Supporting Information

Rapid detection of hydrazine in a naphthol-fused chromenyl loop and its effectiveness in human lung cancer cells: tuning remarkable selectivity *via* the reaction altered pathway supported by theoretical studies

Shyamaprosad Goswami,*^a Avijit Kumar Das,^a Urmila Saha,^b Sibaprasad Maity,^{a,c} Kalyani Khanra^d and Nandan Bhattacharyya^d

^aDepartment of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, India
^bJadavpur University, Jadavpur, Kolkata, West Bengal, India
^c Department of Applied Sciences. Haldia Institute of Technology, Hatiberia, Haldia,West Bengal-721657, India.
^dPanskura Banamali College, Panskura, India.

CONTENTS

1.	Calculation of the detection limit									
2.	Evaluation	of	cytotoxic	activity	on	NCI-H460	cell			
	lines	•••••		•••••	•••••		S3-S4			
3.	Kinetics Stud	y	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	S5			
4.	UV-vis absorption spectra of NAC with N ₂ H ₄ and pH									
	titration	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	S6			
5.	Application in	real wat	ter samples	••••••		••••••	S7			
7.	Characterizati	on of NA	AC and N A P .	•••••			.S8-S13			
8.	Fluorescence s	pectra o	f NAC with dif	ferent analyte	es		S14-S16			
9.	Theoretical stu	ıdy			•••••		517-519			

***** Calculation of the detection limit:

The detection limit (DL) of NAC in emission spectra for N_2H_4 was determined from the following equation¹:

DL = K * Sb1/S

Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the graph Fig.S₁, we get slope = 18.27, and Sb1 value is 27.776.

Thus using the formula we get the Detection Limit for $N_2H_4 = 4.5$ micromolar in emission.

Figure S₁: (a) Changes of fluorescence of NAC($c = 2x10^{-5}M$) as a function of [N₂H₄] ($c = 2x10^{-4}M$) at 420 nm.

***** Evaluation of cytotoxic activity on NCI-H460 cell lines:

NCI-H460 cells were seeded in 96-well tissue culture plates. After 24 hrs fixed concentration of receptor NAC ($c = 2x10^{-5}$ M) mixed with different concentrations of hydrazine ($c = 1 x10^{-2}$ M, $2 x10^{-2}$ M, $4x10^{-2}$ M, $5 x10^{-2}$ M, $6 x10^{-2}$ M, $8x10^{-2}$ M, $1 x10^{-1}$ M, $2 x10^{-1}$ M) were added to the culture medium and incubated for 24 hrs at 37°C. Non-treated cells were used as control. All the experiments were performed in triplicate. Some of the wells with cells were kept as DMSO and hydrazine control. Incubated cultured cells were then subjected to tetrazolium salt 3-[4, 5-dimethylthiazol-2-y1]-2, 5-diphenyltetrazolium bromide (MTT) colorimetric assay (1). The MTT is used to determine cell viability and cytotoxicity. MTT was added at a final concentration of 0.5mg/ml and the cells were incubated at 37°C for 3.5 hrs. Then formazon dissolved with 100µL of DMSO in each well. The color changes were measured using a ELISA reader (Robonik, Readwell touch ELISA PLATE analyzer, India). The rate of survival was determined by using the following formulae: Cell viability (%) = (1-ODA₁/OD A₀)/100, where Ao=Absorbency of control cells and A₁=Absorbency of treated cells.

Figure S_2 : The rate of survival of cells with different concentrations of N_2H_4 added to

NAC-incubated cell. The results are derived from three different experiments (SD<5).

After 5-6 hrs of treatment, fluorescence has been detected. But as the receptor when complexes with hydrazine, the cells started senescing within 3-4 hrs.

✤ Evaluation of cytotoxic activity on NCI-H460 cell lines with NAC and N₂H₄ separately:

Figure S_3 : (a) The rate of survival of cells with different concentrations of NAC. (b)The rate of survival of cells with different concentrations of N_2H_4 . The results are derived from three different experiments (SD<5).

It had been shown that when the concentration of NAC was $2x10^{-5}$ M and the concentration of Hydrazine was $6x10^{-2}$ M, the survivability of cells was 39.77%. As per the new cytotoxicity data, the survivabilities of cells treated with NAC are 93.6% and cells treated with hydrazine are 76% respectively (Figure S₃). Therefore, it may be suggested that the survivability of cells decreased due to the additive effect of NAC & Hydrazine adduct (NAP)(Figure S₂).

Figure S₄: Fluorescence images of NCI-H460 cells. (a) in presence of NAC ($c=2x10^{-5}$ M) and Hydrazine ($c = 1x10^{-4}$ M) (Bright field image). (b) Corresponding dark field image.

★ The changes of emission curve of NAC($c = 2x10^{-5}M$) at different time interval by addition of N₂H₄ ($c = 2x10^{-4}$) and calculation of first order rate constant:

Fig $S_5(a)$ represents the changes of emission at different time interval by addition of N_2H_4 .

From the time vs. emission intensity plot (Fig.S₅(b)) at fixed wavelength at 420 nm by using first order rate equation we get the rate constant K=slope x 2.303=0.005 x 2.303=1.15 x 10^{-2} Sec⁻¹.

Figure S₅: (a) The changes of emission spectra at different time intervals of **NAC** in presence of N_2H_4 in CH₃CN: HEPES buffer solution (v:v, 50:50) at pH 7.4. **Inset:** Different time intervals are shown in the rectangle ('S' denotes Second). (b) The first order rate equation by using Time vs. fluorescent intensity plot at 420 nm.

♦ UV-vis spectra of NAC with N₂H₄:

Figure S₆: UV–vis absorption spectra of **NAC** ($c = 2.0 \times 10^{-5}$ M) in CH₃CN:HEPES buffer solution (v:v, 50:50) at pH 7.4. solution upon titration with N₂H₄ ($c = 2 \times 10^{-4}$ M).

P^H titration:

Figure S7: The variation of fluorescence intensity at 420 nm of NAC in absence and in

presence of N_2H_4 as a function of different pH.

***** Application in real water samples:

At first, NAC (20 μ M) solution was prepared by using different water samples in CH₃CN: H₂O (v:v, 50:50) at pH 7.4 and the solution was treated with different concentration of hydrazine and left for sometime. The fluorescence intensity of each sample was recorded and the comparing curve Fig 5(a) was obtained at wavelength 420 nm.

Table S1. Determination of hydrazine in water samples:

Water samples	Hydrazine added(µM)	Found (µM)	Recovery (%)
	30	29.5	98.3
Drinking water	50	48.3	96.6
	70	72	102.8
	30	28.9	96.3

River water	50	49	98
	70	71.5	102.1

✤ ¹H NMR spectrum (S₈) of NAC:

¹³C NMR spectrum (S₉) of Compound NAC:

✤ Mass spectrum (S₁₀) of Sensor NAC:

✤ ¹H NMR spectrum (S₁₁) of NAC+hydrazine adduct (NAP):

♦ ¹³C NMR spectrum (S₁₂) of Compound NAP:

✤ Mass spectrum (S₁₃) of Sensor NAP:

❖ Fluorescence spectra of NAC (S₁₄)(c = 2x10⁻⁵M) with different analytes (c = 2x10⁻⁴M) in CH₃CN-HEPES buffer (50/50, v/v, 25 ° C) at pH-7.4:

Electronic transition	Composition	Excitation energy	Oscillator strength (<i>f</i>)	CI	Assign	λ_{exp} (nm)
$S_0 \rightarrow S_5$	HOMO-2 → LUMO HOMO → LUMO+1 HOMO-3 → LUMO HOMO-1 → LUMO	3.2748eV (378 nm)	0.0809	0.26601 0.32052 0.25961 0.46771	ILCT ILCT ILCT ILCT ILCT	372
$S_0 \rightarrow S_7$	HOMO-1 \rightarrow LUMO HOMO \rightarrow LUMO+3 HOMO-2 \rightarrow LUMO	3.7220 eV (333 nm)	0.0940	0.66071 0.18316 -0.15307	ILCT ILCT ILCT	327

Theoretical calculation:

Table S₂ Selected Parameters for the vertical excitation (UV-vis absorptions) of NAC; electronic excitation energies (eV) and oscillator strengths (f), configurations of the low-lying excited states of NAC; based on optimized ground-state geometries (UV-vis absorption) by TDDFT/CPCM method (CH₃CN used as solvent).

Table S_3 Main calculated optical transition for the NAP with composition in terms of	f
molecular orbital contribution of the transition, vertical excitation energies, and oscillato	r
strength in acetonitrile solvent based on TDDFT/CPCM method.	

Electronic transition	Composition	Excitation energy	Oscillator strength (f)	CI	Transition assigned	λ_{exp} (nm)
$S_0 \rightarrow S_{10}$	$\begin{array}{c} \text{HOMO-3} \rightarrow \text{LUMO} \\ \text{HOMO-2} \rightarrow \text{LUMO} \end{array}$	3.3583 eV (369 nm)	0.0323	0.41639 0.56569	ILCT ILCT	372
$S_0 \rightarrow S_{13}$	HOMO-3 \rightarrow LUMO HOMO-3 \rightarrow LUMO+1 HOMO-2 \rightarrow LUMO+1 HOMO \rightarrow LUMO+1 HOMO \rightarrow LUMO+2	3.7183eV (313 nm)	0.0441	0.10983 0.31383 0.46470 0.22641 0.18321	ILCT ILCT ILCT ILCT ILCT	327

Figure S₁₅: Frontier molecular orbitals involved in the UV-vis absorption of NAC.

Figure S₁₆: Frontier molecular orbitals involved in the UV-vis absorption of NAP.

Ref:

M. Shortreed, R. Kopelman, M. Kuhn, B. Hoyland, *Anal. Chem.*, 1996, **68**, 1414. (b)
 W. Lin,; Yuan, L.; Cao, Z.; Feng, Y.; Long, L. *Chem. Eur. J.* 2009, **15**, 5096.(c) Zhu,
 M.; Yuan, M.; Liu, X.; Xu, J.; Lv, J.; Huang, C.; Liu, H.; Li, Y.; Wang, S.; Zhu, D. *Org. Lett.* 2008, **10**, 1481-1484.