Monitoring and Inhibition of Plk1: Amphiphilic porphyrin conjugated Plk1 specific peptides for its imaging and anti-tumor function

Hongguang Li,^{*a*} Chi-Fai Chan,^{*a*} Wai-Lun Chan,^{*a*} Sam Lear,^{*b*} Kwok-Keung Shiu,^{*a*} Steven L. Cobb,^{*b*} Nai-Ki Mak,^{*c*} Terrence Chi-Kong Lau,^{*d*} Rongfeng Lan,^{*e**} Wai-Kwok Wong,^{*a**} and Ka-Leung Wong ^{*a**}

^{*a*} Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR; ^{*b*} Department of Chemistry, Durham University, Durham, DH1 3LE, UK; ^{*c*} Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR; ^{*d*} Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR; ^{*e*} Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen, P. R. China.

Supporting Information

Figure S1. The synthetic scheme for Por-P1 and Por-P2.

Figure S2. HPLC trace of **P1**- condition 10% A (ACN+0.1%TFA) + 90% B (H₂O+0.1%TFA).

Figure S3. HPLC trace of **P2**- condition 10% A (ACN+0.1%TFA) + 90% B (H₂O+0.1%TFA).

Figure S4. ESI-MS spectrum of P1.

Figure S5. ESI-MS spectrum of P2.

FigureS7. ¹³C-NMR spectrum of Por-NH₂.

FigureS9. ¹³C-NMR spectrum of Por-COOH.

Figure S10. The binding fitting via molecular modeling for the comparisons of interactions between (a) P1, (b) P2, (c) Por-P1, (d) Por-P2 and Plk1 structure.

FigureS11. Purified Plk1 (PBD domain) in protein gel stained with coomassie blue.

Figure S12. The UV absorption spectra of Por-COOH, Por-**P1** and Por-**P2** (10⁻⁵M) in HEPES buffer (10 mM HEPES, pH=8.0, 150 mM NaCl).

Figure S13. The emission spectra of Por-COOH, Por-P1 and Por-P2 in HEPES buffer. ($\lambda_{ex} = 430 \text{ nm} \text{ and } 10^{-6}\text{M}$)

FigureS14. The emission titration of Por-P1 (1 μ M) upon addition of Plk1 (2 nM - 200 nM) in HEPES buffer. ($\lambda_{ex} = 427$ nm)

Figure S15. The emission change of Por-P1 (1 μ M) upon addition of Zn²⁺, Cu²⁺ and HSA in HEPES. ($\lambda_{ex} = 427 \text{ nm}$)

Figure S16. The emission change of Por-**P2** (1 μ M) upon addition of Zn²⁺, Cu²⁺ and HSA in HEPES buffer. ($\lambda_{ex} = 427 \text{ nm}$)

Figure S17. Representative Half-Offset histograms of HeLa cells analyzed by Flow cytometry after treated with Por-**Pn**. Figures were processed by using FlowJo 7.6.1. Por-**P1** or Por-**P2** cause the HeLa cells arrested in G2/M phase in a concentration-dependent manner, with an obvious G2/M peak in the concentration of 20 μ M.

Figure S18. Raw data of MRC-5 cells analyzed using Flow cytometry and presented by Half-Offset histograms from FlowJo 7.6.1. Parallel performed as in **Figure S17**.

Figure S19. Por-**P1** and Por-**P2** treatments had induced Plk1 inhibition and succeeding G2/M arrest of HeLa cells. Experimentally, HeLa cells were microscopically imaged by Zeiss Axio Observer A1 (10 ×).Upon 10 or 20 μ M of Por-Pn treatments, parts of cells showed mitotic arrested, and cell growth was inhibited.

Figure S20. Human normal lung fibroblasts MRC-5 cells were treated with Por-**P1** and Por-**P2** and then microscopically imaged. No obvious effects were detected under Por-**Pn** treatments on the MRC-5 cells.