Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Outstanding effects on antithrombin activity of modified TBA diastereomers containing an optically pure acyclic nucleotide analogue

Maria Scuotto,[‡] Marco Persico,[‡] Maria-Rosaria Bucci, Valentina Vellecco, Nicola Borbone, Elena Morelli, Giorgia Oliviero, Ettore Novellino, Gennaro Piccialli, Giuseppe Cirino, Michela Varra,* Caterina Fattorusso* and Luciano Mayol

Dipartimento di Farmacia, via D. Montesano 49, 80131 Napoli, Italy

Table of Contents

Figure S1. CD melting curves of TBA and modified ONs.	S2
Figure S2. Example of spectroscopic measurement of scattering produced by	
fibrinogen clotting.	S3
Figure S3. Binding modes I and II of TBA-S ₇ and TBA- R_7 .	S4
Table S1. Calculated occurrence rates of conformers presenting TGT and	
TT nucleobases "stacked" on the guanine planes.	S 5
Table S2. Calculated occurrence rates of syn, anti, and s/a conformers of TGT	
and TT glycosidic bonds.	S6
Figure S4. ¹ H NMR S-c	S7
Figure S5. ¹³ C-NMR S-c	S8
Figure S6. ¹ H NMR R-c	S 9
Figure S7. ¹³ C-NMR R-c	S10
Figure S8. ¹ H NMR 5a	S11
Figure S9. ¹ H NMR 5b	S12
<i>Figure S10</i> : ¹³ <i>C NMR 5a</i>	S13
<i>Figure S11:</i> ¹³ <i>C NMR 5b</i>	S14
<i>Figure S12</i> : ³¹ <i>P NMR 5a</i>	S15
Figure S13 : ³¹ <i>P</i> NMR 5 <i>b</i>	S16
Figure S14: HPLC chromatogram 5a	S17
Figure S15: HPLC chromatogram 5b	S18
Figure S16: HRMS 5a	S19
Figure S17: HRMS 5b	S20

Figure S1. CD melting curves from 10 to 90 °C of TBA and modified ONs in K^+ phosphate buffer (A) and PBS (B). The temperature scan rate was 1.0 °C /min.

Figure S2. One example of spectroscopic measurement of the scattering produced by the fibrinogen clotting. The curves were obtained measuring, as a function of the time, the UV scattering caused by fibrin polymerization. 1.0 mL of fibrinogen (2 mg/1 mL) in PBS solution was incubated for 1 min with 20 nM of each ON and clot formation was triggered by addition of 1.0 NIH of human thrombin. The basal curves was registered starting the polymerization reaction in absence of any inhibitor. Wavelength was fixed at 380 nm.

Figure S3. (a; binding mode I) and (b; binding mode II): TBA-S₇ (carbons = pink) superimposed on the bioactive conformation of TBA in complex with thrombin (carbons = green; PDB ID: 1HAP). (c; binding mode I) and (d; binding mode II): TBA-R₇ (carbons = orange) superimposed on the bioactive conformation of TBA (carbons = green; PDB ID: 1HAP). Heteroatoms are coloured as follows: O = red; N = blue; P = magenta. Thrombin ABE I is shown as green ribbon.

	TBA ^a	$TBA-S_3$	TBA-R ₃	TBA-S ₇	TBA-R ₇	$TBA-S_{12}$	$TBA-R_{12}$
T3 ^b	62.5	38.0	32.5	22.5	47.0	46.5	43.0
T4	46.0	43.5	68.0	55.0	48.0	52.5	41.0
$T7^c$	14.0	20.0	6.50	18.0	23.5	20.5	12.5
G8	78.5	67.5	74.5	46.0	62.0	59.0	61.0
T9	26.0	33.0	40.5	63.5	38.0	36.5	42.5
$T12^d$	33.5	37.5	29.5	25.0	18.5	18.5	28.5
T13	38.0	55.5	57.0	79.5	69.5	65.5	59.5

Table S1. Calculated occurrence rates (%) of conformers presenting TGT and TT nucleobases

 "stacked" on the guanine planes.

^{*a*} Data from reference 17. ^{*b*} T3 residue in TBA-S₃ and in TBA-R₃ is replaced by the acyclic nucleoside **c** (**S-c** and **R-c**, respectively). ^{*c*} T7 residue in TBA-S₇ and in TBA-R₇ is replaced by the acyclic nucleoside **c** (**S-c** and **R-c**, respectively). ^{*d*} T12 residue in TBA-S₁₂ and TBA-R₁₂ is replaced by the acyclic nucleoside **c** (**S-c** and **R-c**, respectively).

Table S2. Calculated occurrence rates (%) of *syn*, *anti*, and *s*/a conformers of TGT and TT glycosidic bonds.

		TBA^{a}			BA-S	e,		ſBA-R	ε,	L	'BA-S ₇		H	BA-R ₇	-		BA-S ₁	7	I	3A-R ₁₂	
	uks	anti	s/a	uńs	anti	s/a	uks	anti	s/a	uńs	anti	s/a	uńs	anti	s/a	uƙs	anti	s/a	uks	anti	s/a
$T3^{b}$	28.5	69.5	2.00	ı	1	ı		1		37.5	59.0	3.50	40.5	57.0	2.50	47.0	50.0	3.00	32.0	65.0	3.00
T4	38.5	56.0	5.50	45.0	52.0	3.00	35.5	59.5	5.00	35.5	61.5	3.00	37.0	59.0	4.00	40.5	54.0	5.50	38.5	60.5	1.00
$T7^{c}$	39.0	59.5	1.50	36.0	59.5	4.50	47.0	51.0	2.00	ı	ı	ı			ı	36.0	61.5	2.50	38.5	61.0	0.50
G8	39.5	38.0	22.5	29.5	42.0	28.5	34.5	43.5	22.0	30.5	50.5	19.0	31.0	45.0	24.0	39.5	35.5	25.0	41.0	37.5	21.5
T9	41.5	50.0	8.50	43.0	50.5	6.50	36.5	55.0	8.50	34.5	58.0	7.50	37.0	53.5	9.50	33.5	60.0	6.50	38.5	53.0	8.50
T12 ^d	32.0	66.0	2.00	40.5	56.5	3.00	47.0	51.5	1.50	28.5	71.0	0.50	35.5	64.0	0.50	ı		I			ı
T13	37.0	59.0	4.00	37.0	57.0	6.00	45.5	49.0	5.50	45.0	52.0	3.00	50.0	45.0	5.00	53.5	41.5	5.00	54.5	43.0	2.50
^a Data fr the acyc	om refer lic nucle	ence 17. oside c (^b T3 ref (S-c and	sidue in R-c , res	TBA-S ₃ spectivel	and in T y). ^d T12	TBA-R ₃ i 2 residue	is replace in TBA-	d by the S ₁₂ c and	acyclic r TBA-R	nucleosid 12 is repl	e c (S-c aced by	and R-c , the acyc	respecti lic nucle	vely). ^c ' oside c ([7 residu S-c and	ie in TB∕ R-c , resj	A-S ₇ and i	n TBA-R ').	7 is repla	ced by

Figure S4 $^1\mathrm{H}$ NMR S-c (Py-D5, 400 MHz)

S10

Figure S8: ¹H NMR **5a** (DMSO-D6, 500Mz)

Figure S9: ¹H NMR **5b** (DMSO-D6, 500Mz)

N

Figure S10: $^{13}\mathrm{C}$ NMR 5a (DMSO-D6,100MHz)

S15

0

Figure S14 HPLC chromatogram of the mixture of conversion of 4a in 5a. Hipersil silica column particle size 5 um; eluent: (50:50; V/V) n-Hexane-Ethyl Acetate.

Figure S15: HPLC chromatogram of the mixture of conversion of 4b in 5b. Hipersil silica column particle size 5 um; eluent:(50:50; V/V) n-Hexane-Ethyl Acetate.

Figure S16: High resolution ESI-MS mass spectrum of **5a** was performed on a Thermo LTQ Orbitrap XL mass spectrometer (positive mode). The spectra was recorded by infusion into the ESI source using MeOH as the solvent.

Figure S17: High resolution ESI-MS mass spectrum of **5b** was performed on a Thermo LTQ Orbitrap XL mass spectrometer (positive mode). The spectra was recorded by infusion into the ESI source using MeOH as the solvent.