9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Wenwen Peng,^a Jun Cao,^a Jingwei Wan,^a Xuebing Ma*^a and Bing Xie,*^b

College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China

1. NMR spectra 1.1 ¹H and ¹³C NMR spectra of **2a-d**

1.2 ¹H and ¹³C NMR spectra of **3a₁-d₁** and **3a₂-d₂**

2. High resolution mass spectroscopy (HRMS)

Peking University Mass Spectrometry Sample Analysis Report

3. Synthesis of N-benzyl ammoniumsalts b₁' and b₂'

The first conversion of cinchonidine (CD) to 9-epimers of *cinchona* alkaloids (*epi*-CD) was achieved by one-pot inversion of Mitsunobu esterification–saponification (Ł. Sidorowicz, J. Skarżewski, Synthesis, 2011, **5**, 708-710).

The anhydrous THF solution (4 mL) containing CD (0.20 g, 0.68 mmol) and 3, 5-bis(trifluoromethyl)benzyl bromide (0.21 g, 0.68 mmol) or 4- trifluoromethyl benzyl bromide (0.16 g, 0.68 mmol) was stirred at 65 °C for 5 h. During this process, white solid gradually separate out. The white precipitate was filtered, washed with THF (3 mL×2) and dried under reduced pressure to afford pure **b1'** and **b2'**, respectively in 79% and 88% yields.

4. The optimization of catalytic conditions

The catalytic reaction conditions such as solvents, temperature, species and concentrations of base and used amounts of catalyst were carefully optimized and shown in Table 1-

	0 0 0 0 50% aq.KOH		$H_{2N}^{B_{1}}$
Entry	Solvent	Yield [%] ^b	%ee ^c
1	CH ₂ Cl ₂	85	-
2	t-BuOCH ₃	99	60.7(<i>R</i>)
3	СН ₃ ОН	-	-
4	acetone	90	5(<i>R</i>)
5	toluene	98	73.9(<i>R</i>)
6	EAc	98	30.6(<i>R</i>)
7	CH ₃ CN	98	5.0(<i>R</i>)
8	DMF	99	-
9	CHCl ₃	-	-
10	DMSO	-	-
11	ether	99	82.5(<i>R</i>)

Table 1 The influence of various solvents on the catalytic performances ^a

 a Reaction conditions: **b**₂, S=0.1 mmol, S/C=10, -20 $^{\circ}$ C, 12 h, Solvent: 2 mL, KOH: 50% aq 0.4mL.

^b Isolated yield.

^c Determined by charil HPLC.

Table 2 The influence of reaction temperature on catalytic performances^a

Entry	Temp.[°C]	Time	Yield [%] ^b	%ee ^c
1	25	5	99	49.0(<i>R</i>)
2	0	5	99	67.0(<i>R</i>)
3	-20	8	99	82.5(<i>R</i>)
4	-40	12	97	90.5(<i>R</i>)
5	-60	24	73	71.3(<i>R</i>)

^a Reaction conditions: **b**₂, S=0.1 mmol, S/C=10, ether: 2 mL, KOH: 50% aq 0.4 mL

^b Isolated yield.

^c Determined by charil HPLC.

Table 3 T	he influence of	f various base	e on catalytic	performances ^a
-----------	-----------------	----------------	----------------	---------------------------

Entry	Base	Yield [%] ^b	% ee ^c
1	LiOH	52	52.1(<i>R</i>)
2	NaOH	63	59.8(<i>R</i>)
3	КОН	97	90.5(<i>R</i>)
4	CsOH	60	65.0(<i>R</i>)

^a Reaction conditions: b₂, S=0.1 mmol, S/C=10, -40°C, 12 h, ether: 2 mL, MOH: 50% aq 0.4 mL (LiOH:11%).
^b Isolated yield.
^c Determined by charil HPLC.

Table 4 The influence of concentration	n of the base on	catalytic performances ^a
--	------------------	-------------------------------------

Entry	Wt (%)	Base	Yield [%] ^b	%ee ^c
1	10	КОН	13	85.3(<i>R</i>)
2	20	КОН	21	83.8(<i>R</i>)
3	30	КОН	58	88.7(<i>R</i>)
4	40	КОН	62	88.2(<i>R</i>)
5	50	КОН	97	90.5(<i>R</i>)

^a Reaction conditions: **b**₂, S=0.1 mmol, S/C=10, -40 °C, 12 h, ether: 2 mL. KOH: 0.4 mL

^b Isolated yield. ^c Determined by charil HPLC.

Table 5 The influence	e of loading amount	on catalytic performances ^a
-----------------------	---------------------	--

Entry	S/C	Cat. (mol%)	Yield [%] ^b	%ee ^c
1	20	5	98	87.9(<i>R</i>)
2	10	10	97	90.5(<i>R</i>)
3	7	15	84	87.9(<i>R</i>)
4	5	20	82	87.9(<i>R</i>)
5	4	25	78	85.7(<i>R</i>)

^a Reaction conditions: **b**₂, S=0.1 mmol, -40 °C, 12 h, ether: 2 mL, KOH: 50% aq. 0.4 mL.

^b Isolated yield. ^c Determined by charil HPLC.

5. The data of catalytic products

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.52 (d, 2 H, ³*J*=7.0 Hz, Ph-H), 7.30–7.00 (m, 11 H, Ph-H), 6.54 (d, 2H, ${}^{3}J$ =6.4 Hz, Ph-H), 4.06 (dd, 1 H, ${}^{3}J$ = 4.4 Hz, 4.4 Hz, CH), 3.22–3.07 (m, 2 H, CH₂), 1.39 (s, 9 H, CH₃). ¹³ C NMR (75 MHz, CDCl₃, TMS): δ 170.8, 170.2 (C=N, C=O), 139.5, 138.3, 137.5, 136.3, 132.4, 130.0, 129.8, 129.3, 128.6, 128.4, 128.2, 128.1, 128.0, 128.0, 127.9, 127.6, 126.6, 126.1, 81.1 (O-C), 67.9 (CH), 39.5 (CH2), 28.0 (CH₃). Rt HPLC (Daicel Chiralpak OD-H, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 10.0 min (*R*-isomer), 11.9min (*S*-isomer).

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.54 (d, 2 H, ³*J* = 7.1 Hz, Ph-H), 7.40 (d, 2 H, ³*J* = 7.9 Hz, Ph-H), 7.37–7.21 (m, 6 H, Ph-H), 7.13 (d, 2 H, ³*J* = 7.9 Hz, Ph-H), 6.58 (d, 2 H, ³*J* = 6.4 Hz, Ph-H), 4.10 (dd, 1 H, ³*J* = 4.4 Hz, 4.4 Hz, CH), 3.27–3.14 (m, 2 H, CH₂), 1.41 (s, 9 H, CH₃). ¹³ C NMR (75 MHz, CDCl₃, TMS): δ 170.7, 170.4 (C=N, C=O), 142.6 (q, ³*J*_{C-F} = 1.3 Hz), 139.2, 137.5, 136.0, 132.4, 130.3, 130.1, 130.0, 130.0, 129.7, 128.6, 128.3, 128.2,

128.1, 128.0, 127.4, 126.0, 125.2 (q, ${}^{2}J_{C-F}$ = 3.8 Hz), 124.9 (q, ${}^{1}J_{C-F}$ = 3.8 Hz, CF₃), 81.4 (O-C), 67.4 (CH), 39.2 (CH₂), 27.9 (CH₃). Rt HPLC (Daicel Chiralpak OD-H, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 9.6 min (*S* -isomer), 11.1min (*R* -isomer).

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.76 (d, 1 H, ${}^{3}J$ =7.1 Hz, Ph-H), 7.57–7.41 (m, 4 H, Ph-H), 7.35–7.15 (m, 7 H, Ph-H), 6.43 (d, 2 H, ${}^{3}J$ = 6.4 Hz, Ph-H), 4.13 (dd, 1 H, ${}^{3}J$ =3.5 Hz, 3.5 Hz, CH), 3.50–3.22 (m, 2 H, CH₂), 1.39 (s, 9 H, CH₃). ¹³ C NMR (75 MHz, CDCl₃, TMS): δ 170.7, 170.5 (C=N, C=O), 139.2, 136.8 (q, ${}^{2}J_{C-F}$ = 1.6 Hz), 136.0, 133.3, 132.4, 131.1, 130.2, 131.0, 129.6, 128.7, 128.2, 128,1, 127.9, 127.9, 127.3, 126.3, 126.0 (Ph), 125.7

(q, ¹*J*_{C-F} = 5.7 Hz, CF₃), 81.2 (O-C), 66.5 (CH), 36.0 (CH₂), 27.9 (CH₃). Rt HPLC (Phenomenex Lux 5u Amylose-2, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 10.8 min (*R*-isomer), 13.5min (*S*-isomer).

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.79–7.11 (m, 15 H, Ar-H), 6.50 (d, 2 H, ${}^{3}J$ = 6.4 Hz), 4.23 (dd, 1 H, ${}^{3}J$ = 4.4 Hz, 4.4 Hz, CH), 3.43–3.27 (m, 2 H, CH₂), 1.43 (s, 9 H, CH₃). Rt HPLC (Daicel Chiralpak OD-H, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 12.0 min (*S* -isomer), 13.2 min (*R* -isomer).

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.64 (d, 2 H, ${}^{3}J$ = 6.9 Hz, Ph-H), 7.47–7.43 (m, 3 H, Ph-H), 7.41–7.35 (m, 3 H, Ph-H), 7.20–7.17 (m, 2 H, Ph-H), 5.80–5.66 (m, 1 H, -CH=), 5.11–5.01 (m, 2 H, =CH₂), 4.02 (dd, 1 H, ${}^{3}J$ = 5.6 Hz, 5.6 Hz, CH), 2.68–2.62 (m, 2 H, CH₂), 1.45 (s, 9 H, CH₃). Rt HPLC (Phenomenex Lux 5u Amylose-2, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 11.6 min (*R*-isomer), 13.4 min (*S*-isomer).

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.64 (d, 2 H, ${}^{3}J$ = 6.8 Hz, Ph-H), 7.47–7.30 (m, 6 H, Ph-H), 7.20–7.17 (m, 2 H, Ph-H), 4.75 (d, 2 H, ${}^{3}J$ = 6.6 Hz, =CH₂), 4.09 (dd, 1 H, ${}^{3}J$ = 5.4 Hz, 5.3 Hz, CH), 2.68–2.54 (m, 2 H, CH₂), 1.52 (s, 3 H, CH₃), 1.46 (s, 9 H, CH₃). Rt HPLC (Phenomenex Lux 5u Amylose-2, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 10.7 min

(R-isomer), 12.6 min (S-isomer).

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.53 (d, 2 H, ${}^{3}J$ = 6.9 Hz, Ph-H), 7.35–7.21 (m, 6 H, Ph-H), 7.00–6.80 (m, 4 H, Ph-H), 6.62 (d, 2 H, ${}^{3}J$ = 6.5 Hz), 4.04 (dd, 1 H, ${}^{3}J$ = 4.6 Hz, 4.7 Hz, CH), 3.19–3.05 (m, 2 H, CH₂), 1.40 (s, 9 H, CH₃). ¹³ C NMR (75 MHz, CDCl₃, TMS): δ 170.6, 170.4 (C=N, C=O), 163.1, 160.0, 139.3, 134.0, 132.4, 131.2 (d, ${}^{2}J_{C-F}$ = 7.8 Hz, F), 131.1, 130.9, 130.2, 130.0, 128.6, 128.3, 128.2, 128.1, 128,0, 127.5 (Ph), 114.7, (d, ${}^{1}J_{C-F}$ =

20.9 Hz, F), 81.2 (O-C), 67.7 (CH), 38.7 (CH₂), 28.0 (CH₃). Rt HPLC (Phenomenex Lux 5u Amylose-2, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 10.3 min (*R*-isomer), 12.5 min (*S*-isomer).

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.52 (d, 2 H, ${}^{3}J$ = 7.0 Hz, Ph-H), 7.40–7.21 (m, 10 H, Ph-H), 6.57 (d, 2 H, ${}^{3}J$ = 6.6 Hz, Ph-H), 4.09 (dd, 1 H, ${}^{3}J$ = 5.6 Hz, 5.6 Hz, CH), 3.23–3.21 (m, 2 H, CH₂), 1.41 (s, 9 H, CH₃). ¹³ C NMR (75 MHz, CDCl₃, TMS): δ 170.8, 170.3 (C=N, C=O), 139.3, 139.2, 136.1, 133.4, 133.4, 132.4, 130.5, 130.2, 130.1, 130.0, 128.6, 128.4, 128.3, 128.2, 128,1, 127.9, 127.4, 126.4 (q, ${}^{2}J_{C-F}$ = 3.7 Hz, CF₃), 125.9 (Ph), 123.0 (q, ${}^{1}J_{C-F}$ = 3.8 Hz, CF₃), 81.4 (O-C), 67.3 (CH), 39.2 (CH₂), 27.9 (CH₃). Rt HPLC (Daicel Chiralpak

OD-H, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 9.4 min (R -isomer), 10.9 min (S -isomer).

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.60 (d, 2 H, ${}^{3}J$ = 7.2 Hz, Ph-H), 7.35–7.23 (m, 6 H, Ph-H), 7.09–7.04 (m, 4 H, Ph-H), 6.52 (d, 2 H, ${}^{3}J$ = 4.1 Hz, Ph-H), 4.15 (dd, 1 H, ${}^{3}J$ = 3.9 Hz, 3.9 Hz, CH), 3.33-3.15 (m, 2 H, CH₂), 2.06 (s, 3 H, Ph-CH₃), 1.39 (s, 9 H, CH₃). ¹³ C NMR (75 MHz, CDCl₃, TMS): δ 171.0, 170.1 (C=N, C=O), 139.3, 136.9, 136.3, 136.2, 132.4, 131.0, 130.0, 129.9, 128.7, 128.2, 128.1, 127.9, 127.8, 127.6, 126.3, 125.9, 125.5 (C-Ph), 81.0 (O-C), 66.4 (CH), 36.7 (CH₂), 28.0 (CH₃), 19.2 (Ph-CH₃). Rt HPLC (Phenomenex Lux 5u Amylose-2, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 10.1 min

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.81 (d, 1 H, ${}^{3}J$ = 7.2 Hz, Ph-H), 7.62–7.46 (m, 4 H, Ph-H), 7.38–7.26 (m, 7 H, Ph-H), 6.59 (d, 2 H, ${}^{3}J$ = 6.5 Hz, Ph-H), 4.09 (dd, 1 H, ${}^{3}J$ = 4.5 Hz, 4.3 Hz, CH), 3.23–3.08 (m, 2 H, CH₂), 2.22 (s, 3 H, Ph-CH₃), 1.45 (s, 9 H, CH₃). 13 C NMR (75 MHz, CDCl₃, TMS): δ 170.8, 170.2 (C=N, C=O), 139.5, 138.1, 137.4, 136.3, 132.4, 132.3, 130.6, 130.0, 128.6, 128.2, 128.2, 128.1, 127.9, 127.8, 127.7, 126.8, 126.7 (C-Ph), 81.0 (O-C), 67.8 (CH), 39.4 (CH₂), 28.0 (CH₃), 21.1 (Ph-CH₃). Rt HPLC (Phenomenex Lux 5u

Amylose-2, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 10.0 min (*R*-isomer), 12.3 min (*S*-isomer).

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.81 (d, 1 H, ${}^{3}J$ = 7.2 Hz, Ph-H), 7.58 (d, 2H, ${}^{3}J$ = 7.1 Hz, Ph-H), 7.39–7.25 (m, 6 H, Ph-H), 6.96 (q, 4 H, ${}^{3}J$ = 7.9 Hz, Ph-H), 6.62 (d, 2 H, ${}^{3}J$ = 6.6 Hz, Ph-H), 4.09 (dd, 1 H, ${}^{3}J$ =4.4 Hz, 4.4 Hz, CH), 3.23–3.07 (m, 2 H, CH₂), 2.28 (s, 3 H, Ph-CH₃), 1.44 (s, 9 H, CH₃). 13 C NMR (75 MHz, CDCl₃, TMS): δ 170.9, 170.1 (C=N, C=O), 139.5, 137.5, 136.3, 135.5, 135.1, 132.4, 130.0, 129.6, 128.7, 128.2, 128.1, 128.0, 127.9,

127.6 (C-Ph), 81.0 (O-C), 68.0 (CH), 39.1 (CH₂), 28.0 (CH₃), 21.0 (Ph-CH₃). Rt HPLC (Phenomenex Lux 5u Amylose-2, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 10.7 min (*R*-isomer), 13.1 min (*S*-isomer).

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.56 (d, 2 H, ${}^{3}J$ = 7.1 Hz, Ph-H), 7.37–7.25 (m, 6 H, Ph-H), 7.16–7.11 (m, 2 H, Ph-H), 6.98–6.87 (m, 2 H, Ph-H), 6.66 (d, 2 H, ${}^{3}J$ = 6.6 Hz, Ph-H), 4.19 (dd, 1 H, ${}^{3}J$ =4.4 Hz, 4.4 Hz, CH), 3.36-3.12 (m, 2 H, CH₂), 1.44 (s, 9 H, CH₃). 13 C NMR (75 MHz, CDCl₃, TMS): δ 170.6, 170.5 (C=N, C=O), 162.9, 159.7, 139.4, 136.1, 132.3, 130.1, 130.0, 128.7, 128.2, 128.2, 128.0, 128.0, 127.9, 127.9, 127.6 (C-Ph), 125.2 (d,

 ${}^{3}J_{C-F}$ = 15.5 Hz, F), 123.5 (d, ${}^{2}J_{C-F}$ = 3.5 Hz, F), 114.9 (d, ${}^{1}J_{C-F}$ = 21.9 Hz, F), 81.2 (O-C), 66.0 (CH), 32.6 (CH₂), 27.9 (CH₃). Rt HPLC (Phenomenex Lux 5u Amylose-2, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 11.0 min (*R*-isomer),

13.7 min (S-isomer). (57)94 (555) (555) (555) (555) (555) (555) (53356 (53356 (53356) (53356) (53356) (53356) (5356) (5356) (5356) (5556) (5556) (5556) (5556) (5556) (5556) (5556) (5556) (5556) (5556) (5556) (5556) (5556) (5556) (5556) (5556) (5556) (5566) (5666) (556 4.2161 4.1852 4.1852 4.1707 3.3614 3.3614 3.3614 3.3614 3.3614 3.3166 3.3030 3.3030 3.1917 3.1615 3.1615 3.1615 3.1615 3.1615 3.1615 3.1615 3.1615 3.1615 3.1617 3.1717 3.1617 3.1617 3.1617 3.1617 3.1717 3.1617 3.1617 3.1617 3.1617 3.1617 3.1617 3.1617 3.1617 3.1617 3.1617 3.1617 3.1617 3.1617 3.1617 3.1617 3.1617 3.1617 3.1717 3. -900 -800 700 600 500 400 300 -200 -100 0 5.5 0.5 0.0 -0.5 2.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 129.9897 128.6733 128.6733 128.0733 128.0127 128.0127 127.9824 127.9824 127.9824 127.9824 127.9824 127.9824 127.9515 127.9515 114.7731 170.5724 170.5213 -32.6156 -81.1690 -77.3708 -76.9472 -76.5242 6.0493 -27.9372 -12000 -11000 -10000 -9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 1000 -1000 80 170 160 150 140 130 120 110 100 90 80 f1 (ppm) 70 60 50 40 30 20 10 0 WEN2014-01-14-1 mAL Wedth Symmetry fac 0.694 1.481 0.7399 0.398 49.885 50.115 600 100 10 25 r

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.49 (d, 2 H, ³*J* = 6.7 Hz, Ph-H), 7.26–7.19 (m, 7 H, Ph-H), 7.08 (q, 1 H, ³*J* = 6.6 Hz, Ph-H), 6.79–6.62 (m, 4 H, Ph-H), 6.66 (d, 2 H, ³*J* = 6.6 Hz, Ph-H), 4.04 (dd, 1 H, ³*J* = 3.8 Hz, 3.8 Hz, CH), 3.17–3.04 (m, 2 H, CH₂), 1.37 (s, 9 H, CH₃). ¹³ C NMR (75 MHz, CDCl₃, TMS): δ 170.5, 170.4 (C=N, C=O), 164.2, 160.9, 140.8 (d, ³*J*_{C-F} = 7.4 Hz, F), 139.3, 136.2, 132.3, 130.1, 130.0, 128.6, 128.3, 128.2, 128.1, 127.9, 127.5, 125.5, 125.4 (C-Ph), 116.4 (d, ²*J*_{C-F} = 20.9 Hz, F), 112.9 (d, ¹*J*_{C-F} = 20.9 Hz, F), 81.2 (O-C),

67.4 (CH), 39.2 (CH₂), 27.9 (CH₃). Rt HPLC (Phenomenex Lux 5u Amylose-2, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 9.8 min (*R*-isomer), 12.1 min (*S*-isomer).

¹ H NMR (300 MHz, CDCl₃, TMS): δ 7.57 (d, 2 H, ³*J* = 7.0 Hz, Ph-H), 7.40–7.25 (m, 6 H, Ph-H), 7.02–6.73 (m, 5 H, Ph-H), 4.10 (dd, 1 H, ³*J* = 4.7 Hz, 4.7 Hz, CH), 3.21–3.07 (m, 2 H, CH₂), 1.44 (s, 9 H, CH₃). ¹³ C NMR (75 MHz, CDCl₃, TMS): δ 170.7, 170.3 (C=N, C=O), 148.1 (d, ³*J*_{C-F} = 12.5 Hz, F), 147.3 (d, ³*J*_{C-F} = 12.5 Hz, F), 139.2, 136.1, 135.3 (dd, ¹*J*_{C-F} = 5.7 Hz, F, ²*J*_{C-F} = 3.9 Hz, F), 132.3, 130.3, 130.0, 128.6, 128.4, 128.2, 128.1, 127.9, 127.5, 125.6

(dd, ${}^{1}J_{C-F} = 6.0$ Hz, F, ${}^{2}J_{C-F} = 3.6$ Hz, F), 118.4 (d, ${}^{2}J_{C-F} = 16.8$ Hz, F), 116.6 (d, ${}^{2}J_{C-F} = 16.8$ Hz, F), 114.4 (C-Ph), 81.4 (O-C), 67.3 (CH), 38.7 (CH₂), 27.9 (CH₃). Rt HPLC (Phenomenex Lux 5u Amylose-2, 95:5, hexane/dioxane, 254 nm, 0.5 ml/min), 10.3 min (*R*-isomer), 12.3 min (*S*-isomer).

