 127.9, 127.4, 123.1, 122.2, 121.4, 121.1, 121.0, 119.7, 113.5, 113.0, 112.7, 111.7, 71.1, 56.2, 52.2; HRMS (ESI) m/z calcd For $C_{28}H_{22}N_2O_6[M+Na]^+$ 505.1376; Found 505.1370.

1-Methoxycarbonyl-2-(4-hydroxyphenyl)-3-nitro-9*H*-carbazole (4ah) : Yield 71%; ¹H NMR (400

MHz, DMSO-d₆) δ 11.83 (br s, 1H), 9.60 (br s, 1H), 9.01 (s, 1H), 8.34 (d, J = 7.76 Hz, 1H), 7.68 (d, J = 8.04 Hz, 1H), 7.53-7.57 (m, 1H), 7.30-7.34 (m, 1H), 7.05 (d, J = 8.28 Hz, 2H), 6.79 (d, J = 8.52 Hz, 2H), 3.66 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 166.1, 157.1, 142.7, 141.4,

138.6, 132.3, 129.6, 127.7, 126.5, 122.0, 121.7, 121.3, 120.6, 119.1, 116.0, 115.0, 112.3, 52.4; **HRMS** (ESI) m/z calcd. For C₂₀H₁₄N₂O₅ [M+Na]⁺: 385.0800; Found 385.0795.

1-Methoxycarbonyl-2-(4-chlorophenyl)-3-nitro-9H-carbazole (4ak): Yield 82%; ¹H NMR (400

MHz, CDCl₃) δ 10.07 (s, 1H), 8.75 (s, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.56-7.61 (m, 2H), 7.37-7.41 (m, 3H), 7.21-7.24 (m, 2H), 3.61 (s, 3H); ¹³C **NMR (100 MHz, CDCl₃)** δ 167.3, 143.5, 141.5, 140.7, 135.6, 134.1, 133.9, 129.9, 128.4, 128.0, 123.6, 122.1, 121.5, 121.1, 120.3, 112.4, 111.8, 52.3; HRMS (ESI) m/z calcd

For C₂₀H₁₃ClN₂O₄[M+Na]⁺ 403.0462; Found 403.0456.

1-Methoxycarbonyl-2-(4-bromophenyl)-3-nitro-9*H*-carbazole (4am): Yield 79%; ¹H NMR (400

MHz, CDCl₃) δ 10.07 (s, 1H), 8.74 (d, J = 0.76 Hz, 1H), 8.13 (dd, J = 0.8, 7.76 Hz, 1H), 7.59-7.53 (m, 4H), 7.41-7.37 (m, 1H), 7.17-7.15 (m, 2H), 3.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 143.4, 141.5, 140.7, 136.1, 134. 1, 130.9, 130.2, 128.4, 123.6, 122.1, 122.0, 121.5,

121.0, 120.3, 112.3, 111.8, 52.3; HRMS (ESI) m/z calcd For $C_{20}H_{13}BrN_2O_4[M+Na]^+$ 446.9956; Found 446.9951 and [M+Na+2] 448.9931.

1-Methoxycarbonyl-2-(2-furyl)-3-nitro-9*H*-carbazole (4aq): Yield 82%; ¹H NMR (400 MHz,

CDCl₃) δ 9.99 (s, 1H), 8.70 (s, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.53-7.61 (m, 3H), 7.35-7.38 (m, 1H), 6.52-6.53 (m, 1H), 6.42-6.44 (m, 1H), 3.78 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 146.9, 143.4, 143.0, 141.1, 140.8, 128.6, 124.3, 123.8, 122.0, 121.5, 121.1, 120.1, 113.4, 111.8, 111.4,

110.1, 52.9; HRMS (ESI) m/z calcd For $C_{18}H_{12}N_2O_5[M+Na]^+$ 359.0644; Found 359.0638.

1-Methoxycarbonyl-2-(2-thiophenyl)-3-nitro-9*H*-carbazole (4ar): Yield 84%; ¹H NMR (400 MHz,

CDCl₃) δ 9.96 (s, 1H), 8.65 (s, 1H), 8.11 (d, *J* =7.2 Hz, 1H), 7.62-7.52 (m, 2H), 7.46 (dd, *J* = 0.16 Hz, 5.2 Hz, 1H), 7.39-7.35 (m, 1H), 7.09-7.07 (m, 1H), 7.02-7.01 (m, 1H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 144.6, 141.0, 140.7, 136.4, 128.5, 128.1, 127.1, 127.0, 126.7, 124.0, 122.1, 121.5,

121.1, 119.6, 114.1, 111.8, 52.6 ; **HRMS** (ESI) m/z calcd For $C_{18}H_{12}N_2O_4S[M+Na]^+$ 375.0415; Found 375.0410.

1-Methoxycarbonyl-2-(2-ethylphenyl)-3-nitro-9*H*-carbazole (4av): Yield 92%; ¹H NMR (400

MHz, CDCl₃) δ 10.03 (s, 1H), 8.70 (d, J = 0.48 Hz, 1H), 8.08 (dd, J = 0.80 Hz, 7.6 Hz, 1H), 7.53-7.55 (m, 2H), 7.31-7.37 (m, 5H), 7.22-7.27 (m, 1H), 4.11 (s, 3H), 3.54-3.59 (m, 2H), 3.06-3.11 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 144.7, 142.3, 141.7, 140.3, 136.1, 128.5 (2C), 127.9, 126.2, 122.5, 122.2, 121.3, 121.2, 120.8, 112.2, 111.6, 52.7,

37.7, 32.7; **HRMS** (ESI) m/z calcd For $C_{22}H_{18}N_2O_4[M+Na]^+$ 397.1164; Found 397.1159.

1-Methoxycarbonyl-2-propyl-3-nitro-9*H*-carbazole (4at) : Yield 90%; ¹H NMR (400 MHz,

CDCl₃) δ 9.96 (s, 1H), 8.61 (s, 1H), 8.05 (d, J = 7.78 Hz, 1H), 7.48-7.53 (m, 2H), 7.30-7.34 (m, 1H), 4.09 (s, 3H), 3.20-3.24 (m, 2H), 1.70-1.80 (m, 2H), 1.05 (t, J = 7.2 Hz, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 167.7, 144.8, 142.2, 140.2, 137.2, 127.8, 122.2 (2C), 121.2, 120.9, 120.7, 112.1, 111.5, 52.6, 32.2, 25.3, 14.5; HRMS (ESI) m/z calcd For C₁₇H₁₆N₂O₄[M+Na]⁺ 335.1002;

Found 335.1021.

General procedure for the synthesis of substituted γ -carboline derivatives: A homogeneous solution of (*E*)-methyl α -(3-formyl-1*H*-indol-2-yl)- β -aryl/alky substituted acrylates (0.15 mmol) and ammonium acetate (0.225 mmol) in DMSO (1.0 mL) was stirred at room temperature under air or oxygen. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was extracted with ethyl acetate (3 × 10 mL), washed with brine and dried with Na₂SO₄. The organic phase was evaporated by rotary evaporator under reduced pressure to give the crude product. The crude product was purified by column chromatography over silica gel to furnish the pure product. The products were characterized by their corresponding spectroscopic data (¹H NMR, ¹³C NMR and HRMS).

Methyl 3-phenyl-5*H*-pyrido[4,3-*b*]indole-4-carboxylate: Yield 96%; ¹H NMR (400 MHz, CDCl₃)

δ 9.89 (br s, 1H), 9.38 (s, 1H), 8.17 (d, J = 7.76 Hz, 1H), 7.52-7.58 (m, 4H),
7.42-7.48 (m, 3H), 7.35-7.39 (m, 1H), 3.70 (s, 3H); ¹³C NMR (100 MHz,
Me CDCl₃) δ 168.4, 156.9, 145.2, 143.6, 141.7, 139.9, 129.1, 128.1, 127.8, 127.5, 121.5, 121.1, 120.9, 119.8, 111.5, 107.6, 51.9; HRMS (ESI) m/z calcd. For

 $C_{19}H_{14}N_2O_2$ [M+H]⁺: 303.1134; Found 303.1128.

Methyl 3-(4-methylphenyl)-5H-pyrido[4,3-b]indole-4-carboxylate: Yield 93%; ¹H NMR (400

MHz, CDCl₃) δ 9.84 (br s, 1H), 9.36 (s, 1H), 8.15(d, J = 7.76 Hz, 1H), 7.51-7.53 (m, 2H), 7.47(d, J = 8.0 Hz, 2H), 7.34-7.38 (m, 1H), 7.25 (d, J = 7.76 Hz, 2H), 3.73 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 159.9, 145.2, 143.6, 139.9, 138.7, 137.9,

129.1, 128.5, 127.4, 121.4, 121.1, 120.8, 119.6, 111.4, 107.5, 51.9, 21.3; **HRMS** (ESI) m/z calcd. For $C_{20}H_{16}N_2O_2 [M+H]^+$: 317.1290; Found 317.1285.

Methyl 3-(4-methoxyphenyl)-5H-pyrido[4,3-b]indole-4-carboxylate: Yield 89%; ¹H NMR (400

MHz, CDCl₃) δ 9.83 (br s, 1H), 9.34 (s, 1H), 8.15 (d, J = 7.80 Hz, 1H), 7.50-7.55 (m, 4H), 7.34-7.38 (m, 1H), 6.98 (d, J = 8.76 Hz, 2H), 3.88 (s, 3H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 159.8, 156.5, 145.3, 143.6, 139.9, 134.1, 130.6, 127.4, 121.4, 121.2,

120.8, 119.4, 113.3, 111.4, 107.2, 55.3, 51.9; **HRMS** (ESI) m/z calcd. For $C_{20}H_{16}N_2O_3$ [M+H]⁺: 333.1239; Found 333.1234.

Methyl 3-(4-benzyloxy-3-methoxyphenyl)-5H-pyrido[4,3-b]indole-4-carboxylate: Yield 86%; ¹H

NMR (400 MHz, CDCl₃) δ 9.82 (br s, 1H), 9.33 (s, 1H), 8.15 (d, J = 7.76 Hz, 1H), 7.52-7.54 (m, 2H), 7.46-7.48 (m, 2H), 7.34-7.39 (m, 3H), 7.28-7.32(m, 1H), 722-7.23(m, 1H), 7.00-7.03(m, 1H), 6.94-6.96 (m, 1H), 5.24 (s, 2H), 3.96 (s, 3H), 3.70 (s, 3H); ¹³C NMR

(100 MHz, CDCl₃) δ 168.5, 156.1, 149.2, 148.3, 145.1, 143.3, 139.9, 137.0, 134.7, 128.4, 127.8, 127.4, 127.3, 122.0, 121.4, 121.0, 120.7, 119.5, 113.3, 112.8, 111.4, 107.5, 70.9, 56.0, 51.9; HRMS (ESI) m/z calcd. For C₂₇H₂₂N₂O₄ [M+H]⁺: 439.1657; Found 439.1652.

Methyl 3-(4-chlorophenyl)-5H-pyrido[4,3-b]indole-4-carboxylate: Yield 94%; ¹H NMR (400

MHz, CDCl₃) δ 9.92 (br s, 1H), 9.36 (s, 1H), 8.16 (d, J = 7.76 Hz, 1H), 7.54-7.55 (m, 2H), 7.50 (d, J = 8.56 Hz, 2H), 7.42 (d, J = 8.28, 2H), 7.36-7.40 (m, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 155.6, 145.2, 143.7, 140.2, 140.0, 134.2, 130.5, 128.0, 127.7,

121.6, 121.0, 120.9,120.0, 111.5, 107.5, 52.0; **HRMS** (ESI) m/z calcd. For $C_{19}H_{13}N_2O_2Cl [M+H]^+$: 337.0744; Found 337.0738.

Methyl 3-(4-bromophenyl)-5*H*-pyrido[4,3-*b*]indole-4-carboxylate: Yield 96%; ¹H NMR (400

MHz, CDCl₃) δ 9.92 (br s, 1H), 9.36 (s, 1H), 8.16 (d, J = 7.76 Hz, 1H), 7.54-7.59 (m, 4H), 7.43-7.45 (m, 2H), 7.36-7.40 (m, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 155.6, 145.2, 143.7, 140.7, 140.0, 130.9, 130.8, 127.7, 122.5, 121.6, 121.0, 120.9, 120.1,

111.5, 107.5, 52.0; **HRMS** (ESI) m/z calcd. For $C_{19}H_{14}N_2O_2Br [M]^+$: 381.0238; Found 381.0233, 383.0214.

Methyl 3-(2-nitrophenyl)-5H-pyrido[4,3-b]indole-4-carboxylate: Yield 93%; ¹H NMR (400 MHz,

CDCl₃) δ 10.08 (br s, 1H), 9.34 (s, 1H), 8.16-8.21 (m, 2H), 7.69-7.72 (m, 1H), 7.56-7.60 (m, 3H), 7.44 (d, J = 7.52 Hz, 1H), 7.37-7.41 (m, 1H), 3.70(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 154.1, 147.8, 144.9, 144.2, 140.0, 138.1, 133.0, 131.3, 128.6, 127.9, 124.0, 121.7, 120.0, 120.9, 120.7,

111.6, 107.0, 52.2; **HRMS** (ESI) m/z calcd. For $C_{19}H_{13}N_3O_4$ [M+H]⁺: 348.0948; Found 348.0979.

Methyl 3-[2-(tert-butoxycarbonyl)aminophenyl]-5H-pyrido[4,3-b]indole-4-carboxylate: Yield

86%; ¹H NMR (400 MHz, CDCl₃) δ 9.98 (br s, 1H), 9.37 (s, 1H), 8.16-8.20 (m, 3H), 7.55-7.58 (m, 2H), 7.36-7.41 (m, 2H), 7.15-7.17 (m, 1H), 7.05-7.08 (m, 1H), 3.66 (s, 3H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 154.3, 153.0, 145.4, 143.2, 139.9, 136.0, 130.8, 129.9,

129.1, 127.8, 122.1, 121.6, 120.9, 120.9, 120.5, 119.9, 111.6, 109.0, 80.1, 52.0, 28.3; **HRMS** (ESI) m/z calcd. For $C_{24}H_{23}N_3O_4$ [M+H]⁺: 418.1767; Found 418.1761.

Methyl 3-[N-tert-butoxycarbonyl-3-indolyl)-5H-pyrido[4,3-b]indole-4-carboxylate: Yield 94%;

¹H NMR (400 MHz, CDCl₃) δ 10.00 (br s, 1H), 9.40 (s, 1H), 8.28 (d, J = 7.04 Hz, 1H), 8.17 (d, J = 7.52Hz, 1H), 8.00 (s, 1H), 7.52-7.55 (m, 2H), 7.45-7.47 (m, 1H), 7.32-7.39 (m, 2H), 7.22-7.26 (m, 1H), 3.53 (s, 3H), 1.69 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 149.6, 145.2, 144.4, 139.9, 135.3, 129.7, 127.5, 125.5, 124.3, 123.0,122.9, 121.5,

121.1, 120.8, 120.8, 119.8, 119.2, 115.4, 111.5, 108.4, 83.8, 52.0, 28.1 **HRMS** (ESI) m/z calcd. For $C_{26}H_{23}N_3O_4 [M+H]^+$: 442.1767; Found 331.1761.

Methyl 3-(2-furyl)-5H-pyrido[4,3-b]indole-4-carboxylate: Yield 90%; ¹H NMR (400 MHz,

DMSO-d₆) δ 12.80 (br s, 1H), 9.66 (s, 1H), 8.45(d, J = 7.76 Hz, 1H), 8.03 (s, 1H), 7.76(d, J = 8.28 Hz, 1H), 7.64 (t, J = 7.52 Hz, 1H), 7.43-7.48 (m, 2H), 6.80 (s, 1H), 4.01 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 164.9,

147.3, 146.3, 143.3, 141.5, 139.1, 136.6, 128.8, 122.3, 121.9, 120.4, 119.4, 113.9, 112.8, 112.7, 108.9, 53.2; **HRMS** (ESI) m/z calcd. For C₁₇H₁₂N₂O₃ [M+H]⁺: 293.0926; Found 293.0921.

Methyl 3-(2-propyl)-5H-pyrido[4,3-b]indole-4-carboxylate: Yield 91%; ¹H NMR (400 MHz,

CDCl₃) δ 9.98 (br s, 1H), 9.26 (s, 1H), 8.11 (d, J = 7.76 Hz; 1H), 7.47-7.53 (m, 2H), 7.31-7.35 (m, 1H), 4.08 (s,3H), 3.30-3.34 (m, 2H), 1.18-1.83 (m, 2H), 1.05 (t, J = 7.28 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 161.0, 145.6, 144.1, 139.5, 127.1, 121.3, 121.2, 120.6, 119.3, 111.3, 107.1,

52.2, 40.2, 24.2, 14.4; **HRMS** (ESI) m/z calcd. For $C_{16}H_{16}N_2O_2$ [M+H]⁺: 269.1290; Found 269.1285.

Methyl 3-(2-phenylethyl)-5H-pyrido[4,3-b]indole-4-carboxylate: Yield 95%; ¹H NMR (400 MHz,

CDCl₃) δ 10.01 (br s, 1H), 9.30 (s, 1H), 8.13 (d, J = 7.76 Hz, 1H), 7.49-7.54 (m, 2H), 7.33-7.37 (m, 1H), 7.29-7.31 (m, 4H), 7.20-7.23 (m, 1H), 4.07 (s, 3H), 3.63-3.67 (m, 2H), 3.07-3.11 (m, 2H); ¹³C **NMR (100 MHz, CDCl₃)** δ 167.8, 159.6, 145.5, 144.1, 142.1,

139.5, 128.5, 128.3, 127.2, 125.9, 121.3, 121.0, 120.6, 119.5, 111.4, 107.3, 52.3, 40.2, 37.0 **HRMS** (ESI) m/z calcd. For $C_{21}H_{18}N_2O_2$ [M+H]⁺: 331.1446; Found 331.1441.

Synthesis of prenostodione (8) from 3ao:

To a stirred solution of compound **3ao** (321 mg, 1.0 mmol) and DMAP (12.2 mg, 0.1 mmol) at 0 $^{\circ}$ C in DCM was added Boc₂O (545 mg, 2.5 mmol). The stirring was continued for 5 h at room temperature, and then the reaction mixture was extracted with DCM before being quenched with dilute HCl. Evaporation of the solvent left the crude product which was sufficiently pure and used directly for the next step.

A heterogeneous mixture of aldehyde I (1.0 mmol) and 2-methyl-2-butene (280 mg, 4.0 mmol) in *t*-BuOH:H₂O (3:1 = 20 mL) were added NaH₂PO₄.H₂O (414 mg, 3.0 mmol) and NaClO₂ (273 mg, 3.0 mmol) respectively at room temperature. The stirring was continued for 8 h (monitored by TLC). After

completion of the reaction, the mixture was extracted with EtOAc (3×20 mL), washed with water, brine and dried over Na₂SO₄. The combined organic phase was concentrated by rotary evaporator under reduced pressure to leave the crude product. The white solid was purified by column chromatography over silica gel to furnish the pure product **6** (484 mg, 90% two steps).

A homogeneous solution of compound **6** (268.5 mg, 0.5 mmol) in CH_2Cl_2 (9.0 mL) was added TFA (3.0 mL) at 0 °C. After that, reaction mixture was stirred for another 8 h (monitored by TLC). After completion of the reaction mixture was concentrated by rotary evaporator to give the crude product. The purification was done by column chromatography over silica-gel to furnish the pure product **8** (154.0 mg, 91%).

Compound 6: Yield 90%; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (t, J = 9.02 Hz, 2H), 7.96 (s, 1H), 7.37-7.44 (m, 2H), 6.97-7.02 (m, 4H), 3.77 (s, 3H), 1.49 (s, 9H), 1.48 (s, 9H) ; ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 166.5, 151.9, 151.1, 148.9, 141.4, 139.7, 136.0, 131.4, 130.7, 127.1, 125.4, 124.2, 124.0, 122.2, 121.5, 115.4, 111.2, 85.7, 83.8, 52.4, 27.7, 27.6 HRMS (ESI) m/z calcd. For

 $C_{29}H_{31}NO_9 [M+H]^+$: 538.2077. Found 538.2072.

Prenostodione 8: Yield 91%;

The product was characterized by spectroscopic data (¹H and ¹³C NMR, HRMS) which is good agreement with literature data.

Synthesis of methylated prenostodione 9:

Similar synthetic methods were followed for the synthesis of compound 9.

Methyl α-(1-tert-butoxycarbonyl-3-formyl-1H-indol-2yl)-β-(4-methoxyphenyl)acrylate: Yield 97%; ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 8.28-8.34 (m, 2H), 8.13 (s, 1H), 7.37-7.47 (m, 2H), 7.06 (d, J = 9.09 Hz, 2H), 6.71 (d, J = 8.80 Hz, 2H), 3.77 (s, 3H), 3.73 (s, 3H), 1.56 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 187.0, 166.4, 161.3, 149.1, 144.3, 144.3, 136.4, 132.0, 125.9, 125.7, 124.7, 122.2, 119.0, 117.8, 115.4, 114.5, 86.0, 55.2, 52.4, 27.7 HRMS (ESI) m/z calcd. For C₂₅H₂₅NO₆ [M+Na]⁺: 458.1579. Found 458.1574.

Compound 7: ¹H NMR (400 MHz, CDCl₃) δ 8.25-8.28 (m, 2H), 7.92 (s, 1H), 7.37-7.44 (m, 2H),

6.91(d, J = 8.67 Hz, 2H), 6.67 (d, J = 9.0 Hz, 2H), 3.76(s, 3H), 3.70 (s, 3H), 1.46(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 166.8, 160.8, 149.0, 142.3, 140.5, 136.1, 131.4, 127.3, 126.6, 125.3, 124.1, 122.2, 121.4, 115.4, 114.3, 110.9, 85.5, 55.2, 52.3, 27.7 HRMS (ESI) m/z calcd. For C₂₅H₂₅NO₇ [M+Na]⁺: 474.1529. Found 474.1523.

Compound 9: Yield 93%; ¹H NMR (400 MHz, DMSO-d₆) δ 11.87 (br s, 2H), 8.05-8.07 (m, 1H),

7.85 (s, 1H), 7.38-7.40 (m, 1H), 7.17-7.22 (m, 2H), 6.97 (d, J = 8.8 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 3.69 (s, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 166.6, 165.7, 160.6, 141.7, 138.9, 135.7, 131.9, 126.9, 126.2,

122.4, 121.3, 121.1, 121.1, 114.3, 112.0, 105.7, 55.3, 52.0. **HRMS** (ESI) m/z calcd. For $C_{20}H_{17}NO_5$ [M-H]⁺: 350.1029. Found 350.1023.

References:

- 1. Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, A64, 112-122. Program for Crystal Structure Solution and Refinement; University of Goettingen: Goettingen, Germany, 1997.
- (a) Somei, M.; Ohnishi, H.; Shoken, Y. Chem. Pharm. Bull. 1986, 34, 677. (b) Somei, M.; Kawasaki, T.; Shimizu, K.; Fukui, Y.; Ohta, T. Chem. Pharm. Bull. 1991, 39, 1905; (c) Kawasaki, T.; Kodama, A.;, Nishida, T.; Shimizu, K.; Somei, M. Heterocycles 1991, 32, 221.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

պատրուրու	ղուղու	mini	րուրույ	miliuu	րուրու	muhun	րողոու	րուրու	mini	րուրու	րուրու	րուրու	վուղու	ղուղու	mini	րուրու	րուրու	րուրու	րողոող	mpm	ուրու	րուրու	ղուղու	րուրու	huul
200	192	184	176	168	160	152	144	136	128	120	112	104	96	88	80	72	64	56	48	40	32	24	16	8	0
200						.02										•	•••							•	v
Chemical Shift (nom)																									
													(

						mini				mmm			mini	mini					mmm		mmm				mm
200	192	184	176	168	160	152	144	136	128	120	112	104	96	88	80	72	64	56	48	40	32	24	16	8	0
											Chemi	cal Shift	(ppm)												

minimi	ապապ	mini	mmm	mini	minit	minit	mpmq	mijinii	mpmi	mm	րուրու	mini		րուրու	mini	mpm	mini	mini	mini	mini	րուրու	mini	mini	ուսիսով	pmm)
200	192	184	176	168	160	152	144	136	128	120	112	104	96	88	80	72	64	56	48	40	32	24	16	8	0
											Chemic	al Shift	(ppm)												

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Chemical Shift (ppm)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

		0.7	'9 _					1.03 山	1.01 비비	2.05 ∐	5 3.01						3.	02 							
	mmm	mmm			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111111111						111111111	mmm	munu	100000		hundun	11111111				400000	undund	/mm
12.5	12.0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0
Chemical Shift (ppm)																									

120 100 Chemical Shift (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical Shift (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical Shift (ppm)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

