Cul/1,10-Phen/PEG Promoted Decarboxylation of 2, 3-Diarylacrylic acids: Synthesis of Stilbenes under Neutral and Microwave Conditions with in situ Generated Recyclable Catalyst

Yong Zou, ^{*a} Qi Huang,^{a,b} Tong-kun Huang,^a Qing-chun Ni,^c En-sheng Zhang,^{a,b} Tian-long Xu,^{a,b} Mu Yuan^d

^a Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P. R. China ^b University of Chinese Academy of Sciences, Beijing 100039, P. R. China ^c Guangzhou General Pharmaceutical Research Institute, Guangzhou 510240, P. R. China ^d Guangzhou Medical University, Guangzhou 510182, P. R. China

Tel: +86-20-85231309; Fax: +86-20-85231119. E-mail: zou jinan@163.com

Supporting Materials Content

General	. 1
Drawing of the crystal structure of 2g	1
Recyclability of [CuI(1,10-Phen)] ₂	.2
Characterization data of [CuI(1,10-phen)] ₂	2
Spectra for products (1a, 1r and 2a-2s)	.7

1. General

2,3-Diaryl acrylic acids were directly obtained through Perkin reaction except **1a** and **1r**. Other reagents and chromatography grade solvents were obtained from commercial sources and used without further purification unless otherwise stated. Petroleum ether (PE) used refers to the boiling fraction of 60–90 °C. All microwave assisted reactions were carried out with Microwave Synthesizer (WBFY-205, Gongyi City Yu Hua Instrument Co. Ltd, China), and the reaction temperature was detected by infrared thermometer. The melting points are uncorrected. ¹H NMR and ¹³C NMR spectra were measured on a 400 MHz spectrometer (¹H 400 MHz, ¹³C 100 MHz) using CDCl₃ or DMSO-d₆ as the solvent at room temperature. Chemical shifts are reported in parts per million (ppm) and are calibrated using residual undeuterated solvent as an internal reference. HRMS spectra were recorded on a LC-Q-TOF (ESI) apparatus. The single X-ray diffraction measurement was performed on X-ray diffractometer. The morphology was characterized using scanning electron microscopy (SEM, 15 kV). Thermogravimetric analysis (TGA) was carried out with a heating rate of 3 deg/min in a flowing argon atmosphere.

2. Drawing of the crystal structure of 2g

Figure 1 X-ray crystal structure of 2g

Table S1 Recyclability of [CuI(1,10-Phen)]2

	H ₃ CO H ₃ CO H MW(800 W, H ₃ CO H MW(800 W, H ₃ CO H H ₃ CO H H H ₃ CO H H ₃ CO H H ₃ CO H H ₃ CO H H H H H H H H H H H H H H H H H H H	H ₃ CO h ^{en})]₂ (5 mol%) 6 min), PEG-400	
Run	Catalyst recovery(%)	T/min	Product yield(%)
1^{a}	87	6	84
2 ^b	86	6	83
3 ^b	85	6	82
4 ^b	85	6	82
5 ^b	85	6	82

^a Reaction condition: **1g** (50 mmol), $[CuI(1,10-phen)]_2$ (5 mol %) which was recovered from initial reaction, PEG-400 (100 ml), under N₂ atmosphere, the mixture was stirred under microwave irradiation (800 W, 180-190 °C) for 6 min (2-min irradiation each time with a 5-min interval between). ^b The recovered catalyst was used under identical reaction conditions to those for the first run.

3. Characterization data of [CuI(1,10-phen)]₂

IR of $[CuI(1,10-phen)]_2$

TG of [CuI(1,10-phen)]₂

MS-FAB of [CuI(1,10-phen)]₂

SEM of [CuI(1,10-phen)]₂

PXRD of [Cu(1, 10-phen)]₂

4. Spectra for products (1a, 1r and 2a-2s)

Z-3'-animo-3,4,4',5-tetramethoxystilbene (2a)

1HNMR spectrum of sample HTKM286

CDCl₃

E-3,4',5-trihydroxylstilbene (2i)

шdd

E-3'-animo-3,4,4',5-tetramethoxystilbene (2m)

3-(4-hydroxybenzylidene)-5,7-dimethoxybenzofuran-2(3H)-one (2s)