Thiophene-benzoquinones: synthesis, crystal structures and preliminary coordination chemistry of derived anilate ligands

Matteo Atzori,^{a,b} Flavia Pop,^b Thomas Cauchy,^b Maria Laura Mercuri^a and Narcis Avarvari^{b,*}

- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari,
 S.S. 554 Bivio per Sestu I09042 Monserrato (Cagliari), Italy
- ^b Laboratoire MOLTECH-Anjou UMR 6200, UFR Sciences, CNRS, Université d'Angers, Bât. K, 2 Bd. Lavoisier, 49045 Angers, France. E-mail: narcis.avarvari@univ-angers.fr

SUPPORTING INFORMATION

X-Ray structures

Compound 2a

Figure S1 Ortep drawing of 2a with thermal ellipsoids at 30% probability level.

	2a
Empirical formula	$C_{10}H_{10}Br_2 O_4$
Formula weight	354.00
Crystal size, mm	0.2 x 0.05 x 0.02
Crystal system	Monoclinic
Space group	P21/a
a, Å	8.9370(11)
b, Å	5.0321(2)
<i>c</i> , Å	13.3138(12)
α, deg.	90
β, deg.	96.958(8)
γ, deg.	90
$V, Å^3$	594.34(9)
Ζ	2
Т, К	293(2)
ρ (calc), Mg/m ³	1.978
μ , mm ⁻¹	6.815
θ range, deg.	4.33 to 26.98 deg
GooF	1.091
<i>R</i> 1	0.0357
wR2	0.0568

Table S1 Summary of X-ray crystallographic data for 2a.

_

 $\frac{wK2}{R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, \ wR2} = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]]^{\frac{1}{2}}, \ w = 1 / [\sigma^2 (F_o^2) + (aP)^2 + bP], \ \text{where} \ P = [\max(F_o^2, 0) + 2F_c^2] / 3.$

Compound 4a

Figure S2 Molecular structure for the compound **4a** in space filling model; the steric hindrance between the 3,4-ethylenedioxy group and the benzoquinone moiety is highlighted.

Figure S3 a) Molecular structure for the compound **4b** in space filling model; b) Stacking interactions between the 3,4-etylenedioxy fragment and the benzoquinone ring for **4b**: O7…C3 3.19 Å; C18–H…C1 2.86 Å.

Bond	3 a	3b	4 a	4 b
C=O	1 222(4)	1.218(4) 1.223(4)	1 222(2)	1.226(5)
	1.223(4)	1.227(4) 1.219(4)	1.222(2)	1.223(4)
C=C	1 250(4)	1.352(5) 1.368(5)	1 250(2)	1.345(5)
	1.559(4)	1.346(5) 1.347(5)	1.559(2)	1.343(5)
С-О	1.224(4)	1.361(4) 1.361(4)	1 242(2)	1.342(4)
	1.554(4)	1.344(4) 1.342(4)	1.342(2)	1.352(4)
		1.482(5) 1.489(5)		1.484(5)
C–C	1.479(4)	1.500(5) 1.471(5)	1.475(2)	1.495(5)
	1.501(4)	1.481(5) 1.505(5)	1.499(2)	1.481(5)
		1.500(5) 1.488(5)		1.489(5)

Table S2 Selected bond distances (Å) of the benzoquinone ring for compounds 3a, 3b, 4a, and 4b.

Theoretical calculations Computational details

Program and version: Gaussian09 A02; GaussSum 2.2.4; MolIV3D Property n°1: geometry and electronic structure of fundamental state Method used: OPT in DFT (functional: PBE0); basis set: 6-311++G(3df,2pd) (1708 primitives gaussians); solvatation: one test PCM solvent = acetonitrile

Property n°3: excited states, UV visible absorption Method used: TD-DFT same details as 1; solvatation: one test Non equilibrium LR-PCM solvent = acetonitrile

Table S3 Frontier orbitals plots for 3a and 3b with an isovalue chosen to represent 35% of the function.

Figure S4 Comparison between simulated absorption spectra of **3b** in solution (non-equilibrium LR-PCM) (orange line) and in gas phase (red line).

Table S4 One-electron density difference between the ES and GS. The isocontour value is set to represent 75% of the electron. The solid turquoise (white grid) zones indicate increase (decrease) of density upon electronic transition.

Compound 3a

Table of major excitations with transitions

Excitation	Wavelength (nm)	Energy (eV)	Oscillator strength	Transitions			
$S_0 \rightarrow S_1$	676	1.83	0.000	99% HOMO → LUMO			
$S_0 \rightarrow S_2$	463	2.68	0.122	90% HOMO-1 \rightarrow LUMO 6% HOMO-5 \rightarrow LUMO			
$S_0 \rightarrow S_3$	431	2.88	0.000	69% HOMO-4 \rightarrow LUMO -26% HOMO-3 \rightarrow LUMO 3% HOMO-6 \rightarrow LUMO			
$S_0 \rightarrow S_4$	408	3.04	0.012	53% HOMO-5 \rightarrow LUMO -40% HOMO-2 \rightarrow LUMO -4% HOMO-1 \rightarrow LUMO			
$S_0 \rightarrow S_5$	400	3.10	0.007	59% HOMO-2 \rightarrow LUMO 37% HOMO-5 \rightarrow LUMO			
$S_0 \rightarrow S_8$	312	3.98	0.612	82% HOMO \rightarrow LUMO+1 -15% HOMO-7 \rightarrow LUMO			
$S_0 \rightarrow S_9$	284	4.37	0.308	76% HOMO-7 \rightarrow LUMO 13% HOMO \rightarrow LUMO+1 3% HOMO-9 \rightarrow LUMO 2% HOMO-1 \rightarrow LUMO			
$S_0 \rightarrow S_{13}$	244	5.08	0.044	84% HOMO-3 \rightarrow LUMO+1 5% HOMO-9 \rightarrow LUMO -5% HOMO-4 \rightarrow LUMO+1			
$S_0 \rightarrow S_{16}$	237	5.24	0.054	55% HOMO-9 → LUMO -21% HOMO-4 → LUMO+1 -8% HOMO-3 → LUMO+1 6% HOMO-11 → LUMO 3% HOMO-12 → LUMO			
$S_0 \rightarrow S_{21}$	224	5.53	0.027	72% HOMO → LUMO+5 -13% HOMO → LUMO+7 4% HOMO → LUMO+4 -3% HOMO-1 → LUMO+3 2% HOMO-1 → LUMO+6			
$S_0 \rightarrow S_{24}$	222	5.57	0.108	66% HOMO \rightarrow LUMO+7 12% HOMO \rightarrow LUMO+5 5% HOMO \rightarrow LUMO+4 -3% HOMO-12 \rightarrow LUMO -3% HOMO-9 \rightarrow LUMO			
$S_0 \rightarrow S_{30}$	212	5.86	0.058	52% HOMO-12 → LUMO -21% HOMO-6 → LUMO+1 -7% HOMO → LUMO+11 4% HOMO → LUMO+9 3% HOMO → LUMO+7			
$S_0 \rightarrow S_{32}$	210	5.91	0.022	53% HOMO \rightarrow LUMO+11 28% HOMO \rightarrow LUMO+9 5% HOMO-12 \rightarrow LUMO 3% HOMO-2 \rightarrow LUMO+2			
$S_0 \rightarrow S_{37}$	203	6.10	0.034	60% HOMO-6 \rightarrow LUMO+1 -13% HOMO \rightarrow LUMO+11 6% HOMO \rightarrow LUMO+9 5% HOMO-12 \rightarrow LUMO			
$S_0 \rightarrow S_{39}$	201	6.15	0.030	48% HOMO → LUMO+14 -24% HOMO-2 → LUMO+2 -8% HOMO-1 → LUMO+6 4% HOMO → LUMO+11 -3% HOMO → LUMO+22 2% HOMO-6 → LUMO+1			
$S_0 \rightarrow S_{41}$	201	6.17	0.038	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$S_0 \rightarrow S_{45}$	197	6.29	0.090	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$S_0 \rightarrow S_{50}$	192	6.46	0.035	23% HOMO-5 \rightarrow LUMO+2 20% HOMO \rightarrow LUMO+16 -18% HOMO \rightarrow LUMO+17 15% HOMO-4 \rightarrow LUMO+7 -4% HOMO-3 \rightarrow LUMO+7 -3% HOMO-8 \rightarrow LUMO+1 -3% HOMO \rightarrow LUMO+14			

Compound 3b

Table of major excitations with transitions

Excitation	Wavelength (nm)	Energy (eV)	Oscillator strength	Transitions			
$S_0 \rightarrow S_1$	652	1.90	0.066	98% HOMO → LUMO			
				44% HOMO-1 \rightarrow LUMO -30% HOMO-5 \rightarrow LUMO -11% HOMO-2 \rightarrow LUMO			
$S_0 \rightarrow S_2$	440	2.82	0.050	8% HOMO-4 \rightarrow LUMO -3% HOMO-3 \rightarrow LUMO			
				35% HOMO-2 \rightarrow LUMO 28% HOMO-4 \rightarrow LUMO 16% HOMO-1 \rightarrow LUMO			
$S_0 \rightarrow S_3$	432	2.87	0.026	13% HOMO-5 \rightarrow LUMO 3% HOMO-3 \rightarrow LUMO			
$S_0 \rightarrow S_4$	429	2.89	0.050	49% HOMO-4 \rightarrow LUMO -34% HOMO-1 \rightarrow LUMO -10% HOMO-5 \rightarrow LUMO			
				50% HOMO-2 \rightarrow LUMO -23% HOMO-5 \rightarrow LUMO -20% HOMO-3 \rightarrow LUMO			
$S_0 \rightarrow S_5$	395	3.14	0.003	-5% HOMO-4 → LUMO			
				79% HOMO-6 \rightarrow LUMO 9% HOMO-7 \rightarrow LUMO 7% HOMO \rightarrow LUMO+1			
$S_0 \rightarrow S_7$	306	4.05	0.041	-2% HOMO-4 → LUMO			
$S_0 \rightarrow S_8$	293	4.23	0.088	48% HOMO-7 \rightarrow LUMO -45% HOMO \rightarrow LUMO+1			
				37% HOMO \rightarrow LUMO+1 27% HOMO-8 \rightarrow LUMO 20% HOMO-7 \rightarrow LUMO			
$S_0 \rightarrow S_9$	288	4.30	0.161	-12% HOMO-6 → LUMO			
$S_0 \rightarrow S_{10}$	274	4.53	0.410	88% HOMO \rightarrow LUMO+2 7% HOMO-1 \rightarrow LUMO+1			
				43% HOMO-8 \rightarrow LUMO 24% HOMO-1 \rightarrow LUMO+1 -13% HOMO-7 \rightarrow LUMO			
$S_0 \rightarrow S_{11}$	263	4.71	0.122	-5% HOMO \rightarrow LUMO+1 3% HOMO-9 \rightarrow LUMO 3% HOMO-6 \rightarrow LUMO			
				66% HOMO-1 \rightarrow LUMO+1 $$ -15% HOMO-8 \rightarrow LUMO $$ -8% HOMO \rightarrow LUMO+2			
$S_0 \rightarrow S_{12}$	261	4.76	0.071	4% HOMO-7 → LUMO			
				72% HOMO-3 \rightarrow LUMO+1 -5% HOMO-1 \rightarrow LUMO+2 -4% HOMO-2 \rightarrow LUMO+1			
$S_0 \rightarrow S_{17}$	234	5.31	0.021	2			
				48% HOMO \rightarrow LUMO+6 -22% HOMO-5 \rightarrow LUMO+1 7% HOMO-3 \rightarrow LUMO+1			
$S_0 \rightarrow S_{23}$	224	5.54	0.043	4% HOMO \rightarrow LUMO+7 3% HOMO \rightarrow LUMO+5			
				74% HOMO \rightarrow LUMO+7 -5% HOMO \rightarrow LUMO+6 3% HOMO \rightarrow LUMO+3			
$S_0 \rightarrow S_{26}$	219	5.66	0.020	-2 % HOMO \rightarrow LUMO+8			
				23% HOMO \rightarrow LUMO+10 15% HOMO-3 \rightarrow LUMO+2 9% HOMO-2 \rightarrow LUMO+2			
				-9% HOMO \rightarrow LUMO+9 7% HOMO \rightarrow LUMO+11 -6% HOMO-4 \rightarrow LUMO+2			
$S_0 \rightarrow S_{34}$	207	6.00	0.053	6% HOMO-1 \rightarrow LUMO+4 5% HOMO-13 \rightarrow LUMO -5% HOMO-6 \rightarrow LUMO+1			
				-3% HOMO-5 → LUMO+2			
				35% HOMO-6 \rightarrow LUMO+1 -14% HOMO \rightarrow LUMO+13 -8% HOMO \rightarrow LUMO+14			
$S_0 \rightarrow S_{42}$	199	6.23	0.041	-5% HOMO-14 \rightarrow LUMO -4 % HOMO-7 \rightarrow LUMO+1 -4 % HOMO-1 \rightarrow LUMO+5			
				4% HOMO \rightarrow LUMO+10 4% HOMO \rightarrow LUMO+11 -2% HOMO-13 \rightarrow LUMO			
				37% HOMO-7 \rightarrow LUMO+1 18% HOMO-1 \rightarrow LUMO+7 6% HOMO-15 \rightarrow LUMO			
$S_0 \rightarrow S_{49}$	193	6.42	0.028	-5% HOMO \rightarrow LUMO+15 -5% HOMO \rightarrow LUMO+16 3% HOMO-8 \rightarrow LUMO+1			
				3% HOMO-6 \rightarrow LUMO+1 -3% HOMO-1 \rightarrow LUMO+6			

Electrochemical studies. Cyclic voltammetry was carried out on a BioLogic potentiostat model SP-150, using a three-electrode cell equipped with a platinum millielectrode with a surface area of 0.126 cm², an Ag/Ag⁺ pseudoreference and a platinum-wire as counterelectrode. The experiments were performed at room temperature (25 °C), in dry and Nitrogen-degassed CH₃CN solution containing 0.1 mol dm⁻³ [(*n*-Bu)₄N]PF₆ as supporting electrolyte, at 100 mV s⁻¹ scan rate. All the voltamograms were corrected for the half-wave potential of the ferrocene-ferrocenium couple as internal standard (0.42 V under these conditions).

Figure S5 Cyclic voltammogram (-0.80 - 1.60 V) for **3a** (CH₃CN, 0.1 mol dm⁻³ [$(n-Bu)_4N$]PF₆, 100 mV s⁻¹). Inset shows the reversible reduction peak.

Table S5 Cyclic Voltammetry data for compounds 3a,b and 4a,b.

Redox Potential (vs SCE)	3a	3b	4a	4b
E _{ox}	+1.46	+1.47	+1.37	+1.32
E ^{1/2} red	-0.47	-0.48	-0.55	-0.54

X-Ray structure of complex 7

Figure S6 Hydrogen bonding intermolecular interactions between crystallization water molecules and pairs of metal complexes. (Å): O3…O1w 3.04, O4…O1w 2.79, O1w…O2w 2.84, O1w…O2w 2.86.

Figure S8 ¹³C-NMR Spectrum of 2a.

Figure S9 ¹H-NMR Spectrum of 2b.

Figure S10 ¹³C-NMR Spectrum of 2b.

Figure S11 ¹H-NMR Spectrum of 3a.

Figure S12 ¹³C-NMR Spectrum of 3a.

Figure S13 ¹H-NMR Spectrum of 3b.

Figure S14 ¹³C-NMR Spectrum of 3b.

Figure S16¹³C-NMR Spectrum of 4a.

Figure S18 ¹³C-NMR Spectrum of 4b.

Figure S19 ¹H-NMR Spectrum of 5a.

Figure S20 ¹H-NMR Spectrum of 5b.

Figure S21 ¹H-NMR Spectrum of 6a.

Figure S22 ¹H-NMR Spectrum of 6b.