Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Pyridine-Phosphinimine Ligands-Accelerated Cu(I)-Catalyzed Azide-Alkyne Cycloaddition for Preparation of 1-(Pyridin-2-yl)-1,2,3-Triazole Derivatives

Supporting Information

Ranfeng Sun, Huangdong Wang, Jianfeng Hu, Jiudong Zhao and Hao Zhang*

College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R.

China

* Corresponding author. haozhang@imu.edu.cn; zh_hjf@hotmail.com.

Table of Contents

- S2 S33 ¹H, ¹³C and ³¹P NMR spectra for all compounds.
- S34 S39 Crystal data for compound 3a.

¹H, ¹³C and ³¹P NMR spectra for all compounds.

Tetrazolo[1,5-*a*]pyridine (2a)

8-Chlorotetrazolo[1,5-*a*]pyridine (2b).

Tetrazolo[1,5-a]pyridine-8-carboxylic acid (2c).

8-Nitrotetrazolo[1,5-*a*]pyridine (2d).

Ferrocenyl acetylene (1a).

-82.6 -73.5 -71.7 -71.7 -68.7 -68.7

 $(2\text{-}Pyridyl)\text{-}CH_2\text{-}N\text{=}PPh_3 (L_1).$

 $\label{eq:2.1} \textbf{3-Chloro-N-(triphenylphosphoranylidene)} propan-1-amine (L_2).$

1,1,1-Trimethyl-*N*-(triphenylphosphoranylidene)silanamine (L₃).

N-(triphenylphosphoranylidene)aniline (L₅).

N-(triphenylphosphoranylidene)pyridin-2-amine (L₆).

N-(tri-tert-butylphosphoranylidene)pyridin-2-amine (L₈).

-70.72

(2-Pyridyl)-CH₂-N=P^tBu₃ (L₉).

$\label{eq:2-((Diphenylphosphino)methyl)pyridine (L_{10}).$

TBTA

Compound 3a.

Compound 3b.

8.82 8.54 8.54 8.53 8.53 8.57 7.7.95 7.7.95 7.7.95 7.7.95 7.7.95 7.7.35 7.7.35 7.7.35 7.7.35 7.7.35 7.7.35

Compound 3c.

Compound 3e.

 $\begin{array}{c} \swarrow 149.0\\ \swarrow 147.0\\ -139.2\\ -139.2\\ -127.4\\ -122.4\\ -116.9\\ -113.8\\ -113.8\end{array}$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $\delta^{(\rm ppm)}$

Compound 3f.

Compound 3g.

$-\frac{8.79}{-8.20}$ $-\frac{8.79}{-8.20}$ $-\frac{7.38}{-7.33}$ $-\frac{7.38}{-7.33}$ $-\frac{7.33}{-7.33}$ $-\frac{7.33}{-7.30}$ $-\frac{7.33}{-7.30}$

Compound 3h.

Compound 3i.

Compound 3j.

 $\int_{-113.6}^{149.1} \int_{-145.8}^{148.5} -145.8$ -139.2-139.2-119.3-113.8

Compound 3k.

Compound 3l.

Compound 3m.

Compound 3n.

$\begin{array}{c} 8.47 \\ 8.447 \\ 8.446 \\ 8.446 \\ 8.444 \\ 8.446 \\ 7.33 \\ 7.33 \\ 7.31 \\ 7.3$

Compound 3o.

Compound 3p.

146.0 139.7 139.7 139.7 139.7 139.7 134.7 124.7 119.1

Crystal data for compound 3a.

FIGURE S1. Molecular structure of compound 3a. ORTEP (50% ellipsoids) diagrams of [C₁₇H₁₄FeN₄] Selected distances (Å): [C(9)-C(11) 1.459(3), C(11)-N(1) 1.369(3), N(1)-N(2) 1.309(3), N(3)-N(2) 1.357(2), N(3)-C(12) 1.357(2), N(3)-C(13) 1.427(3)].

Identification code	compound 3a
Chemical formula	$C_{17}H_{15}FeN_4$
Formula weight	331.18
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P 1 21/n 1
Unit cell dimensions	$a = 5.8931(13) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 20.199(4) \text{ Å} \qquad \beta = 92.215(4)^{\circ}$
	$c = 11.950(3) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	1421.4(5) Å3
Z	4
Density (calculated)	1.548 g/cm^3
Absorption coefficient	1.062 mm^{-1}
F(000)	684
Theta range for data collection	1.98 to 28.28 °
Index ranges	-7<=h<=7, -26<=k<=26, -15<=l<=15
Reflections collected	19469
Independent reflections	3511 [R(int) = 0.0321]
Absorption correction	multi-scan
Structure solution technique	direct methods
Structure solution program	SHELXS-97 (Sheldrick, 2008)
Refinement method	Full-matrix least-squares on F2

Table 1. Sample and crystal data for compound 3a

SHELXL-97 (Sheldrick, 2008)
$\Sigma w(Fo_2 - Fc_2)_2$
3511 / 1 / 199
1.034
0.002
2959 data; I>2σ(I)
R1 = 0.0344, wR2 = 0.0848
R1 = 0.0436, $wR2 = 0.0897$
$w=1/[\sigma 2(Fo2)+(0.0438P)2+0.6794P]$
where P=(Fo2+2Fc2)/3
0.381 and -0.272 eÅ-3
0.054 eÅ-3

Fe(1)-C(1)	2.043(3)	Fe(1)-C(2)	2.031(3)
Fe(1)-C(3)	2.032(3)	Fe(1)-C(4)	2.035(3)
Fe(1)-C(5)	2.033(3)	Fe(1)-C(6)	2.042(2)
Fe(1)-C(7)	2.049(2)	Fe(1)-C(8)	2.053(2)
Fe(1)-C(9)	2.052(2)	Fe(1)-C(10)	2.046(2)
C(11)-N(1)	1.369(3)	N(1)-N(2)	1.309(3)
N(3)-N(2)	1.357(2)	N(3)-C(12)	1.357(3)
N(3)-C(13)	1.427(3)	C(13)-N(4)	1.320(3)
N(4)-C(17)	1.345(3)	C(11)-C(9)	1.459(3)
C(2)-Fe(1)-C(1)	40.73(13)	C(3)-Fe(1)-C(1)	67.88(12)
C(4)-Fe(1)-C(1)	66.93(12)	C(5)-Fe(1)-C(1)	39.54(12)
C(6)-Fe(1)-C(1)	121.72(12)	C(1)-Fe(1)-C(7)	108.98(11)
C(1)-Fe(1)-C(8)	126.20(11)	C(1)-Fe(1)-C(9)	162.49(12)
C(1)-Fe(1)-C(10)	155.87(12)	C(2)-Fe(1)-C(3)	40.80(14)
C(2)-Fe(1)-C(4)	67.73(13)	C(2)-Fe(1)-C(5)	67.37(12)
C(2)-Fe(1)-C(6)	158.41(14)	C(2)-Fe(1)-C(7)	123.95(12)
C(2)-Fe(1)-C(8)	110.17(11)	C(2)-Fe(1)-C(9)	125.21(12)
C(2)-Fe(1)-C(10)	160.53(13)	C(3)-Fe(1)-C(4)	39.96(13)
C(3)-Fe(1)-C(5)	66.89(12)	C(3)-Fe(1)-C(6)	158.27(13)
C(3)-Fe(1)-C(7)	160.19(14)	C(3)-Fe(1)-C(8)	124.55(12)
C(3)-Fe(1)-C(9)	108.28(10)	C(3)-Fe(1)-C(10)	122.84(12)
C(5)-Fe(1)-C(4)	39.43(12)	C(4)-Fe(1)-C(6)	122.16(12)
C(4)-Fe(1)-C(7)	158.60(12)	C(4)-Fe(1)-C(8)	158.90(11)
C(4)-Fe(1)-C(9)	121.92(10)	C(4)-Fe(1)-C(10)	106.31(11)
C(5)-Fe(1)-C(6)	107.06(11)	C(5)-Fe(1)-C(7)	124.04(11)
C(5)-Fe(1)-C(8)	160.98(11)	C(5)-Fe(1)-C(9)	156.38(11)

Table 2 Selected bond lengths (Å) and angles (°) for compound 3a

_

C(5)-Fe(1)-C(10)	120.62(11)	C(6)-Fe(1)-C(7)	40.47(9)
C(6)-Fe(1)-C(8)	67.87(9)	C(6)-Fe(1)-C(9)	68.38(9)
C(6)-Fe(1)-C(10)	40.57(9)	C(7)-Fe(1)-C(8)	40.32(9)
C(7)-Fe(1)-C(9)	68.47(9)	C(10)-Fe(1)-C(7)	68.36(9)
C(9)-Fe(1)-C(8)	40.75(8)	C(10)-Fe(1)-C(8)	68.31(9)
C(10)-Fe(1)-C(9)	40.84(8)	C(12)-C(11)-N(1)	108.13(19)

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å2) for

x/a	y/b	z/c	U(eq)	
Fe1	0.60764(4)	0.819163(13)	0.89503(2)	0.02902(10)
N1	0.1668(3)	0.65836(9)	0.92115(15)	0.0380(4)
N2	0.1455(3)	0.60866(9)	0.99021(15)	0.0383(4)
N3	0.3562(3)	0.59507(8)	0.03411(13)	0.0296(3)
C15	0.3880(3)	0.54418(9)	0.11584(15)	0.0309(4)
C1	0.8522(5)	0.82542(13)	0.0197(2)	0.0576(7)
C2	0.8574(5)	0.88096(13)	0.9534(2)	0.0563(6)
C3	0.6513(5)	0.91311(13)	0.9552(2)	0.0631(7)
C4	0.5087(5)	0.87590(17)	0.0247(2)	0.0712(8)
C5	0.6385(6)	0.82123(15)	0.0650(2)	0.0672(9)
C6	0.4627(4)	0.82389(10)	0.73646(17)	0.0376(4)
C7	0.6815(4)	0.79487(11)	0.73453(17)	0.0374(4)
C8	0.6843(3)	0.73734(10)	0.80281(16)	0.0333(4)
C9	0.4643(3)	0.73045(9)	0.84788(15)	0.0294(4)
C10	0.3899(3)	0.67711(9)	0.92021(15)	0.0292(4)
C11	0.2114(4)	0.50201(10)	0.13935(18)	0.0400(5)
C12	0.2546(4)	0.45316(11)	0.2180(2)	0.0471(5)
C13	0.4669(4)	0.44904(13)	0.2694(2)	0.0513(6)
C14	0.6286(4)	0.49374(13)	0.2400(2)	0.0537(6)
N4	0.5939(3)	0.54174(10)	0.16311(16)	0.0454(4)
C16	0.5120(3)	0.63705(9)	0.99253(16)	0.0304(4)
C17	0.3279(3)	0.78421(10)	0.80562(16)	0.0339(4)

compound 3a

 Table 4. Torsion angles () for compound 3a

C10-N1-N2-N3	-0.1(2)	N1-N2-N3-C16	0.3(2)	N1-N2-N3-C15	177.98(16)
N2-N3-C15-N4	-171.17(18)	C16-N3-C15-N4	6.0(3)	N2-N3-C15-C11	9.3(3)
C16-N3-C15-C11	1 -173.53(19)	C4-Fe1-C1-C2	-81.0(2)	C5-Fe1-C1-C2	-119.3(2)
C3-Fe1-C1-C2	-36.70(18)	C7-Fe1-C1-C2	77.33(19)	C8-Fe1-C1-C2	118.68(17)

C6-Fe1-C1-C2	46.5(3)	C9-Fe1-C1-C2	160.39(15)	C17-Fe1-C1-C2	-169.4(2)
C4-Fe1-C1-C5	38.22(18)	C2-Fe1-C1-C5	119.3(2)	C3-Fe1-C1-C5	82.57(19)
C7-Fe1-C1-C5	-163.41(16)	C8-Fe1-C1-C5	-122.05(17)	C6-Fe1-C1-C5	165.8(2)
C9-Fe1-C1-C5	-80.34(19)	C17-Fe1-C1-C5	-50.1(3)	C5-C1-C2-C3	0.2(3)
Fe1-C1-C2-C3	59.88(18)	C5-C1-C2-Fe1	-59.65(18)	C4-Fe1-C2-C1	82.0(2)
C5-Fe1-C2-C1	37.56(18)	C3-Fe1-C2-C1	120.3(3)	C7-Fe1-C2-C1 -1	120.21(17)
C8-Fe1-C2-C1	-78.06(19)	C6-Fe1-C2-C1	-161.38(16)	C9-Fe1-C2-C1	-45.3(3)
C17-Fe1-C2-C1	168.3(3)	C4-Fe1-C2-C3	-38.27(19)	C5-Fe1-C2-C3	-82.7(2)
C1-Fe1-C2-C3	-120.3(3)	C7-Fe1-C2-C3	119.52(17)	C8-Fe1-C2-C3	161.68(16)
C6-Fe1-C2-C3	78.4(2)	C9-Fe1-C2-C3	-165.6(2)	C17-Fe1-C2-C3	48.0(4)
C1-C2-C3-C4	-0.6(3)	Fe1-C2-C3-C4	59.16(17)	C1-C2-C3-Fe1	-59.76(18)
C4-Fe1-C3-C2	118.9(2)	C5-Fe1-C3-C2	80.12(19)	C1-Fe1-C3-C2	36.63(17)
C7-Fe1-C3-C2	-77.96(19)	C8-Fe1-C3-C2	-41.5(3)	C6-Fe1-C3-C2 -	120.84(17)
C9-Fe1-C3-C2	160.6(3)	C17-Fe1-C3-C2	-162.53(15)	C2-Fe1-C3-C4	-118.9(2)
C5-Fe1-C3-C4	-38.74(18)	C1-Fe1-C3-C4	-82.23(19)	C7-Fe1-C3-C4	163.18(16)
C8-Fe1-C3-C4	-160.3(2)	C6-Fe1-C3-C4	120.30(18)	C9-Fe1-C3-C4	41.7(4)
C17-Fe1-C3-C4	78.6(2)	C2-C3-C4-C5	0.7(3)	Fe1-C3-C4-C5	60.32(17)
C2-C3-C4-Fe1	-59.59(18)	C2-Fe1-C4-C5	-80.33(18)	C1-Fe1-C4-C5	-37.51(17)
C3-Fe1-C4-C5	-117.5(2)	C7-Fe1-C4-C5	-159.5(2)	C8-Fe1-C4-C5	38.2(4)
C6-Fe1-C4-C5	162.90(16)	C9-Fe1-C4-C5	76.70(19)	C17-Fe1-C4-C5	119.94(17)
C2-Fe1-C4-C3	37.13(16)	C5-Fe1-C4-C3	117.5(2)	C1-Fe1-C4-C3	79.96(18)
C7-Fe1-C4-C3	-42.0(3)	C8-Fe1-C4-C3	155.7(3)	C6-Fe1-C4-C3	-79.64(19)
C9-Fe1-C4-C3	-165.83(14)	C17-Fe1-C4-C3	-122.60(16)	C2-C1-C5-C4	0.2(3)
Fe1-C1-C5-C4	-59.58(18)	C2-C1-C5-Fe1	59.81(18)	C3-C4-C5-C1	-0.6(3)
Fe1-C4-C5-C1	59.95(18)	C3-C4-C5-Fe1	-60.54(17)	C4-Fe1-C5-C1	-118.8(2)
C2-Fe1-C5-C1	-37.06(16)	C3-Fe1-C5-C1	-80.03(18)	C7-Fe1-C5-C1	40.8(3)
C8-Fe1-C5-C1	75.50(18)	C6-Fe1-C5-C1	-164.7(2)	C9-Fe1-C5-C1	118.17(16)
C17-Fe1-C5-C1	160.39(14)	C2-Fe1-C5-C4	81.70(19)	C1-Fe1-C5-C4	118.8(2)
C3-Fe1-C5-C4	38.73(17)	C7-Fe1-C5-C4	159.6(2)	C8-Fe1-C5-C4 -1	165.75(16)
C6-Fe1-C5-C4	-45.9(4)	C9-Fe1-C5-C4	-123.07(17)	C17-Fe1-C5-C4	-80.86(19)
C4-Fe1-C6-C17	-81.22(17)	C2-Fe1-C6-C17	-165.26(14)	C5-Fe1-C6-C17	-46.8(3)
C1-Fe1-C6-C17	161.0(2)	C3-Fe1-C6-C17	-124.02(14)	C7-Fe1-C6-C17	119.02(17)
C8-Fe1-C6-C17	81.58(12)	C9-Fe1-C6-C17	37.51(11)	C4-Fe1-C6-C7	159.76(15)
C2-Fe1-C6-C7	75.72(16)	C5-Fe1-C6-C7	-165.8(3)	C1-Fe1-C6-C7	41.9(3)
C3-Fe1-C6-C7	116.97(15)	C8-Fe1-C6-C7	-37.44(12)	C9-Fe1-C6-C7	-81.51(13)
C17-Fe1-C6-C7	-119.02(17)	C17-C6-C7-C8	-0.3(2)	Fe1-C6-C7-C8	59.35(14)
C17-C6-C7-Fe1	-59.67(14)	C4-Fe1-C7-C6	-51.3(3)	C2-Fe1-C7-C6 -	122.83(14)
C5-Fe1-C7-C6	167.0(2)	C1-Fe1-C7-C6	-163.26(14)	C3-Fe1-C7-C6	-82.21(16)
C8-Fe1-C7-C6	119.73(17)	C9-Fe1-C7-C6	81.77(13)	C17-Fe1-C7-C6	37.67(12)
C4-Fe1-C7-C8	-171.0(2)	C2-Fe1-C7-C8	117.44(14)	C5-Fe1-C7-C8	47.3(3)
C1-Fe1-C7-C8	77.01(15)	C3-Fe1-C7-C8	158.06(14)	C6-Fe1-C7-C8	-119.73(17)
C9-Fe1-C7-C8	-37.95(11)	C17-Fe1-C7-C8	-82.06(13)	C6-C7-C8-C9	0.0(2)
Fe1-C7-C8-C9	59.47(13)	C6-C7-C8-Fe1	-59.47(15)	C4-Fe1-C8-C7	170.1(3)
C2-Fe1-C8-C7	-80.35(15)	C5-Fe1-C8-C7	-161.14(15)	C1-Fe1-C8-C7 -1	20.72(15)

C3-Fe1-C8-C7 -51.0(3)	C6-Fe1-C8-C7 37.34(12)	C9-Fe1-C8-C7 119.03(17)
C17-Fe1-C8-C7 80.91(13)	C4-Fe1-C8-C9 51.1(3)	C2-Fe1-C8-C9 160.62(13)
C5-Fe1-C8-C9 79.83(16)	C1-Fe1-C8-C9 120.25(14)	C3-Fe1-C8-C9 -170.1(2)
C7-Fe1-C8-C9 -119.03(17)	C6-Fe1-C8-C9 -81.69(12)	C17-Fe1-C8-C9 -38.12(11)
C7-C8-C9-C17 0.3(2)	Fe1-C8-C9-C17 59.68(13)	C7-C8-C9-C10 178.25(18)
Fe1-C8-C9-C10 -122.40(19)	C7-C8-C9-Fe1 -59.36(14)	C4-Fe1-C9-C8 -161.45(15)
C2-Fe1-C9-C8 -45.4(3)	C5-Fe1-C9-C8 -119.42(15)	C1-Fe1-C9-C8 -77.55(16)
C3-Fe1-C9-C8 166.4(3)	C7-Fe1-C9-C8 37.74(11)	C6-Fe1-C9-C8 81.43(12)
C17-Fe1-C9-C8 118.56(16)	C4-Fe1-C9-C17 79.99(17)	C2-Fe1-C9-C17 -164.0(2)
C5-Fe1-C9-C17 122.02(15)	C1-Fe1-C9-C17 163.89(14)	C3-Fe1-C9-C17 47.9(4)
C7-Fe1-C9-C17 -80.82(12)	C8-Fe1-C9-C17 -118.56(16)	C6-Fe1-C9-C17 -37.13(12)
C4-Fe1-C9-C10 -40.8(2)	C2-Fe1-C9-C10 75.2(3)	C5-Fe1-C9-C10 1.2(2)
C1-Fe1-C9-C10 43.1(2)	C3-Fe1-C9-C10 -72.9(4)	C7-Fe1-C9-C10 158.37(19)
C8-Fe1-C9-C10 120.6(2)	C6-Fe1-C9-C10 -157.93(19)	C17-Fe1-C9-C10 -120.8(2)
N2-N1-C10-C16 -0.2(2)	N2-N1-C10-C9 178.25(17)	C8-C9-C10-C16 26.1(3)
C17-C9-C10-C16 -156.4(2)	Fe1-C9-C10-C16 -65.0(3)	C8-C9-C10-N1 -151.96(19)
C17-C9-C10-N1 25.6(3)	Fe1-C9-C10-N1 117.03(18)	N4-C15-C11-C12 -0.5(3)
N3-C15-C11-C12 178.95(19)	C15-C11-C12-C13 0.7(3)	C11-C12-C13-C14 -0.3(4)
C12-C13-C14-N4 -0.3(4)	C11-C15-N4-C14 0.0(3)	N3-C15-N4-C14 -179.5(2)
C13-C14-N4-C15 0.5(4)	N2-N3-C16-C10 -0.4(2)	C15-N3-C16-C10 -177.80(17)
N1-C10-C16-N3 0.3(2)	C9-C10-C16-N3 -177.87(18)	C7-C6-C17-C9 0.5(2)
Fe1-C6-C17-C9 -58.83(13)	C7-C6-C17-Fe1 59.35(14)	C8-C9-C17-C6 -0.5(2)
C10-C9-C17-C6 -178.45(18)	Fe1-C9-C17-C6 58.95(14)	C8-C9-C17-Fe1 -59.47(13)
C10-C9-C17-Fe1 122.60(19)	C4-Fe1-C17-C6 119.15(16)	C2-Fe1-C17-C6 40.3(3)
C5-Fe1-C17-C6 162.52(15)	C1-Fe1-C17-C6 -160.7(3)	C3-Fe1-C17-C6 76.18(17)
C7-Fe1-C17-C6 -37.79(12)	C8-Fe1-C17-C6 -81.70(13)	C9-Fe1-C17-C6 -119.87(17)
C4-Fe1-C17-C9 -120.98(16)	C2-Fe1-C17-C9 160.2(3)	C5-Fe1-C17-C9 -77.61(17)
C1-Fe1-C17-C9 -40.8(3)	C3-Fe1-C17-C9 -163.95(14)	C7-Fe1-C17-C9 82.08(12)
C8-Fe1-C17-C9 38.17(11)	C6-Fe1-C17-C9 119.87(17)	

Table 5. Anisotropic atomic displacement parameters (Å2) for compound 3a

	U11	U22	U33	U23	U13	U12	
Fe1	0.03052(15)	0.02916(15)	0.02717(15)	0.00129(10)	-0.00173(10)	-0.00032(10)	
N1	0.0296(8)	0.0360(9)	0.0480(10)	0.0076(8)	-0.0040(7)	-0.0020(7)	
N2	0.0295(8)	0.0381(9)	0.0470(10)	0.0078(8)	-0.0045(7)	-0.0030(7)	
N3	0.0283(7)	0.0293(8)	0.0309(8)	-0.0006(6)	-0.0010(6)	-0.0013(6)	
C15	0.0353(9)	0.0295(9)	0.0280(9)	-0.0022(7)	0.0025(7)	0.0015(7)	
C1	0.0599(16)	0.0560(15)	0.0545(15)	-0.0102(12)	-0.0274(13)	0.0026(12)	
C2	0.0542(14)	0.0577(16)	0.0566(15)	-0.0107(12)	-0.0011(12)	-0.0207(12)	
C3	0.092(2)	0.0344(12)	0.0607(16)	-0.0118(10)	-0.0228(12)	0.0056(12)	
C4	0.0460(14)	0.105(2)	0.0632(17)	-0.0496(15)	0.0056(11)	-0.0008(14)	
C5	0.104(2)	0.0678(18)	0.0297(12)	0.0002(11)	-0.0044(13)	-0.0361(17)	

C6	0.0457(11)	0.0350(10)	0.0314(10)	0.0056(8)	-0.0073(8)	0.0038(8)
C7	0.0416(11)	0.0410(11)	0.0298(10)	0.0046(8)	0.0057(8)	-0.0009(9)
C8	0.0356(10)	0.0325(10)	0.0321(10)	-0.0008(8)	0.0046(8)	0.0041(8)
C9	0.0296(9)	0.0299(9)	0.0283(9)	-0.0020(7)	-0.0024(7)	0.0002(7)
C10	0.0281(8)	0.0284(9)	0.0310(9)	-0.0028(7)	0.0005(7)	0.0000(7)
C11	0.0416(11)	0.0362(11)	0.0417(11)	0.0033(9)	-0.0029(9)	-0.0065(8)
C12	0.0571(14)	0.0372(11)	0.0471(13)	0.0067(10)	0.0051(10)	-0.0047(10)
C13	0.0632(15)	0.0488(14)	0.0422(12)	0.0141(10)	0.0052(11)	0.0122(11)
C14	0.0443(13)	0.0649(16)	0.0513(14)	0.0170(12)	-0.0043(10)	0.0073(11)
N4	0.0359(9)	0.0544(11)	0.0454(10)	0.0118(9)	-0.0038(8)	-0.0022(8)
C16	0.0264(8)	0.0332(9)	0.0314(9)	0.0021(7)	0.0002(7)	-0.0025(7)
C17	0.0298(9)	0.0373(10)	0.0339(10)	-0.0012(8)	-0.0072(7)	0.0030(8)

Table 6. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å2)for compound **3a**

	x/a	y/b	z/c	U(eq)
H1	0.9710	0.7957	1.0321	0.069
H2	0.9813	0.8948	0.9135	0.068
Н3	0.6126	0.9521	0.9177	0.076
H4	0.3591	0.8855	1.0407	0.085
H5	0.5897	0.7884	1.1131	0.081
H6	0.4160	0.8622	0.6990	0.045
H7	0.8030	0.8109	0.6951	0.045
H8	0.8073	0.7092	0.8159	0.04
H11	0.0692	0.5064	1.1036	0.048
H12	0.1414	0.4233	1.2360	0.056
H13	0.4998	0.4166	1.3229	0.062
H14	0.7716	0.4908	1.2755	0.064
H16	0.6673	0.6383	1.0095	0.036
H17	0.1692	0.7926	0.8227	0.041