Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

> Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

Balanced π - π interaction directing the self-assembly of indolocarbazoles-based low molecular mass organic gelators

Peng Gong, Pengchong Xue, Chong Qian, Zhenqi Zhang, Ran Lu*

State Key Laboratory of Supramolecular Structure

and Materials, College of Chemistry, Jilin University,

Changchun 130012, P. R. China

Tel: +86-431-88499179, E-

mail:luran@mail.jlu.edu.cn

Supporting Information

Contents:

1. Photophysical data of 4-9	S2
2. The optimized molecular structures of 8 and 9	S 3
3. Cyclic voltammetry curve of compound 7-9	S4
4. The optimized configurations for compounds 4-9	S5
5. NMR spectra and the mass spectrometry data of the products	S 7

Compounds	Solutions ^a			
	$\lambda^{abs}_{max}(nm)$	$\lambda^{em}_{max}(nm)$	$\Phi_{F}{}^{b}$	
4	274, 298, 345, 362	367, 386,406	0.44	
5	254, 278, 296, 352, 370, 388	412, 435, 460(shoulder)	0.39	
6	289, 321, 371, 389	400, 418(shoulder)	0.66	
7	279, 302, 352, 369	384, 403, 423	0.69	
8	260, 279, 301, 355, 377, 395	420,445, 474(shoulder)	0.38	
9	296, 319, 351, 392	403,425(shoulder)	0.45	
a: in THF (5 μ M); b: Using quinine sulfate in 0.1 H ₂ SO ₄ (Φ F = 0.546) as the standard.				

Table S1. Photophysical data of 4-9

Figure S1 The optimized molecular structures of 8 (a) and 9 (b) calculated by semi-empirical quantum

mechanical method (AM1 force field).

Compound 7

Figure S2 Cyclic voltammetry diagrams of compounds 7-9 in anhydrous CH₂Cl₂ with 0.1 M Bu₄NBF₄ as

electrolyte at a scan rate of 50 $mV{\cdot}s^{\text{-1}}$

Figure S3 The optimized configurations for compounds **4**, **5**, **6** calculated by the B3LYP/6-31G method on Gaussian 09w software.

Figure S4 The optimized configurations for compounds **7**, **8**, **9** calculated by the B3LYP/6-31G method on Gaussian 09w software.

Figure S8 MALDI/TOF MS spectrum of compound 2.

Figure S10 MALDI/TOF MS spectrum of compound 3.

Figure S11 ¹H NMR (400 MHz, DMSO-d6) spectrum of compound 4.

Figure S12 ¹³C NMR (100 MHz, DMSO-d6) spectrum of compound 4.

Figure S13 MALDI/TOF MS spectrum of compound 4.

Figure S14 ¹H NMR (400 MHz, DMSO-d6) spectrum of compound 5.

Figure S17 ¹H NMR (400 MHz, DMSO-d6) spectrum of compound 6.

Figure S18 ¹³C NMR (100 MHz, DMSO-d6) spectrum of compound 6.

Figure S19 MALDI/TOF MS spectrum of compound 6.

Figure S20 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 7.

Figure S24 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 8.

Figure S25 MALDI/TOF MS spectrum of compound 8.

Figure S26 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 9.

