Supplementary Information

Rh-catalyzed oxidative C-C bond formation and C-N bond cleavage: direct access to C2-olefinated free (NH)-indoles and pyrroles

Satyasheel Sharma, Sangil Han, Mirim Kim, Neeraj Kumar Mishra, Jihye Park, Youngmi Shin, Jimin Ha, Jong Hwan Kwak, Young Hoon Jung and In Su Kim^{*}

School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea

* Corresponding author. Tel.: +82-31-290-7788; fax: +82-31-292-8800; e-mail: insukim@skku.edu

List of the Contents

General methods	S2
General procedure for the synthesis of <i>N-p</i> -tolyl-1 <i>H</i> -indole-1-carboxamide and <i>N</i> -	-p-tolyl-
1 <i>H</i> -indole-1-carboxamide (1a, 1f–1r and 5a)	S3
Typical procedure for the synthesis of alkenylated product (3a, 3f–3p, 4b–4l and 6a-	-c)

----- S3

Selected optimization for the reaction conditions S4
Characterization data for starting materials (1a, 1f–1r and 5a) S5–S12
Characterization data for products (3a, 3f–3p, 4b–4l and 6a–c) S13–S22
Procedure for tricyclic indolic compound (3aa) and characterization S23
¹ H NMR and ¹³ C NMR copies of all products S24–S66
NOE data for compound 4j S60

General methods

Commercially available reagents were used without additional purification, unless otherwise stated. Sealed tubes $(13 \times 100 \text{ mm}^2)$ were purchased from Fischer Scientific and dried in oven for overnight and cooled at room temperature prior to use. Thin layer chromatography was carried out using plates coated with Kieselgel $60F_{254}$ (Merck). For flash column chromatography, E. Merck Kieselgel 60 (230–400 mesh) was used. Nuclear magnetic resonance spectra (¹H and ¹³C NMR) were recorded on a Bruker Unity 700 MHz spectrometer for CDCl₃ and DMSO-d₆ solution and chemical shifts are reported as parts per million (ppm). Resonance patterns are reported with the notations s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). In addition, the notation br is used to indicate a broad signal. Coupling constants (*J*) are reported in hertz (Hz). IR spectra were recorded on a Varian 2000 Infrared spectrophotometer and are reported as cm⁻¹. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-600 spectrometer.

General procedure for the synthesis of *N-p*-tolyl-1*H*-indole-1-carboxamide and *N-p*-tolyl-1*H*-indole-1-carboxamide (1a, 1f–1r and 5a)

To a stirred suspension of indole or pyrrole (1.0 equiv.) in dry DMF (30 mL) was added NaH (60% dispersion in mineral oil, 2.0 equiv.) at 0 °C under N₂ atmosphere. The reaction mixture was then stirred at room temperature for 3 h and *p*-tolyl isocyanate (1.5 equiv.) was added dropwise. The reaction mixture was then stirred at room temperature for overnight. The reaction mixture was washed with H₂O and extracted with EtOAc (50 mL). The organic layer was then washed with an aqueous solution of 1 N HCl (50 mL). The organic layer was dried over Mg₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography.

Typical procedure for the synthesis of alkenylated product (3a, 3f–3p, 4b–4l, and 6a–c)

To an oven-dried sealed tube charged with *N-p*-tolyl-1*H*-indole-1-carboxamide (**1a**) (37.5 mg, 0.15 mmol, 100 mol%), [RhCp*Cl₂]₂ (2.3 mg, 0.0037 mmol, 2.5 mol%), AgSbF₆ (5.2 mg, 0.015 mmol, 10 mol%), and Cu(OAc)₂·H₂O (60 mg, 0.3 mmol, 200 mol%) was added ethyl acrylate (**2a**) (32 μ L, 0.3 mmol, 200 mol%) and *t*-amyl alcohol (1 mL). The reaction mixture was allowed to stir for 20 h at 100 °C. The reaction mixture was diluted with EtOAc (10 mL) and concentrated in vacuo. The residue was purified by flash column chromatography (*n*-hexanes/EtOAc = 25:1) to afford the alkenylated product **3a** (25.1 mg) in 78% yield.

Additive CO₂Et ·CO₂Et Oxidant (p-Tol)H <u>2</u>a Solvent, 100 °C, 20 h 3a 1a entry catalyst (mol %) oxidant (equiv) additive (mol %) solvent yield (%) of 3a $\overline{\text{Cu(OAc)}_2 \text{H}_2 \text{O}(2)}$ 1 [RhCp*Cl₂]₂ (2.5) DCE $AgSbF_6(10)$ 62 $[RhCp*Cl_2]_2$ (2.5) DCE 2 $Cu(OAc)_2(2)$ $AgSbF_6(10)$ 60 3 $[RhCp*Cl_2]_2$ (2.5) $Ag_2CO_3(2)$ $AgSbF_6(10)$ DCE 15 4 $[RhCp*Cl_2]_2$ (2.5) DCE AgOAc (2) $AgSbF_6(10)$ trace 5 $[RhCp*Cl_2]_2$ (2.5) THF $Cu(OAc)_2 H_2O(2)$ $AgSbF_6(10)$ 55 [RhCp*Cl₂]₂ (2.5) $Cu(OAc)_2 H_2O(2)$ 6 $AgSbF_6(10)$ CH₃CN 37 7 $[RhCp*Cl_2]_2$ (2.5) $Cu(OAc)_2 H_2O(2)$ $AgSbF_6(10)$ dioxane 48 [RhCp*Cl₂]₂ (2.5) 8 $Cu(OAc)_2 H_2O(2)$ $AgSbF_6(10)$ t-BuOH 70 9 [RhCp*Cl₂]₂ (2.5) $Cu(OAc)_2 H_2O(2)$ $AgSbF_6(10)$ t-AmOH 78 10 $[RhCp*Cl_2]_2$ (2.5) $AgSbF_6(10)$ t-AmOH trace 11 [RhCp*Cl₂]₂ (2.5) $Cu(OAc)_2 H_2O(2)$ t-AmOH 65 12 $[RhCp*Cl_2]_2$ (2.5) $Cu(OAc)_2 H_2O(0.2)$ $AgSbF_6(10)$ t-AmOH 10 13 $[RhCp*Cl_2]_2(5)$ $Cu(OAc)_2 H_2O(2)$ $AgSbF_6(20)$ t-AmOH 80

Catalyst

Selected optimization for the reaction conditions

Characterization data for starting materials (1a, 1f–1r and 5a)

N-p-Tolyl-1H-indole-1-carboxamide (1a)

¹H NMR (700 MHz, CDCl₃) δ 8.16 (d, *J* = 8.3 Hz, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.61– 7.59 (m, 1H), 7.47–7.44 (m, 2H), 7.41–7.38 (m, 1H), 7.35 (br s, 1H), 7.32–7.30 (m, 1H), 7.25– 7.22 (m, 2H), 6.73–6.71 (m, 1H), 2.40 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 149.9, 135.3, 134.8, 134.5, 130.5, 129.9, 124.6, 124.3, 122.7, 121.6, 120.8, 114.2, 107.7, 21.0; IR (KBr) υ 3247, 3148, 3050, 2858, 1672, 1596, 1529, 1448, 1330, 1251, 1202, 1086, 1013, 812, 741 cm⁻¹; HRMS (EI) calcd for C₁₆H₁₄N₂O [M]⁺ 250.1106, found 250.1107.

4-Methoxy-*N-p*-tolyl-1H-indole-1-carboxamide (1f)

¹H NMR (700 MHz, CDCl₃) δ 7.64 (d, *J* = 8.4 Hz, 1H), 7.41 (d, *J* = 3.5 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.33 (br s, 1H), 7.22 (d, *J* = 8.3 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.74 (d, *J* = 3.6 Hz, 1H), 6.64 (d, *J* = 7.8 Hz, 1H), 3.92 (s, 3H), 2.30 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 153.5, 149.9, 136.4, 134.7, 134.6, 129.9, 125.6, 122.9, 120.9, 120.7, 107.1, 104.7, 102.9, 55.6, 21.0; IR (KBr) v 3317, 3121, 3036, 2937, 1677, 1588, 1517, 1490, 1432, 1327, 1260, 1221, 1065, 1023, 808, 739 cm⁻¹; HRMS (EI) calcd for C₁₇H₁₆N₂O₂ [M]⁺ 280.1212, found 280.1209. 4-Nitro-*N-p*-tolyl-1H-indole-1-carboxamide (1g)

¹H NMR (700 MHz, CDCl₃) δ 8.59 (d, *J* = 8.2 Hz, 1H), 8.21 (d, *J* = 8.0 Hz, 1H), 7.69 (d, *J* = 3.6 Hz, 1H), 7.46 (d, *J* = 3.5 Hz, 1H), 7.43 (t, *J* = 8.1 Hz, 1H), 7.39 (d, *J* = 8.3 Hz, 2H), 7.25 (br s, 1H), 7.20 (d, *J* = 8.1 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 149.1, 140.8, 137.6, 135.5, 133.9, 130.1, 127.2, 124.5, 124.1, 121.6, 121.0, 119.9, 107.5, 21.1; IR (KBr) υ 3413, 3291, 3126, 3027, 2917, 1715, 1687, 1597, 1530, 1406, 1325, 1194, 1112, 875, 740 cm⁻¹; HRMS (EI) calcd for C₁₆H₁₃N₃O₃ [M]⁺ 295.0957, found 295.0960.

4-Cyano-*N-p*-tolyl-1H-indole-1-carboxamide (1h)

¹H NMR (700 MHz, CDCl₃) δ 8.45 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 3.6 Hz, 1H), 7.58 (d, J = 7.5 Hz, 1H), 7.40–7.38 (m, 3H), 7.22–7.19 (m, 3H), 6.91 (d, J = 3.6 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 149.1, 135.4, 134.0, 131.7, 130.1, 128.2, 127.6, 126.0, 124.6, 121.0, 119.7, 118.0, 106.3, 104.2, 21.1; IR (KBr) υ 3298, 3120, 3020, 2918, 1685, 1596,

1520, 1411, 1320, 1180, 870, 740 cm⁻¹; HRMS (EI) calcd for $C_{17}H_{13}N_3O[M]^+$ 275.1059, found 275.1054.

5-Methoxy-N-p-tolyl-1H-indole-1-carboxamide (1i)

¹H NMR (700 MHz, CDCl₃) δ 7.99 (d, *J* = 9.0 Hz, 1H), 7.50 (d, *J* = 3.5 Hz, 1H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.18–7.17 (m, 3H), 7.06 (d, *J* = 2.4 Hz, 1H), 6.95 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.59 (d, *J* = 3.5 Hz, 1H), 3.85 (s, 3H), 2.33 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 156.0, 149.7, 134.7, 134.6, 131.3, 130.2, 130.0, 124.7, 120.7, 115.0, 113.7, 107.7, 103.8, 55.8, 21.0; IR (KBr) υ 3413, 3291, 3126, 3027, 2917, 1715, 1687, 1597, 1530, 1406, 1325, 1194, 1112, 875, 740 cm⁻¹; HRMS (EI) calcd for C₁₇H₁₆N₂O₂ [M]⁺ 280.1212, found 280.1212.

5-Chloro-*N-p*-tolyl-1H-indole-1-carboxamide (1j)

¹H NMR (700 MHz, CDCl₃) δ 8.08 (d, J = 8.8 Hz, 1H), 7.57 (d, J = 2.0 Hz, 1H), 7.51 (d, J = 3.6 Hz, 1H), 7.37 (d, J = 8.4 Hz, 2H), 7.28 (dd, J = 8.8, 2.0 Hz, 1H), 7.18–7.17 (m, 3H), 6.61 (d, J = 3.5 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 149.5, 135.0, 134.3, 134.0, 131.4, 130.0, 128.5, 125.0, 124.9, 121.0, 120.9, 115.6, 107.3, 21.1; IR (KBr) v 3288, 3181, 3027,

2917, 1669, 1595, 1527, 1447, 1333, 1266, 1249, 1200, 1022, 802 cm⁻¹; HRMS (EI) calcd for $C_{16}H_{13}CIN_2O[M]^+$ 284.0716, found 284.0712.

5-Bromo-N-p-tolyl-1H-indole-1-carboxamide (1k)

¹H NMR (700 MHz, CDCl₃) δ 8.02 (d, *J* = 8.7 Hz, 1H), 7.72 (s, 1H), 7.48 (d, *J* = 3.5 Hz, 1H), 7.40 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.36 (d, *J* = 8.3 Hz, 2H), 7.22 (br s, 1H), 7.16 (d, *J* = 8.2 Hz, 2H), 6.58 (d, *J* = 3.5 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 149.5, 135.1, 134.4, 134.32, 134.30, 132.0, 130.0, 127.5, 124.9, 124.0, 120.9, 116.1, 116.0, 107.2, 21.1; IR (KBr) υ 3295, 3114, 3038, 2920, 1675, 1598, 1517, 1445, 1406, 1328, 1266, 1197, 1023, 804, 740 cm⁻¹; HRMS (EI) calcd for C₁₆H₁₃BrN₂O [M]⁺ 328.0211, found 328.0211.

6-Fluoro-N-p-tolyl-1H-indole-1-carboxamide (11)

¹H NMR (700 MHz, CDCl₃) δ 7.92 (dd, *J* = 10.2, 2.2 Hz, 1H), 7.51 (dd, *J* = 8.6, 5.3 Hz, 1H), 7.45 (d, *J* = 3.6 Hz, 1H), 7.38 (d, *J* = 8.3 Hz, 2H), 7.18–7.16 (m, 3H), 6.99 (dt, *J* = 8.7, 2.2 Hz, 1H), 6.64 (d, *J* = 3.5 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 161.2 (d, *J*_{C-F} = 239.1 Hz), 149.6, 135.8, 135.0, 134.6, 130.0, 126.5, 123.9 (d, *J*_{C-F} = 4.0 Hz), 122.0 (d, *J*_{C-F} = 9.4 Hz), 120.9, 111.3 (d, *J*_{C-F} = 24.2 Hz), 107.9, 102.1 (d, *J*_{C-F} = 28.4 Hz), 21.1; IR (KBr) v 3293,

3120, 3034, 2923, 1671, 1596, 1521, 1477, 1440, 1332, 1257, 1210, 1114, 943, 800 cm⁻¹; HRMS (EI) calcd for $C_{16}H_{13}FN_2O$ [M]⁺ 268.1012, found 268.1016.

6-Chloro-N-p-tolyl-1H-indole-1-carboxamide (1m)

¹H NMR (700 MHz, CDCl₃) δ 8.19 (s, 1H), 7.49–7.44 (m, 2H), 7.37–7.34 (m, 2H), 7.27–7.20 (m, 2H), 7.19–7.14 (m, 2H), 6.62–6.60 (m, 1H), 2.32 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 149.5, 135.9, 135.1, 134.2, 130.7, 129.9, 128.7, 124.3, 123.4, 122.0, 120.9, 115.0, 107.8, 21.1; IR (KBr) υ 3273, 3113, 3032, 2920, 1672, 1597, 1517, 1434, 1328, 1249, 1200, 1122, 805 cm⁻¹; HRMS (EI) calcd for C₁₆H₁₃ClN₂O [M]⁺ 284.0716, found 284.0714.

7-Methyl-*N-p*-tolyl-1H-indole-1-carboxamide (1n)

¹H NMR (700 MHz, CDCl₃) δ 7.46 (d, J = 7.7 Hz, 1H), 7.41–7.38 (m, 3H), 7.23 (br s, 1H), 7.17–7.15 (m, 3H), 7.10 (d, J = 7.2 Hz, 1H), 6.59 (s, 1H), 2.51 (s, 3H), 2.33 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 150.0, 134.8, 134.6, 134.5, 131.4, 130.0, 127.2, 127.0, 123.8, 122.9, 119.9, 119.2, 106.9, 21.0, 20.6; IR (KBr) υ 3273, 3126, 3046, 2921, 1681, 1600, 1520, 1407, 1321, 1206, 1078 cm⁻¹; HRMS (EI) calcd for C₁₇H₁₆N₂O [M]⁺ 264.1263, found 264.1267.

3-Methyl-*N-p*-tolyl-1H-indole-1-carboxamide (10)

¹H NMR (700 MHz, CDCl₃) δ 8.10 (d, J = 8.2 Hz, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.38 (d, J = 6.7 Hz, 2H), 7.33 (t, J = 7.7 Hz, 1H), 7.28–7.24 (m, 2H), 7.21–7.16 (m, 3H), 2.32 (s, 3H), 2.29 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 149.6, 135.5, 134.6, 134.3, 131.1, 129.7, 124.5, 122.2, 120.9, 120.5, 119.3, 117.0, 114.2, 20.8, 9.6; IR (KBr) υ 3215, 3104, 3030, 2918, 1658, 1594, 1520, 1447, 1345, 1252, 1215, 1085, 737 cm⁻¹; HRMS (EI) calcd for C₁₇H₁₆N₂O [M]⁺ 264.1263, found 264.1265.

Methyl 1-(p-tolylcarbamoyl)-1H-indole-3-carboxylate (1p)

¹H NMR (700 MHz, CDCl₃) δ 8.25 (s, 1H), 8.13 (d, *J* = 8.2 Hz, 1H), 8.06 (d, *J* = 8.1 Hz, 1H), 7.69 (s, 1H), 7.43 (d, *J* = 8.3 Hz, 2H), 7.37–7.31 (m, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 3.89 (s, 3H), 2.34 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 165.0, 149.0, 135.7, 135.3, 134.1, 130.6, 130.0, 127.4, 125.4, 124.1, 122.1, 120.8, 114.3, 112.2, 51.8, 21.1; IR (KBr) v 3304, 3132, 3054, 2921, 1681, 1600, 1517, 1449, 1316, 1194, 1112, 735 cm⁻¹; HRMS (EI) calcd for C₁₈H₁₆N₂O₃ [M]⁺ 308.1161, found 308.1161.

2-Methyl-N-p-tolyl-1H-indole-1-carboxamide (1q)

¹H NMR (700 MHz, CDCl₃) δ 7.63 (d, *J* = 8.6 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.42 (m, 3H), 7.21–7.15 (m, 4H), 6.33 (s, 1H), 2.58 (s, 3H), 2.35 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 149.8, 137.4, 135.5, 134.7, 134.6, 130.0, 129.6, 122.9, 122.2, 120.6, 120.0, 111.8, 106.3, 21.0, 15.0; IR (KBr) υ 3247, 3149, 2858, 1672, 1596, 1529, 1448, 1330, 1251, 1087, 1013, 814 cm⁻¹; HRMS (EI) calcd for C₁₇H₁₆N₂O [M]⁺ 264.1263, found 264.1260.

N-p-Tolyl-9H-carbazole-9-carboxamide (1r)

¹H NMR (700 MHz, CDCl₃) δ 8.04 (d, *J* = 8.9 Hz, 4H), 7.49–7.45 (m, 4H), 7.43 (br s, 1H), 7.36–7.34 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 150.3, 138.4, 134.7, 134.6, 130.0, 127.3, 125.4, 122.8, 120.5, 120.3, 113.7, 21.1; IR (KBr) υ 3216, 3104, 3029, 2917, 1658, 1594, 1520, 1448, 1346, 1251, 1214, 1084 cm⁻¹; HRMS (EI) calcd for C₂₀H₁₆N₂O [M]⁺ 300.1263, found 300.1264.

N-p-Tolyl-1H-pyrrole-1-carboxamide (5a)

¹H NMR (700 MHz, CDCl₃) δ 7.35 (d, J = 8.4 Hz, 2H), 7.27–7.24 (m, 2H), 7.21 (br s, 1H), 7.15 (d, J = 8.1 Hz, 2H), 6.31–6.30 (m, 2H), 2.32 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 148.7, 134.9, 134.3, 129.9, 120.8, 118.7, 112.6, 21.0; IR (KBr) υ 3243, 3146, 2860, 1672, 1597, 1449, 1331, 1250, 1086, 1013, 814 cm⁻¹; HRMS (EI) calcd for C₁₂H₁₂N₂O [M]⁺ 200.0950, found 200.0948.

Characterization data for products (3a, 3f–3p, 4b–4l and 6a–c)

(E)-Ethyl 3-(1H-indol-2-yl)acrylate (3a)

¹H NMR (700 MHz, CDCl₃) δ 8.60 (br s, 1H), 7.68 (d, J = 16.0 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.25–7.23 (m, 1H), 7.10 (t, J = 7.8 Hz, 1H), 6.79 (s, 1H), 6.25 (d, J = 16.0 Hz, 1H), 4.28 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 167.0, 137.7, 134.4, 133.3, 128.3, 124.6, 121.5, 120.5, 115.5, 111.1, 108.9, 60.6, 14.3; IR (KBr) υ 3312, 2981, 1682, 1627, 1611, 1580, 1424, 1368, 1278, 1237, 1178, 1124, 1040, 963, 928, 861, 798 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₃NO₂ [M]⁺ 215.0946, found 215.0944.

(E)-Ethyl 3-(4-methoxy-1H-indol-2-yl)acrylate (3f)

¹H NMR (700 MHz, DMSO-d₆) δ 7.60 (d, *J* = 15.9 Hz, 1H), 7.11 (t, *J* = 7.9 Hz, 1H), 6.96 (d, *J* = 8.2 Hz, 1H), 6.91 (s,1H), 6.50–6.48 (m, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.86 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (175 MHz, DMSO-d₆) δ 166.4, 153.3, 139.3, 134.7, 132.3, 125.2, 118.8, 114.8, 106.1, 104.6, 99.4, 59.8, 54.9, 14.2; IR (KBr) v 3311, 2924, 1683, 1608, 1587, 1511, 1462, 1365, 1315, 1249, 1161, 1133, 1095, 1033, 972, 769 cm⁻¹; HRMS (EI) calcd for C₁₄H₁₅NO₃ [M]⁺ 245.1052, found 245.1049.

(E)-Ethyl 3-(4-nitro-1H-indol-2-yl)acrylate (3g)

¹H NMR (700 MHz, DMSO-d₆) δ 12.40 (br s, 1H), 8.07 (d, J = 7.9 Hz, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.73 (d, J = 16.1 Hz, 1H), 7.48 (s, 1H), 7.40 (t, J = 7.9 Hz, 1H), 6.73 (d, J = 16.1 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.0 Hz, 3H); ¹³C NMR (175 MHz, DMSO-d₆) δ 165.8, 139.7, 139.6, 138.0, 133.6, 122.8, 121.3, 119.3, 119.1, 117.6, 106.7, 60.2, 14.1; IR (KBr) v 3299, 2981, 2927, 1988, 1689, 1638, 1507, 1488, 1343, 1325, 1276, 1237, 1179, 1136, 1036, 991, 795 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₂N₂O₄ [M]⁺ 260.0797, found 260.0789.

(E)-Ethyl 3-(4-cyano-1*H*-indol-2-yl)acrylate (3h)

¹H NMR (700 MHz, CDCl₃) δ 8.93 (br s, 1H), 7.68 (d, *J* = 16.0 Hz, 1H), 7.58 (dt, *J* = 8.3, 0.8 Hz, 1H), 7.46 (dd, *J* = 7.3, 0.8 Hz, 1H), 7.28–7.26 (m, 1H), 6.99 (s, 1H), 6.38 (d, *J* = 16.0 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 166.4, 137.1, 135.6, 133.3, 129.5, 126.1, 123.8, 118.5, 118.1, 115.8, 106.2, 103.8, 60.9, 14.2; IR (KBr) v 3307, 2980, 2217, 1690, 1633, 1520, 1432, 1367, 1345, 1276, 1176, 1141, 1032, 968, 859, 780 cm⁻¹; HRMS (EI) calcd for C₁₄H₁₂N₂O₂ [M]⁺ 240.0899, found 240.0894.

(E)-Ethyl 3-(5-methoxy-1H-indol-2-yl)acrylate (3i)

¹H NMR (700 MHz, CDCl₃) δ 8.58 (br s, 1H), 7.64 (d, *J* = 15.9 Hz, 1H), 7.22 (d, *J* = 8.8 Hz, 1H), 7.01 (s, 1H), 6.91 (d, *J* = 8.8 Hz, 1H), 6.72 (s, 1H), 6.23 (d, *J* = 15.9 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.82 (s, 3H), 1.32 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 167.1, 155.5, 134.4, 133.9, 133.0, 128.7, 115.5, 115.1, 112.0, 108.3, 102.1, 60.6, 55.6, 14.3; IR (KBr) υ 3332, 2934, 1686, 1619, 1520, 1454, 1368, 1264, 1162, 1122, 1030, 970, 839, 972 cm⁻¹; HRMS (EI) calcd for C₁₄H₁₅NO₃ [M]⁺ 245.1052, found 245.1053.

(E)-Ethyl 3-(5-chloro-1*H*-indol-2-yl)acrylate (3j)

¹H NMR (700 MHz, DMSO-d₆) δ 11.76 (br s, 1H), 7.63–7.61 (m, 2H), 7.38 (d, *J* = 8.6 Hz, 1H), 7.18 (dd, *J* = 8.6, 2.1 Hz, 1H), 6.88 (s, 1H), 6.57 (d, *J* = 15.9 Hz, 1H), 4.19 (q, *J* = 7.0 Hz, 2H), 1.26 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (175 MHz, DMSO-d₆) δ 166.1, 136.3, 135.2, 134.3, 128.8, 124.2, 123.8, 120.1, 116.7, 113.0, 107.5, 60.0, 14.2; IR (KBr) υ 3329, 2923, 2852, 1690, 1628, 1613, 1519, 1467, 1310, 1272, 1187, 1126, 1030, 967, 864, 795 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₂ClNO₂ [M]⁺ 249.0557, found 249.0542.

(E)-Ethyl 3-(5-bromo-1H-indol-2-yl)acrylate (3k)

¹H NMR (700 MHz, DMSO-d₆) δ 11.77 (s, 1H), 7.76 (d, J = 1.8 Hz, 1H), 7.62 (d, J = 15.9 Hz, 1H), 7.34 (d, J = 8.6 Hz, 1H), 7.21 (dd, J = 8.6, 1.9 Hz, 1H), 6.88 (s, 1H), 6.57 (d, J = 15.9 Hz, 1H), 4.19 (q, J = 7.0 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (175 MHz, DMSO-d₆) δ 166.1, 136.5, 135.0, 134.2, 129.6, 126.2, 123.1, 116.7, 113.4, 112.1, 107.4, 60.0, 14.1; IR (KBr) υ 3312, 2924, 1686, 1624, 1569, 1416, 1310, 1281, 1182, 1125, 1030, 967, 854, 794 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₂BrNO₂ [M]⁺ 293.0051, found 293.0052.

(E)-Ethyl 3-(6-fluoro-1*H*-indol-2-yl)acrylate (31)

¹H NMR (700 MHz, CDCl₃) δ 8.84 (br s, 1H), 7.64 (d, *J* = 15.9 Hz, 1H), 7.51–7.49 (m, 1H), 7.02 (d, *J* = 9.3 Hz, 1H), 6.86 (t, *J* = 9.5 Hz, 1H), 6.75 (s, 1H), 6.25 (d, *J* = 15.9 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 167.1, 161.2

(d, $J_{C-F} = 240.8$ Hz), 138.0 (d, $J_{C-F} = 12.3$ Hz), 134.1, 133.9 (d, $J_{C-F} = 3.0$ Hz), 124.9, 122.5 (d, $J_{C-F} = 10.4$ Hz), 115.2, 109.7 (d, $J_{C-F} = 24.6$ Hz), 108.9, 97.4 (d, $J_{C-F} = 26.8$ Hz), 60.7, 14.3; IR (KBr) v 3313, 2923, 1685, 1613, 1503, 1446, 1366, 1264, 1235, 1137, 1104, 1037, 970, 812, 730 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₂FNO₂ [M]⁺ 233.0852, found 233.0845.

(E)-Ethyl 3-(6-chloro-1*H*-indol-2-yl)acrylate (3m)

¹H NMR (700 MHz, CDCl₃) δ 8.76 (br s, 1H), 7.64 (d, *J* = 16.0 Hz, 1H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.33 (s, 1H), 7.06 (dd, *J* = 8.4, 1.7 Hz, 1H), 6.75 (s, 1H), 6.27 (d, *J* = 16.0 Hz, 1H), 4.28 (q, *J* = 7.0 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 167.2, 138.3, 134.3, 134.2, 130.5, 127.1, 122.5, 121.6, 116.3, 111.2, 108.8, 61.0, 14.5; IR (KBr) v 3319, 2923, 1683, 1607, 1573, 1444, 1367, 1281, 1131, 1041, 966, 922, 816 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₂ClNO₂ [M]⁺ 249.0557, found 249.0554.

(E)-Ethyl 3-(7-methyl-1*H*-indol-2-yl)acrylate (3n)

¹H NMR (700 MHz, CDCl₃) δ 8.39 (br s, 1H), 7.68 (d, *J* = 16.0 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.05–7.01 (m, 2H), 6.80 (s, 1H), 6.30 (d, *J* = 16.0 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 2.50 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 167.2, 137.6, 134.7, 133.3, 128.2, 125.2, 121.0, 120.6, 119.4, 115.5, 109.7, 60.8, 16.8, 14.5; IR (KBr) v 3339, 2924, 2854, 1692, 1632, 1516, 1461, 1369, 1264, 1178, 1041, 972, 806, 735 cm⁻¹; HRMS (EI) calcd for C₁₄H₁₅NO₂ [M]⁺ 229.1103, found 229.1099.

(E)-Ethyl 3-(3-methyl-1*H*-indol-2-yl)acrylate (30)

¹H NMR (700 MHz, CDCl₃) δ 8.15 (br s, 1H), 7.80 (d, J = 15.9 Hz, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.29 (d, J = 8.1 Hz, 1H), 7.26–7.24 (m, 1H), 7.09 (t, J = 7.9 Hz, 1H), 6.11 (d, J = 15.9 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 2.41 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 167.2, 137.3, 132.1, 129.9, 129.0, 125.0, 119.9, 119.8, 118.7, 113.7, 110.9, 60.5, 14.3, 8.9; IR (KBr) v 3323, 2978, 2924, 1682, 1611, 1531, 1456, 1367, 1294, 1236, 1184, 1040, 960, 851, 739 cm⁻¹; HRMS (EI) calcd for C₁₄H₁₅NO₂ [M]⁺ 229.1103, found 229.1102.

(E)-Methyl 2-(3-ethoxy-3-oxoprop-1-enyl)-1H-indole-3-carboxylate (3p)

¹H NMR (700 MHz, CDCl₃) δ 9.26 (br s, 1H), 8.56 (d, J = 16.5 Hz, 1H), 8.16 (d, J = 8.1 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.30 (t, J = 7.0 Hz, 1H), 7.24–7.22 (m, 1H), 6.47 (d, J = 16.3 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 3.96 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 166.7, 165.6, 137.5, 136.5, 133.4, 127.4, 125.5, 122.8, 122.6, 120.1, 111.4, 109.8, 61.3, 51.6, 14.5; IR (KBr) v 3295, 2924, 1684, 1516, 1498, 1447, 1368, 1279, 1182, 1080, 1042, 983, 866, 788 cm⁻¹; HRMS (EI) calcd for C₁₅H₁₅NO₄ [M]⁺ 273.1001, found 273.1010.

(E)-Methyl 3-(5-chloro-1*H*-indol-2-yl)acrylate (4b)

¹H NMR (700 MHz, DMSO-d₆) δ 11.78 (br s, 1H), 7.65–7.62 (m, 2H), 7.39 (d, J = 8.6 Hz, 1H), 7.17 (dd, J = 8.6, 1.9 Hz, 1H), 6.89 (s, 1H), 6.57 (d, J = 16.0 Hz, 1H), 3.73 (s, 3H); ¹³C NMR (175 MHz, DMSO-d₆) δ 166.4, 136.1, 134.9, 134.3, 128.6, 124.0, 123.6, 119.9, 116.0,

112.8, 107.5, 51.3; IR (KBr) υ 3340, 1693, 1630, 1514, 1436, 1369, 1293, 1273, 1129, 1034, 973, 913, 859, 785 cm⁻¹; HRMS (EI) calcd for C₁₂H₁₀ClNO₂ [M]⁺ 235.0400, found 235.0398.

(E)-Butyl 3-(5-chloro-1*H*-indol-2-yl)acrylate (4c)

¹H NMR (700 MHz, DMSO-d₆) δ 11.77 (br s, 1H), 7.63–7.61 (m, 2H), 7.38 (d, *J* = 8.6 Hz, 1H), 7.18 (dd, *J* = 8.6, 2.1 Hz, 1H), 6.89 (s, 1H), 6.57 (d, *J* = 16.0 Hz, 1H), 4.15 (t, *J* = 6.5 Hz, 2H), 1.64–1.61 (m, 2H), 1.39–1.36 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (175 MHz, DMSO-d₆) δ 165.9,136.1, 135.0, 134.1, 128.6, 124.0, 123.5, 119.0, 116.4, 112.8, 107.3, 63.5, 30.0, 18.4, 13.3; IR (KBr) υ 3348, 2939, 2030, 1693, 1631, 1449, 1418, 1309, 1275, 1177, 1129, 1025, 915, 795 cm⁻¹; HRMS (EI) calcd for C₁₅H₁₆ClNO₂ [M]⁺ 277.0870, found 277.0876.

(E)-tert-Butyl 3-(5-chloro-1H-indol-2-yl)acrylate (4d)

¹H NMR (700 MHz, CDCl₃) δ 8.68 (br s, 1H), 7.55–7.52 (m, 2H), 7.26 (d, J = 8.6 Hz, 1H), 7.17 (dd, J = 8.6, 1.9 Hz, 1H), 6.69 (s, 1H), 6.23 (d, J = 16.0 Hz, 1H), 1.54 (s, 9H); ¹³C NMR (175 MHz, CDCl₃) δ 166.1, 135.9, 134.8, 133.0, 129.4, 126.0, 124.6, 120.6, 118.5, 112.0, 107.4, 80.9, 28.2; IR (KBr) υ 3318, 2978, 2930, 1681, 1629, 1515, 1475, 1366, 1286, 1156, 1127, 1063, 965, 918, 854, 794 cm⁻¹; HRMS (EI) calcd for C₁₅H₁₆ClNO₂ [M]⁺ 277.0870, found 277.0868.

(E)-Benzyl 3-(5-chloro-1H-indol-2-yl)acrylate (4e)

¹H NMR (700 MHz, CDCl₃) δ 8.47 (br s, 1H), 7.67 (d, *J* = 16.0 Hz, 1H), 7.55 (d, *J* = 1.8 Hz, 1H), 7.40–7.32 (m, 5H), 7.25–7.24 (m, 1H), 7.18 (dd, *J* = 8.6, 2.0 Hz, 1H), 6.72 (s, 1H), 6.29 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 166.7, 136.2, 136.0, 134.7, 134.6, 129.5, 128.8, 128.5, 128.4, 126.5, 125.2, 121.0, 116.3, 112.4, 108.4, 66.8; IR (KBr) v 3325, 2923, 1684, 1630, 1516, 1450, 1373, 1270, 1164, 1125, 1059, 1006, 966, 915, 852, 793 cm⁻¹; HRMS (EI) calcd for C₁₈H₁₄CINO₂ [M]⁺ 311.0713, found 311.0712.

(E)-Phenyl 3-(5-chloro-1H-indol-2-yl)acrylate (4f)

¹H NMR (700 MHz, CDCl₃) δ 8.53 (br s, 1H), 7.83 (d, J = 15.9 Hz, 1H), 7.58 (s, 1H), 7.41–7.39 (m, 2H), 7.26–7.24 (m, 1H), 7.19–7.15 (m, 3H), 6.81 (s, 1H), 6.43 (d, J = 15.9 Hz, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 165.4, 150.9, 136.4, 135.9, 134.5, 129.7, 129.5, 126.6, 126.1, 125.4, 121.8, 121.1, 115.6, 112.5, 108.9; IR (KBr) v 3350, 2922, 2853, 2029, 1702, 1631, 1591, 1520, 1491, 1415, 1364, 1305, 1275, 1193, 1139, 1064, 970, 857, 796 cm⁻¹; HRMS (EI) calcd for C₁₇H₁₂CINO₂ [M]⁺ 297.0557, found 297.0560.

(E)-3-(5-Chloro-1H-indol-2-yl)-N,N-dimethylacrylamide (4g)

¹H NMR (700 MHz, DMSO-d₆) δ 11.67 (br s, 1H), 7.59 (d, J = 1.9 Hz, 1H), 7.44 (d, J = 15.3 Hz, 1H), 7.38 (d, J = 8.6 Hz, 1H), 7.20 (d, J = 15.4 Hz, 1H), 7.15 (dd, J = 8.6, 2.1 Hz, 1H), 6.78 (s, 1H), 3.16 (s, 3H), 2.94 (s, 3H); ¹³C NMR (175 MHz, DMSO-d₆) δ 165.0, 136.2, 135.7, 130.8, 128.8, 123.7, 122.8, 119.5, 117.1, 112.5, 105.6, 36.5, 35.0; IR (KBr) υ 3254, 2924, 1624, 1590, 1422, 1398, 1311, 1249, 1151, 1125, 1059, 983, 913, 858, 786 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₃CINO₂ [M]⁺ 248.0716, found 248.0711.

(E)-5-Chloro-2-(2-(phenylsulfonyl)vinyl)-1H-indole (4h)

¹H NMR (700 MHz, CDCl₃) δ 8.92 (br s, 1H), 7.91 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 15.3 Hz, 1H), 7.60–7.58 (m, 1H), 7.54–7.50 (m, 3H), 7.20 (d, J = 8.6 Hz, 1H), 7.16 (dd, J = 8.6, 1.9 Hz, 1H), 6.82 (d, J = 15.4 Hz, 1H), 6.77 (s, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 140.5, 136.4, 133.5, 132.3, 132.2, 129.4, 128.9, 127.4, 126.4, 125.5, 124.8, 120.9, 112.5, 109.6; IR (KBr) υ 3341, 2921, 2852, 1607, 1511, 1445, 1313, 1283, 1141, 1082, 962, 915, 832, 787 cm⁻¹; HRMS (EI) calcd for C₁₆H₁₂CINO₂S [M]⁺ 317.0277, found 317.0273.

(E)-Diethyl 2-(5-chloro-1H-indol-2-yl)vinylphosphonate (4i)

¹H NMR (700 MHz, CDCl₃) δ 10.86 (br s, 1H), 7.54 (d, J = 1.9 Hz, 1H), 7.41 (dd, J = 22.4, 17.4 Hz, 1H), 7.30 (d, J = 8.6 Hz, 1H), 6.64 (s, 1H), 6.38 (t, J = 17.8 Hz, 1H), 4.15–4.10 (m, 4H), 1.33 (t, J = 7.0 Hz, 6H); ¹³C NMR (175 MHz, CDCl₃) δ 138.6 (d, $J_{C-P} = 5.7$ Hz), 136.3, 135.5 (d, $J_{C-P} = 25.7$ Hz), 129.0, 125.5, 124.2, 120.4, 112.5, 111.0 (d, $J_{C-P} = 193.6$ Hz), 106.0, 62.3, 62.2, 16.4, 16.3; IR (KBr) υ 3180, 2978, 2030, 1610, 1574, 1443, 1420, 1316, 1214, 1132, 1045, 1021, 960, 855, 792 cm⁻¹; HRMS (EI) calcd for C₁₄H₁₇ClNO₃P [M]⁺ 313.0635, found 313.0642.

(E)-Methyl 3-(5-chloro-1H-indol-2-yl)but-2-enoate (4j)

¹H NMR (700 MHz, CDCl₃) δ 8.33 (br s, 1H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.24 (d, *J* = 7.7 Hz, 1H), 7.17 (dd, *J* = 8.6, 1.9 Hz, 1H), 6.78 (s, 1H), 6.15 (s, 1H), 3.75 (s, 3H), 2.59 (s, 3H); ¹³C

NMR (175 MHz, CDCl₃) δ 167.0, 145.2, 139.1, 135.4, 129.4, 126.1, 124.5, 120.6, 113.0, 112.1, 104.8, 51.3, 16.0; IR (KBr) υ 3337, 2927, 2856, 2030, 1714, 1672, 1604, 1517, 1437, 1315, 1283, 1199, 1154, 1060, 912, 858, 793 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₂ClNO₂ [M]⁺ 249.0557, found 249.0554.

2-Bicyclo[2.2.1]heptan-2-yl-5-chloro-1*H*-indole (4k)

¹H NMR (700 MHz, CDCl₃) δ 7.85 (br s, 1H), 7.45 (d, J = 2.0 Hz, 1H), 7.16 (d, J = 8.4 Hz, 1H), 7.04 (dd, J = 8.4, 1.9 Hz, 1H), 6.13 (s, 1H), 2.78 (t, J = 6.7 Hz, 1H), 2.42–2.36 (m, 2H), 1.75–1.73 (m, 2H), 1.63–1.56 (m, 2H), 1.48–1.45 (m, 1H), 1.34–1.32 (m, 1H), 1.28–1.25 (m, 1H), 1.20–1.19 (m, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 146.4, 134.2, 129.6, 125.0, 121.1, 119.2, 111.1, 97.9, 42.6, 41.2, 37.3, 36.3, 36.2, 29.7, 28.8; IR (KBr) υ 3415, 2950, 2869, 1708, 1575, 1539, 1459, 1408, 1305, 1204, 1150, 1058, 913, 863, 781 cm⁻¹; HRMS (EI) calcd for C₁₅H₁₆ClN [M]⁺ 245.0971, found 245.0977.

(E)-5-Chloro-2-(perfluorostyryl)-1H-indole (4l)

¹H NMR (700 MHz, CDCl₃) δ 8.28 (br s, 1H), 7.54 (d, *J* = 1.9 Hz, 1H), 7.40 (d, *J* = 16.8 Hz, 1H), 7.26 (d, *J* = 8.6 Hz, 1H), 7.16 (dd, *J* = 8.6, 2.0 Hz, 1H), 6.76 (d, *J* = 16.8 Hz, 1H), 6.64 (s, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 144.7 (d, *J*_{C-F} = 247.1 Hz), 137.8 (d, *J*_{C-F} = 248.2 Hz), 136.5, 136.3 (d, *J*_{C-F} = 240.4 Hz), 135.6, 129.6, 129.4, 126.6, 126.1, 124.0, 120.4, 111.8, 111.5, 105.3; IR (KBr) υ 3460, 2924, 2029, 1962, 1493, 1415, 1308, 1226, 1151, 1006, 955, 868, 792 cm⁻¹; HRMS (EI) calcd for C₁₆H₇ClF₅N [M]⁺ 343.0187, found 343.0175.

(2E,2'E)-Diethyl 3,3'-(1H-pyrrole-2,5-diyl)diacrylate (6a)

¹H NMR (700 MHz, CDCl₃) δ 9.88 (br s, 1H), 7.52 (d, *J* = 15.9 Hz, 2H), 6.53 (d, *J* = 2.3 Hz, 2H), 6.35 (d, *J* = 15.9 Hz, 2H), 4.27 (q, *J* = 7.1 Hz, 4H), 1.31 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (175 MHz, CDCl₃) δ 167.8, 133.6, 132.4, 116.1, 114.4, 60.9, 14.5; IR (KBr) υ 3329, 2923, 2853, 1708, 1682, 1622, 1546, 1366, 1271, 1168, 1047, 1035, 965, 862, 788 cm⁻¹; HRMS (EI) calcd for C₁₄H₁₇NO₄ [M]⁺ 263.1158, found 263.1164.

(2E,2'E)-Dibutyl 3,3'-(1H-pyrrole-2,5-diyl)diacrylate (6b)

¹H NMR (700 MHz, CDCl₃) δ 10.28 (br s, 1H), 7.52 (d, J = 15.9 Hz, 2H), 6.53 (d, J = 2.3 Hz, 2H), 6.40 (d, J = 15.9 Hz, 2H), 4.21 (t, J = 6.5 Hz, 4H), 1.67–1.63 (m, 4H), 1.43–1.34 (m, 4H), 0.93 (t, J = 7.3 Hz, 6H); ¹³C NMR (175 MHz, CDCl₃) δ 168.0, 133.7, 132.5, 116.1, 114.3, 64.9, 31.0, 19.4, 13.9; IR (KBr) υ 3333, 2954, 1704, 1678, 1619, 1545, 1463, 1385, 1276, 1162, 1062, 1001, 965, 864, 785 cm⁻¹; HRMS (EI) calcd for C₁₈H₂₅NO₄ [M]⁺ 319.1784, found 319.1780.

(2E,2'E)-Benzyl 3,3'-(1H-pyrrole-2,5-diyl)diacrylate (6c)

¹H NMR (700 MHz, CDCl₃) δ 9.88 (br s, 1H), 7.54 (d, *J* = 15.9 Hz, 2H), 7.40–7.25 (m, 10H), 6.53 (d, *J* = 2.1 Hz, 2H), 6.40 (d, *J* = 15.9 Hz, 2H), 5.23–5.19 (m, 4H); ¹³C NMR (175 MHz, CDCl₃) δ 167.5, 136.1, 134.0, 132.5, 128.7, 128.5, 128.4, 116.4, 114.1, 66.7; IR (KBr) υ 3335, 2927, 1960, 1686, 1620, 1544, 1455, 1414, 1377, 1260, 1154, 1008, 971, 854, 784 cm⁻¹; HRMS (EI) calcd for C₂₄H₂₁NO₄ [M]⁺ 387.1471, found 387.1473.

Ethyl 2-(3-oxo-2-p-tolyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-yl)acetate (3aa)

To a stirred suspension of **3a** (120 mg, 0.56 mmol) in dry DMF (2 mL) was added NaH (60% dispersion in mineral oil, 2.0 equiv.) at 0 °C under N₂ atmosphere. The reaction mixture was then stirred at room temperature for 3 h and *p*-tolyl isocyanate (1.5 equiv.) was added dropwise. The reaction mixture was then stirred at room temperature for overnight. The reaction mixture was washed with H₂O and extracted with EtOAc (10 mL). The organic layer was then washed with an aqueous solution of 1 N HCl (10 mL). The organic layer was dried over Mg₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography.

¹H NMR (700 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.30 (t, *J* = 8.1 Hz, 1H), 7.25–7.23 (m, 3H), 6.43 (s, 1H), 5.59–5.57 (m, 1H), 4.14–4.11 (m, 2H), 3.00 (dd, *J* = 16.4, 4.1 Hz, 1H), 2.58 (dd, *J* = 15.1, 9.3 Hz, 1H), 2.35 (s, 3H), 1.97 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 169.9, 150.1, 137.2, 136.1, 133.4, 133.1, 130.7, 130.2, 123.6, 123.5, 123.0, 121.3, 112.9, 98.8, 61.2, 53.9, 38.0, 21.1, 14.2; IR (KBr) v 3332, 2924, 1962, 1680, 1610, 1540, 1457, 1414, 1377, 1240, 1144, 1008, 971, 854, 784 cm⁻¹; HRMS (EI) calcd for C₂₁H₂₀N₂O₃ [M]⁺ 348.1474, found 348.1472.

S60

