Rh^{III}-catalyzed dual directing group assisted sterically hindered C-H bond activation: a unique route to *meta* and *ortho* substituted benzofurans

Chien-Hung Yeh, Wei-Chen Chen, Parthasarathy Gandeepan, Ya-Chun Hong, Cheng-Hung Shih, Chien-Hong Cheng*

Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan

<u>chcheng@mx.nthu.edu.tw</u>

Supporting Information

Table of Contents	Page No
Experimental Section	S-2
Deuterium Labeling Studies of Compounds 1a, 1b and 1o	S-3
Optimization Studies	S-6
Synthesis and Characterization Data of Oximes	S-7
Characterization Data of Benzofuran Derivatives	S-13
NOE and NOESY Experiments of 3ag	S-22
References	S-24
¹ H and ¹³ C NMR Spectra	S-25
X-Ray Data of 3aa , 3ga , and 3ma	S-65

General Methods.

General Procedure for the Rh(III)-Catalyzed Synthesis of Benzofurans

A seal tube initially fitted with a rubber septum containing a magnetic stir bar, oxime **1** (0.20 mmol), alkyne **2** (0.30 mmol), $[RhCp*Cl_2]_2$ (0.0040 mmol, 2.0 mol %) and Cu(OAc)_2·H_2O (0.70 mmol) was evacuated and purged with nitrogen gas three times. Then, MeOH (1.0 mL) was added to the system via syringe under a stream of nitrogen and the septum was replaced with a screw cap. The reaction mixture was allowed to stir at the indicated temperature for 12 to 48 h. When the reaction was complete, the mixture was cooled to room temperature, diluted with EtOAc and filtered through a Celite pad. The filtrate was concentrated and the residue was purified by flash column chromatography (silica gel, hexane/EtOAc) to give the corresponding product **3**.

Deuterium Labeling Study of 1a

A seal tube initially fitted with a rubber septum containing a magnetic stir bar, oxime **1a** (0.1 mmol), $[RhCp*Cl_2]_2$ (0.0020 mmol, 2.0 mol %), and $Cu(OAc)_2 \cdot H_2O$ (0.35 mmol) was evacuated and purged with nitrogen gas three times. Then, CD₃OD (0.5 mL) was added to the system via syringe under a stream of nitrogen and the septum was replaced with a screw cap. The reaction mixture was allowed to stir at 60 °C for 1, 5, and 24 h. When the reaction was complete, the mixture was cooled to room temperature, diluted with EtOAc and filtered through a Celite pad. The filtrate was evaporated in vacuum and the H/D exchange ratio was determined by ¹H NMR integration.

¹H NMR Spectra for Deuterium Labeling Study of Compound 1a

Deuterium Labeling Study of 1b

A seal tube initially fitted with a rubber septum containing a magnetic stir bar, oxime **1b** (0.10 mmol), $[RhCp*Cl_2]_2$ (0.002 mmol, 2.0 mol %), and $Cu(OAc)_2 \cdot H_2O$ (0.350 mmol) was evacuated and purged with nitrogen gas three times. Then, CD₃OD (0.50 mL) was added to the system via syringe under a stream of nitrogen and the septum was replaced with a screw cap. The reaction mixture was allowed to stir at 60 °C for 1, 5, and 24 h. When the reaction was complete, the mixture was cooled to room temperature, diluted with EtOAc and filtered through a Celite pad. The filtrate was evaporated in vacuum and the H/D exchange ratio was confirmed by ¹H NMR.

¹H NMR Spectra for Deuterium Labeling Study of Compound **1b**

Deuterium Labeling Study of 10

A seal tube initially fitted with a rubber septum containing magnetic stir bar, oxime **1o** (0.1 mmol), $[RhCp*Cl_2]_2$ (0.002 mmol, 2.0 mol %) and $Cu(OAc)_2 \cdot H_2O$ (0.35 mmol) was evacuated and purged with nitrogen gas three times. Then, CD₃OD (0.5 mL) was added to the system via syringe under a stream of nitrogen and the septum was replaced with a screw cap. The reaction mixture was allowed to stir at 60 and 100 °C for 24 h. When the reaction was complete, the mixture was cooled to room temperature, diluted with EtOAc and filtered through a Celite pad. The filtrate was evaporated in vacuum and confirmed by ¹H NMR.

¹H NMR Spectra for Deuterium Labeling Study of Compound **10**

	MeO H OH 1a	Me + Ph Ph 2a	[RhCp*Cl ₂] ₂ (2 mol %) Cu(OAc) ₂ ·H ₂ O solvent, temp.	OMe 3aa	
Entry	Additive	2a (mmol)	Solvent	<i>T</i> (°C)	Yield/Conv. (%) ^{b,c}
1 ^d		2.0	<i>t</i> -amylOH	100	55/60
2		2.0	<i>t</i> -amylOH	100	56/69
3 ^e	O_2 (1 atm)	2.0	<i>t</i> -amylOH	100	13/90
4 ^d		2.0	1,4-dioxane	100	43/59
5 ^d		2.0	EtOH	80	62/86
6		1.5	MeOH	80	52/65
7		2.0	MeOH	80	79/90
8	AgSbF ₆ (0.02 mmol)	1.5	MeOH	80	53/88
9	$AgBF_4$ (0.02 mmol)	1.5	MeOH	80	52/89
10	AcOH (0.02 mmol)	1.5	MeOH	80	5/90
11^{f}		1.5	МеОН	60	83/95
12		2.0	toluene	100	65/65
13		2.0	toluene	130	51/70
14		2.0	O-xylene	130	43/50
15		2.0	benzene	100	62/73
16		2.0	hexane	100	36/66
17		2.0	decane	130	38/75
18		2.0	chlorobenzene	100	68/74
19		2.0	chlorobenzene	130	45/77
20		2.0	fluorobenzene	100	58/80

Table S1. Optimization Studies for the Synthesis of Benzofuran 3aa^a

N S

^a Conditions: **1a** (0.1 mmol), Cu(OAc)₂·H₂O (0.35 mmol) and [RhCp*Cl₂]₂ (2 mol %) in solvent (0.5 mL) under N₂ for 20 h, unless otherwise noted. ^b Yields were determined by NMR integration method using mesitylene as internal standard. ^c Conversions of **1a** were determined by crude ¹H NMR. ^d Cu(OAc)₂·H₂O (0.20 mmol) was used. ^e Cu(OAc)₂·H₂O (0.05 mmol) was used. ^f Reaction time: 30 h.

Synthesis and Characterization of Starting Materials

3-Hydroxy-4-methoxybenzaldehyde O-methyl oxime (1a)

Compound **1a** was prepared using modified procedure from reported method:¹ 3-hydroxy-4-methoxybenzaldehyde (1.5 g, 10 mmol, 1.0 equiv) was added to the solution of MeONH₂·HCl (1.0 g, 12 mmol, 1.2 equiv), and pyridine (3.2

g, 40 mmol, 4.0 equiv) in CH_2Cl_2 (1 M, 10 mL). The solution was stirred for 24 h at room temperature. After completion of the reaction, the solvent was removed under vacuo. The remaining residue was dissolved in CH_2Cl_2 and filtered through a short pad of silica gel. The filtrate was concentrated and purified by silica flash chromatography (hexane–EtOAc) to give the corresponding product as white solid (1.6 g, 88%).

 R_f = 0.61 (50% ethyl acetate in *n*-hexane); mp: 50-52 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (s, 1H), 7.22 (d, J = 2.0 Hz, 1H), 7.02 (dd, J = 8.4, 2.0 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 5.71 (s, OH), 3.94 (s, 3H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 148.2, 148.1, 145.8, 125.6, 120.1, 112.3, 110.4, 61.8, 55.9; HRMS (EI⁺): calcd for $C_9H_{11}NO_3$ 181.0739, found 181.0735; **IR (KBr, cm⁻¹):** 3450, 2938 and 1612.

3-Hydroxybenzaldehyde *O*-methyl oxime (1b)

Compound **1b** was prepared from 3-hydroxybenzaldehyde using the synthetic procedure for **1a**; $R_f = 0.29$ (20% ethyl acetate in *n*-hexane); white solid; mp: 62-64 °C; ¹H NMR (400 MHz, **CDCl₃**): $\delta = 8.01(s, 1H)$, 7.26-7.08 (m, 3H), 6.87-6.85 (m, 1H),

5.69 (s, OH), 3.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 155.8, 148.6, 135.5, 130.0, 120.2, 117.2, 113.0, 62.0; HRMS (EI⁺): calcd for C₈H₉NO₂ 151.0633, found 151.0630; IR (KBr, cm⁻¹): 3363, 2938 and 1581.

3-Hydroxy-4,5-dimethoxybenzaldehyde O-methyl oxime (1c)

This product was prepared from 3-hydroxy-4,5dimethoxybenzaldehyde by following the synthetic procedure for 1a; $R_f = 0.38$ (30% ethyl acetate in *n*-hexane); brown oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.91$ (s, 1H),

6.78 (s, 1H), 6.74 (s, 1H), 5.79 (s, 1H), 3.94 (s, 3H), 3.89 (s, 3H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 152.6, 149.4, 148.2, 136.9, 128.1, 108.0, 101.9, 62.0,

61.0, 55.9; **HRMS (EI⁺):** calcd for $C_{10}H_{13}NO_4$ 211.0845, found 211.0847; **IR (KBr**, **cm**⁻¹): 3402, 2939 and 1581.

2-Bromo-5-hydroxybenzaldehyde O-methyl oxime (1d)

Compound 1d was prepared from 2-bromo-5hydroxybenzaldehyde using the the synthetic procedure of $1a^2$. $R_f = 0.45$ (30% ethyl acetate in *n*-hexane); white solid; mp: 81-83 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.37 (s, 1H), 7.37 (d, J = 8.8 Hz, 1H), 7.30 (d, J = 2.8 Hz, 1H), 6.73 (dd, J = 8.8, 3.2 Hz, 1H), 5.92 (s, OH), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =154.9, 148.1,

134.0, 132.0, 119.1, 114.5, 113.6, 62.2; **HRMS (EI**⁺): calcd for C₈H₈BrNO₂ 228.9738, found 228.9732; IR (KBr, cm⁻¹): 3394, 2939, 1566 and 1435.

3-Hydroxy-5-methylbenzaldehyde O-methyl oxime (1e)

Scheme S1. Synthesis of 3-Hydroxy-5-methylbenzaldehyde *O*-methyl oxime (1e).

Compound 1e was prepared starting from 3,5-dibromotoluene (S1-1), followed by formylation,³ acetalization,⁴ hydroxylation of the aryl bromide and hydrolysis to get 3hydroxy-5-methylbenzaldehyde (S1-4).⁵ Then, condensation with MeONH₂·HCl to give oxime 1e. (Note: hydroxylation reaction does not work in the absense of acetal protection) $R_f = 0.67$ (50% ethyl acetate in *n*-hexane); white solid; mp: 91-92 °C; ¹H **NMR (400 MHz, CDCl₃):** δ = 7.95 (s, 1H), 6.92 (s, 1H), 6.87 (s, 1H), 6.66 (s, 1H), 3.94 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 155.8$, 148.5, 140.3, 133.4, 120.9, 117.8, 110.4, 62.0, 21.2; **HRMS (EI**⁺): calcd for C₉H₁₁NO₂ 165.0790,

found 165.0789; IR (KBr, cm⁻¹): 3232 and 1589.

3-Hydroxy-5-methoxybenzaldehyde O-methyl oxime (1f)

Scheme S2. Synthesis of 3-Hydroxy-5-methoxybenzaldehyde O-methyl oxime (1f)

Compound **1f** was prepared starting from methyl 3,5-dihydroxybenzoate (**S2-1**), followed by methylation,⁶ reduction,⁷ oxidation,⁸ and condensation with MeONH₂·HCl to give oxime **1f** (Scheme S2). $R_f = 0.31$ (30% ethyl acetate in *n*-hexane); white solid; mp: 92-94 °C; ¹H **NMR (400 MHz, CDCl₃):** $\delta = 7.93$ (s, 1H), 6.68-6.64 (m, 2H), 6.41 (m, 1H), 5.61 (s, OH), 3.94 (s, 3H), 3.77 (s, 3H); ¹³C **NMR (100 MHz, CDCl₃):** $\delta = 161.1$, 156.9, 148.5, 134.1, 106.5, 105.1, 103.4, 62.1, 55.5; **HRMS (EI⁺):** calcd for C₉H₁₁NO₃ 181.0739, found 181.0737; **IR (KBr, cm⁻¹):** 2947 and 1589.

3-Bromo-5-hydroxybenzaldehyde O-methyl oxime (1g)

Scheme S3. Synthesis of 3-Bromo-5-hydroxybenzaldehyde O-methyl oxime (1g)

Compound **1g** was prepared starting from 1,3,5-dibromotoluene (**S3-1**), followed by formylation,³ acetalization,⁴ hydroxylation of aryl bromide and hydrolysis to get 3-hydroxy-5-methylbenzaldehyde (**S1-4**).⁵ Then, condensation with MeONH₂·HCl to give oxime **1g**. (**Note**: hydroxylation reaction does not work in the absense of acetal protection) $R_f = 0.26$ (30% ethyl acetate in *n*-hexane); white solid; mp: 71-73 °C; ¹H **NMR (400 MHz, CDCl₃):** $\delta = 7.90$ (s, 1H), 7.25 (m, 1H), 7.00-6.98 (m, 2H), 5.47 (s, OH), 3.95 (s, 3H); ¹³C **NMR (100 MHz, CDCl₃):** $\delta = 156.4$, 146.8, 135.1, 123.1, 122.8, 120.0, 112.2, 62.3; **HRMS (EI⁺):** calcd for C₈H₈BrNO₂ 405.0364, found 405.0364; **IR (KBr, cm⁻¹):** 2353, 1566 and 1435.

4-Fluoro-3-hydroxybenzaldehyde O-methyl oxime (1h)

Compound **1h** was prepared from 4-fluoro-3hydroxybenzaldehyde by following the synthetic procedure for **1a**; $R_f = 0.70$ (50% ethyl acetate in *n*-hexane); white solid; mp: 77-79 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.95$ (s, 1H),

7.26-7.24 (m, 1H), 7.04 (m, 1H), 7.03 (m, 1H), 5.49 (brs, OH), 3.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 153.2, 150.8, 147.5, 143.9, 143.8, 129.3, 120.1, 120.1, 116.0, 115.8, 115.4, 62.1; HRMS (EI⁺): calcd for C₈H₈FNO₂ 169.0539, found 169.0538; IR (KBr, cm⁻¹): 3116, 1597, 1519 and 1435.

(3-Hydroxyphenyl)(phenyl)methanone O-methyl oxime (1i); mixture of E and Z isomers

3-Hydroxybenzophenone (0.4 g, 2.0 mmol, 1.0 equiv) was added to a solution of MeONH₂·HCl (0.17 g, 2.4 mmol, 1.2 equiv), and pyridine (0.63 g, 8.0 mmol, 4.0 equiv) in MeOH (4 mL). The solution was heated to reflux for 24 h, the reaction was then cooled to room temperature and concentrated in vacuo. The remaining residue was dissolved in CH_2Cl_2 and filtered through a short pad

of silica gel. The filtrate was purified by silica flash chromatography (*n*-hexane– EtOAc) to give the corresponding product as colorless oil (0.45 g, 99%); $R_f = 0.67$ (50% ethyl acetate in *n*-hexane); ¹H NMR for mixture of *E* and *Z* isomers (400 MHz, CDCl₃): $\delta = 7.55-7.27$ (m, 5H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.07-6.84 (m, 3H), 4.00 (s, 3H); ¹³C NMR for mixture of *E* and *Z* isomers (100 MHz, CDCl₃): $\delta = 157.1$, 157.0, 155.7, 155.6, 137.4, 135.8, 134.4, 132.9, 129.3, 129.0, 128.9, 128.1, 128.0, 127.7, 121.0, 120.3, 116.7, 116.1, 114.6; HRMS (EI⁺): calcd for C₁₄H₁₃NO₂ 227.0946, found 227.0948; IR (KBr, cm⁻¹): 3400, 2938 and 1589.

1-(3-Hydroxy-4-methoxyphenyl)ethanone O-methyl oxime (1j)

Compound **1j** was prepared from 3'-hydroxy-4'methoxyacetophenone by following the synthetic procedure for **1i**; $R_f = 0.58$ (50% ethyl acetate in *n*-hexane); colorless oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.26$ (d, *J* = 2.0 Hz, 1H), 7.13 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.80 (d, *J* =

8.4 Hz, 1H), 3.97 (s, 3H), 3.86 (s, 3H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.1, 147.5, 145.4, 129.9, 118.1,112.3, 110.2, 61.7, 55.8, 12.4; HRMS (EI⁺): calcd for C₁₀H₁₃NO₃ 195.0895, found 195.0895; **IR (KBr, cm⁻¹):** 3450, 2939 and 1619.

1-(3-Hydroxyphenyl)ethanone O-methyl oxime (1k)

Compound 1k was prepared from 3'-hydroxyacetophenone using the synthetic procedure of 1i; $R_f = 0.64$ (50% ethyl acetate in *n*-hexane); colorless oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.20$ (t, J = 8.0 Hz, 1H), 7.14-7.11 (m, 2H), 6.88-6.77(m, 1H), 3.98 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃): δ = 155.8, 155.4, 137.8, 129.7, 118.5, 116.5, 113.0, 61.8, 13.0; **HRMS (EI**⁺): calcd for C₉H₁₁NO₂ 165.0790, found 165.0790; **IR (KBr, cm⁻¹)**: 3394, 2938 and 1581.

2-Hydroxyanthracene-9,10-dione O,O-dimethyl dioxime (11; mixture of isomers)

The solution containing 2-hydroxyanthraquinone (0.90 g, 4.0 mmol, 1.0 equiv), and MeONH₂·HCl (0.70 g, 10.0 mmol, 2.5 equiv) in pyridine (4 mL) as solvent, was heated to reflux for 24 h. The reaction was then cooled to room temperature and the mixture was dissolved in CH_2Cl_2 (20

mL). The mixture was washed with NH₄Cl_(aq) (10 mL) and organic layer was evaporated in vacuo. The residue was filtered through a short pad of silica gel and washed with CH₂Cl₂. The filtrate was purification by silica flash chromatography (hexane–EtOAc) to give the corresponding product as brown foam (0.53 g, 47%); R_f = 0.61 (50% ethyl acetate in *n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ = 9.00 (s, OH), 8.55-8.49 (m, 1H), 8.10-7.89 (m, 2H), 7.54-7.40 (m, 3H), 7.04-6.98 (m, 1H), 4.09-4.05 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.2, 158.9, 158.6, 158.2, 149.4, 146.7, 146.6, 146.5, 146.3, 146.2, 136.2, 134.4, 134.2, 134.1, 132.9, 132.8, 132.4, 130.8, 130.7, 130.6, 130.4, 130.4, 130.3, 129.8, 129.7, 129.4, 129.2, 126.1, 125.6, 124.8, 124.6, 120.7, 119.3, 118.4, 117.8, 117.4, 117.2, 116.9, 116.7, 111.6, 110.6, 63.2, 63.1;

HRMS (EI⁺): calcd for C₁₆H₁₄N₂O₃ 282.1004, found 282.1003; **IR (KBr, cm⁻¹):** 3300, 2938 and 1604.

2,6-Dihydroxyanthracene-9,10-dione *O*,*O*-dimethyl dioxime (1m)

Followed the synthesis of **11** and started from anthraflavic acid; $R_f = 0.48$ (50% ethyl acetate in *n*hexane); pale yellow solid; mp: 198-200 °C; ¹H NMR (400 MHz, (CD₃)₂CO) for the major isomer: $\delta = 8.92$ (s, OH), 8.45 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 2.4 Hz,

2H), 6.98-6.95 (m, 2H), 4.05 (s, 6H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ = 158.7, 158.4, 158.1, 146.1, 145.9, 145.8, 136.1, 134.0, 132.4, 132.2, 130.2, 126.9, 126.3, 124.1, 120.4, 118.9, 117.7, 117.1, 117.0, 116.5, 116.0, 111.1, 110.0, 62.6; HRMS (EI⁺): calcd for C₉H₁₁NO₃ 298.0954, found 298.0952; IR (KBr, cm⁻¹): 3355 and 1566.

6-Hydroxy-2,3-dihydro-1*H*-inden-1-one *O*-methyl oxime (1n)

Compound **1n** was prepared from 6-hydroxy-1-indanone by following the synthetic procedure for **1i**; $R_f = 0.26$ (50% ethyl acetate in *n*-hexane); yellow solid; mp: 172-175 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.16$ (d, J = 8.0 Hz, 1H), 7.11

(d, J = 2.4 Hz, 1H), 6.86 (dd, J = 8.0, 2.4 Hz, 1H), 5.25 (s, OH), 3.97 (s, 3H), 2.96-2.86 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 162.8, 155.0, 140.6, 137.3, 126.4, 118.5, 107.2, 62.0, 27.8, 27.0;$ HRMS (EI⁺): calcd for C₁₀H₁₁NO₂ 177.0790, found 177.0785; IR (KBr, cm⁻¹): 3394, 2915 and 1604.

6-Hydroxy-2-phenyl-4*H*-chromen-4-one *O*-methyl oxime (10)

Followed the synthesis of **1i** and started from 6hydroxyflavone; $R_f = 0.47$ (50% ethyl acetate in *n*-hexane); yellow solid; mp: 153-156 °C; **¹H NMR (400 MHz, CDCl₃)**: $\delta = 7.84-7.83$ (m, 2H), 7.44-7.40 (m, 4H), 7.18 (d, J = 8.8 Hz, 1H), 7.00 (s, 1H), 6.95 (dd, J = 8.8, 3.2 Hz, 1H), 5.93(s, OH),

3.98(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 155.4, 152.8, 146.3, 144.6, 132.8, 130.2, 128.6, 125.7, 119.2, 119.0, 118.5, 107.3, 92.9, 61.7; HRMS (EI⁺): calcd for C₁₆H₁₃NO₃ 267.0895, found 267.0900; IR (KBr, cm⁻¹): 3170 and 1627.

Characterization data of Benzofuran Derivatives

7-Methoxy-2,3-diphenylbenzofuran-4-carbaldehyde O-methyl oxime (3aa)

 R_f = 0.54 (20% ethyl acetate in *n*-hexane); yellow solid; mp: 140-143 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.73 (d, J = 8.4 Hz, 1H), 7.70 (s, 1H), 7.59-7.26 (m, 10H), 6.85 (d, J = 8.4 Hz, 1H), 4.08 (s, 3H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 151.4, 146.1, 145.2, 142.8, 133.4, 130.4, 130.0, 130.0, 129.3, 128.4, 128.3, 128.2, 126.6,

121.4, 118.0, 117.5, 107.1, 61.5, 56.1; **HRMS (EI**⁺): calcd for C₂₃H₁₉NO₃ 357.1365, found 357.1365; **IR (KBr, cm**⁻¹): 2938 and 1596.

7-Methoxy-2,3-di-p-tolylbenzofuran-4-carbaldehyde O-methyl oxime (3ab)

R_f = 0.69 (30% ethyl acetate in *n*-hexane); white solid; mp: 143-145 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (s, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.26 (s, 4H), 7.04 (d, J = 8.0 Hz, 2H), 6.81 (d, J = 8.4 Hz, 1H), 4.07 (s, 3H), 3.81 (s, 3H), 2.44 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 151.8, 146.2, 145.6,

142.8, 138.4, 138.0, 130.4, 130.3, 130.0, 129.0, 127.4, 126.6, 121.3, 118.1, 116.9, 107.0, 61.6, 56.3, 21.5, 21.3; **HRMS (EI**⁺): calcd for C₂₅H₂₃NO₃ 385.1678, found 385.1673; **IR (KBr, cm**⁻¹): 2931, 2360, 1597 and 1512.

7-Methoxy-2,3-bis(4-methoxyphenyl)benzofuran-4-carbaldehyde *O*-methyl oxime (3ac)

 R_f = 0.47 (30% ethyl acetate in *n*-hexane); white solid; mp: 141-143 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (s, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.46-7.44 (m, 2H), 7.30-7.28 (m, 2H), 7.00 (m, 2H), 6.80-6.76 (m, 3H), 4.06 (s, 3H), 3.88 (s, 3H), 3.81 (s, 3H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.7, 159.6, 152.0, 146.2, 145.6,

131.7, 130.6, 128.2, 125.6, 123.0, 121.3, 118.0, 115.7, 114.8, 113.8, 106.9, 61.6, 56.3, 55.3, 55.2; **HRMS (EI**⁺): calcd for C₂₅H₂₃NO₅ 417.1576, found 417.1578; **IR (KBr,**

cm⁻¹): 2939, 2839, 1612 and 1512.

2,3-Bis(4-fluorophenyl)-7-methoxybenzofuran-4-carbaldehyde *O*-methyl oxime (3ad)

 R_f = 0.66 (30% ethyl acetate in *n*-hexane); pale yellow solid; mp: 142-144 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.67 (s, 1H), 7.66 (d, J = 8.6 Hz, 1H), 7.48-7.44 (m, 2H), 7.37-7.34 (m, 2H), 7.21-7.17 (m, 2H), 6.97-6.92 (m, 2H), 6.83 (d, J = 8.6 Hz, 1H), 4.06 (s, 3H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.1, 163.9, 161.6, 161.5, 151.1, 146.3, 145.1,

142.9, 132.3, 132.2, 129.8, 129.3, 128.8, 128.7, 126.2, 121.9, 118.1, 116.7, 116.5, 116.3, 115.7, 115.4, 107.3, 61.7, 56.3; **HRMS (EI**⁺): calcd for C₂₃H₁₇F₂NO₃ 393.1176, found 393.1179; **IR (KBr, cm⁻¹):** 2939, 2399, 1597 and 1512.

2,3-Bis(4-chlorophenyl)-7-methoxybenzofuran-4-carbaldehyde *O*-methyl oxime (3ae)

 R_f = 0.66 (30% ethyl acetate in *n*-hexane); yellow solid; mp: 125-128 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.69 (s, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.49-7.45 (m, 2H), 7.41-7.38 (m, 2H), 7.33-7.31 (m, 2H), 7.24-7.21 (m, 2H), 6.84 (d, J = 8.4 Hz, 1H), 4.06 (s, 3H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =150.8, 146.3,145.1, 143.1, 134.7, 134.6, 132.8,

131.8, 129.8, 129.5, 128.8, 128.5, 128.3, 128.1, 122.1, 118.2, 116.9, 107.5, 61.7, 56.3; **HRMS (EI⁺):** calcd for C₂₃H₁₇Cl₂NO₃ 425.0585, found 425.0586; **IR (KBr, cm⁻¹):** 2931, 2399, 1728 and 1597.

2,3-Bis(4-bromophenyl)-7-methoxybenzofuran-4-carbaldehyde *O*-methyl oxime (3af)

 $R_f = 0.50$ (20% ethyl acetate in *n*-hexane); yellow solid; mp: 161-164 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.72$ (s, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 6.85 (d, J = 8.4Hz, 1H), 4.07 (s, 3H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 150.8$, 146.3, 145.0, 143.1, 132.7,

132.3, 132.1, 131.7, 129.3, 128.7, 128.2, 122.9, 122.1, 118.1, 117.0, 107.5, 61.7, 56.2; **HRMS (EI⁺):** calcd for C₂₃H₁₇Br₂NO₃ 512.9575, found 512.9561; **IR (KBr, cm⁻¹):** 2931 and 1596.

3ag (mixture of isomers)

R_f= 0.51 (20% ethyl acetate in *n*-hexane); yellow solid; mp: 129-132 °C; ¹H NMR for major isomer (400 MHz, CDCl₃): δ = 8.62 (s, 1H), 7.74 (d, *J* = 7.2 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.50-7.38 (m, 3H), 6.82 (d, *J* = 8.4 Hz, 1H), 4.04 (s, 3H), 4.01

(s, 3H), 2.98 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H); ¹³C NMR for major isomer (100 MHz, CDCl₃): $\delta = 146.8$, 146.7, 146.0, 130.6, 129.5, 128.9, 128.8, 128.1, 127.9, 122.3, 121.5, 118.4, 107.0, 62.1, 56.4, 29.9, 20.2, 18.7, 15.4; HRMS (EI⁺): calcd for C₁₉H₁₉NO₃ 309.1365, found 309.1358; **IR (KBr, cm⁻¹):** 2931 and 1604.

7-Methoxy-2,3-dipropylbenzofuran-4-carbaldehyde O-methyl oxime (3ah)

R_f = 0.57 (20% ethyl acetate in *n*-hexane); yellow solid; mp: 57-59 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.49 (s, 1H), 7.58 (d, J = 8.4 Hz, 1H), 6.73 (d, J = 8.4, 1H), 4.00 (s, 3H), 3.99 (s, 3H), 2.73-2.65 (m, 4H), 1.78-1.56 (m, 4H), 0.97 (t, J = 7.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 156.2, 146.6, 146.1, 143.2, 128.9, 121.6, 117.4, 114.9, 105.6, 61.8,

56.0, 28.2, 26.8, 23.7, 21.8, 13.9, 13.8; **HRMS (EI**⁺): calcd for C₁₇H₂₃NO₃ 289.1678, found 289.1683; **IR (KBr, cm⁻¹):** 2962 and 1596.

6-Methoxy-3,4,8,9-tetrapropylfuro[2,3-*h*]isoquinoline (3ah')

R_f = 0.41 (20% ethyl acetate in *n*-hexane); brown solid; mp: 78-81 °C; ¹H NMR (400 MHz, CDCl₃): δ = 9.35 (s, 1H), 7.02 (s, 1H), 4.13 (s, 3H), 3.01-2.85 (m, 6H), 2.78 (t, *J* = 7.6 Hz, 2H), 1.83-1.67 (m, 8H), 1.11-0.95 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): δ = 155.8, 151.9, 148.4, 144.2, 142.5, 134.7, 128.2,

124.9, 118.3, 116.7, 96.8, 55.7, 37.6, 30.7, 28.2, 27.4, 23.7, 23.5, 23.1, 22.1, 14.7, 14.4, 14.0, 13.8; **HRMS (EI⁺):** calcd for C₂₄H₃₃NO₂ 367.2511, found 367.2510; **IR (KBr, cm⁻¹):** 3178 and 1612.

7-Methoxy-2,3-bis(methoxymethyl)benzofuran-4-carbaldehyde *O*-methyl oxime (3ai)

 R_f = 0.30 (30% ethyl acetate in *n*-hexane); yellow solid; mp: 110-112 °C; ¹H NMR (400 MHz, CDCl₃): δ = 9.18 (s, 1H), 7.64 (d, J = 8.0 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 4.67 (s, 2H), 4.35 (s, 2H), 4.12 (s, 3H), 3.89 (s, 3H), 3.47 (s, 3H), 3.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.3, 151.6, 141.0, 140.5, 132.3, 126.9, 121.6, 121.0, 66.9, 63.8,

63.5, 58.2, 57.9, 56.1; **HRMS (EI**⁺): calcd for C₁₅H₁₉NO₅ 293.1263, found 293.1260; **IR (KBr, cm⁻¹):** 2924, 2854, 1589 and 1458.

2,3-Diphenylbenzofuran-4-carbaldehyde O-methyl oxime (3ba)

R_f = 0.54 (20% ethyl acetate in *n*-hexane); yellow solid; mp: 115-118 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (d, J = 7.6 Hz, 1H), 7.74 (s, 1H), 7.59-7.27 (m, 12H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.0, 151.4, 145.5, 133.7, 130.4, 130.2, 129.4, 128.5, 128.4 (2C),

126.6, 125.7, 124.6, 120.4, 117.3, 112.1, 61.8; **HRMS (EI⁺):** calcd for C₂₂H₁₇NO₂ 327.1259, found 327.1266; **IR (KBr, cm⁻¹):** 2938 and 1596.

6,7-Dimethoxy-2,3-diphenylbenzofuran-4-carbaldehyde O-methyl oxime (3ca)

 R_f = 0.59 (30% ethyl acetate in *n*-hexane); orange solid; mp: 112-114 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.60 (s, 1H), 7.50-7.44 (m, 5H), 7.41-7.38 (m, 3H), 7.24-7.21 (m, 3H), 4.30 (s, 3H), 3.95 (s, 3H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 151.1, 148.9, 145.5, 145.1, 135.6, 133.6, 130.4, 130.2, 129.5, 128.6, 128.4, 128.3, 126.3, 125.5, 118.5, 117.3, 105.8, 61.8, 61.0, 57.0; HRMS (EI⁺):

calcd for C₂₄H₂₁NO₄ 387.1471, found 387.1470; **IR (KBr, cm⁻¹):** 2939, 1604, 1512 and 1250.

3da (with 60% debromination product)

 $R_f = 0.54$ (20 % ethyl acetate in *n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (s, 1H), 7.52-7.23 (m, 12H), 3.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =153.2, 153.0, 145.5, 133.5, 130.7, 130.1, 129.9, 128.7, 128.4, 127.7, 127.2, 125.2, 117.9, 117.8, 113.1, 61.6; HRMS (EI⁺):

calcd for C₂₂H₁₆BrNO₂ 405.0364, found 405.0358; **IR (KBr, cm⁻¹):** 3055, 2938 and 1604.

6-Methyl-2,3-diphenylbenzofuran-4-carbaldehyde O-methyl oxime (3ea)

R_f = 0.85 (50% ethyl acetate in *n*-hexane); pale yellow solid; mp: 111-113 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.69 (s, 1H), 7.56 (s, 1H), 7.50-7.47 (m, 5H), 7.41-7.39 (m, 2H), 7.37 (s, 1H), 7.25-7.22 (m, 3H), 3.83 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.5, 150.8, 145.7, 135.1, 133.9, 130.4, 129.4, 128.4, 128.2, 126.5, 125.0,

121.4, 117.3, 112.6, 61.8, 21.6; **HRMS (EI**⁺): calcd for C₂₃H₁₉NO₂ 341.1416, found 341.1416; **IR (KBr, cm⁻¹):** 2939 and 1604.

6-Methoxy-2,3-diphenylbenzofuran-4-carbaldehyde O-methyl oxime (3fa)

 R_f = 0.68 (30% Ethyl acetate in *n*-hexane); white solid; mp: 100-102 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.68 (s, 1H), 7.51-7.46 (m, 5H), 7.43-7.40 (m, 2H), 7.38 (d, *J* = 2.4 Hz, 1H), 7.26-7.23 (m, 3H), 7.13 (d, *J* = 2.4 Hz, 1H), 3.90 (s, 3H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =157.9, 155.1, 150.5, 145.1, 133.8, 130.4, 130.3, 129.3,

128.4, 128.3, 127.9, 126.2, 125.6, 122.9, 117.1, 107.3, 98.0, 61.9, 55.9; **HRMS (EI⁺):** calcd for C₂₃H₁₉NO₃ 357.1365, found 357.1363; **IR (KBr, cm⁻¹):** 3062, 2939 and 1620.

6-Bromo-2,3-diphenylbenzofuran-4-carbaldehyde O-methyl oxime (3ga)

R_f = 0.81 (30% ethyl acetate in *n*-hexane); white solid; mp: 112-115 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.87 (d, J = 1.6 Hz, 1H), 7.69 (d, J = 1.6 Hz, 1H), 7.60 (s, 1H), 7.51-7.46 (m, 5H), 7.39-7.37 (m, 2H), 7.26-7.24 (m, 3H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ

= 154.3, 152.0, 144.1, 133.1, 130.4, 129.8, 129.5, 128.7, 128.5, 127.8, 126.7, 123.3, 118.0, 117.2, 115.2, 62.1; **HRMS (EI**⁺): calcd for $C_{22}H_{16}BrNO_2$ 405.0364, found 405.0364; **IR (KBr, cm**⁻¹): 2276, 1736 and 1604.

7-Fluoro-2,3-diphenylbenzofuran-4-carbaldehyde O-methyl oxime (3ha)

 R_f = 0.82 (30% ethyl acetate in *n*-hexane); yellow solid; mp: 160-162 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.66 (quart, *J* = 4.4 Hz, 1H), 7.60 (s, 1H), 7.53-7.47 (m, 5H), 7.41-7.38 (m, 2H), 7.28-7.25 (m, 3H), 7.04 (m, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 152.4, 149.8, 147.3, 144.7, 141.0, 132.9, 131.9, 130.4, 129.7, 129.5,

128.9, 128.8, 128.5, 126.8, 121.7, 121.4, 121.3, 117.7, 111.4, 111.3, 61.9; **HRMS** (**EI**⁺): calcd for C₂₂H₁₆FNO₂ 345.1165, found 345.1162; **IR (KBr, cm⁻¹):** 2337, 1581 and 1396.

(2,3-Diphenylbenzofuran-4-yl)(phenyl)methanone O-methyl oxime (3ia)

 R_f = 0.63 (20% ethyl acetate in *n*-hexane); white solid; mp: 128-131°C; ¹H NMR (400 MHz, CDCl₃): δ = 7.63 (d, J = 8.0 Hz, 1H), 7.48-7.11 (m, 17H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.3, 154.0, 151.5, 133.3, 133.1, 130.9, 130.4, 130.3, 129.9, 128.8, 128.4, 128.3, 128.2, 127.5, 127.1, 127.0, 125.6, 124.2, 117.9, 111.7,

62.1; **HRMS (EI**⁺): calcd for C₂₈H₂₁NO₂ 403.1572, found 403.1563; **IR (KBr, cm⁻¹)**: 2931 and 1604.

1-(7-Methoxy-2,3-diphenylbenzofuran-4-yl)ethanone O-methyl oxime (3ja)

 R_f = 0.49 (20% ethyl acetate in *n*-hexane); white solid; mp: 129-131 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.58-7.25 (m, 10H), 7.07 (d, J = 8.0 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 4.07 (s, 3H), 3.72 (s, 3H), 1.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 155.6, 151.4, 145.7, 143.5, 133.4, 130.6, 130.4, 129.0, 128.5, 128.3, 128.2, 127.6, 127.2,

124.3, 124.0, 117.9, 106.5, 61.4, 56.3, 16.8; **HRMS (EI**⁺): calcd for C₂₄H₂₁NO₃ 371.1521, found 371.1511; **IR (KBr, cm⁻¹):** 2931 and 1619.

1-(2,3-Diphenylbenzofuran-4-yl)ethanone O-methyl oxime (3ka)

R_f = 0.64 (20% ethyl acetate in *n*-hexane); colorless oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.59-7.54 (m, 3H), 7.43-7.27 (m, 9H), 7.13 (d, *J* = 7.2 Hz, 1H), 3.72 (s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 155.6, 154.3, 133.6, 131.8, 130.6, 130.5, 128.5, 128.3, 127.6, 127.5, 127.0, 124.4, 123.2, 117.6, 111.5, 61.5, 16.7;

HRMS (EI⁺): calcd for C₂₃H₁₉NO₂ 341.1416, found 341.1407; **IR (KBr, cm⁻¹):** 2931 and 1604.

1,2-Diphenylanthra[**2,1-***b*]**furan-6,11-dione** *0,0***-dimethyl dioxime** (**3la**; mixture of isomers)

R_f = 0.51 (20% ethyl acetate in *n*-hexane); pale yellow oil; ¹H NMR for major isomer (400 MHz, CDCl₃): δ = 8.60 (t, J = 8.8 Hz, 1H), 8.02 (d, J = 8.8 Hz, 1H), 7.67-7.26 (m, 14H), 4.17 (s, 3H), 3.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 155.3, 155.1, 152.8, 147.2, 147.0, 145.0, 144.9, 134.9, 134.8, 134.2, 131.5, 130.5, 130.4, 130.3 (2C), 130.0, 129.8, 129.5, 129.2, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 128.0, 127.7, 127.6, 127.0,

126.9, 126.7, 126.3, 124.9, 124.8, 124.2, 121.4, 118.5, 118.4, 112.0, 110.9, 63.0, 62.9, 62.09, 62.04; **HRMS (EI**⁺): calcd for C₃₀H₂₂N₂O₃ 458.1630, found 458.1629; **IR (KBr, cm⁻¹):** 2931 and 1565.

1,2,7,8-Tetraphenylanthra[2,1-*b*:6,5-*b'*]difuran-6,12-dione *O*,*O*-dimethyl dioxime (3ma)

 R_f = 0.43 (20% ethyl acetate in *n*-hexane); yellow solid; mp: 311-314 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.03 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.54-7.29 (m, 20H), 3.28 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.9, 152.7, 145.2, 134.8, 130.5, 130.4, 128.9, 128.4, 128.3, 128.2, 127.7, 127.1, 125.3, 125.0, 118.4, 110.5, 62.1; HRMS (EI⁺): calcd for C₄₄H₃₀N₂O₄ 650.2206, found 650.2215; IR (KBr, cm⁻¹): 2933 and 1573.

1,2-Diphenyl-6*H*-indeno[5,4-b]furan-8(7*H*)-one *O*-methyl oxime (3na)

R_f = 0.66 (20% ethyl acetate in *n*-hexane); yellow solid; mp: 150-153 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.56-7.51 (m, 4H), 7.43-7.42 (m, 4H), 7.27-7.22 (m, 4H), 3.31 (s, 3H), 3.08 (t, *J*=6.4 Hz, 2H), 2.85-2.82 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 162.2, 153.7, 144.2, 135.3, 131.4, 130.7, 129.2, 128.2, 128.1, 127.9, 127.3, 126.8,

125.3, 125.1, 121.2, 118.9, 112.8, 61.4, 28.8, 26.3; **HRMS (EI⁺):** calcd for C₂₄H₁₉NO₂ 353.1416, found 353.1417; **IR (KBr, cm⁻¹):** 2931 and 1604.

1,2,7-Triphenyl-9*H*-furo[3,2-*f*]chromen-9-one *O*-methyl oxime (30a)

 R_f = 0.68 (20% ethyl acetate in *n*-hexane); white solid; mp: 199-202 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.89-7.87 (m, 2H), 7.64 (d, J = 8.8 Hz, 1H), 7.47-7.34 (m, 10H), 7.31 (d, J = 8.4 Hz, 1H), 7.26-7.25 (m, 3H), 7.02 (s, 1H), 3.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 153.8, 153.7, 151.5, 149.8, 143.1, 136.7, 132.7, 130.8, 129.9, 128.5, 128.2, 128.1, 127.8, 127.7, 127.5, 126.8, 125.4, 124.9, 123.6, 114.7, 113.3, 112.4,

93.8, 60.7; **HRMS (EI**⁺): calcd for C₃₀H₂₁NO₃ 443.1521, found 443.1520; **IR (KBr, cm**⁻¹): 2931 and 1643.

6-Methoxy-8,9-diphenyl-3,4-dipropylfuro[2,3-*h*]isoquinoline (4)

 R_f = 0.23 (20 % ethyl acetate in *n*-hexane); yellow solid; mp: 155-158 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.65 (s, 1H), 7.59-7.50 (m, 7H), 7.28-7.24 (m, 3H), 7.14 (s, 1H), 4.19 (s, 3H), 3.03-2.86 (m, 4H), 1.77-1.70 (m, 4H), 1.12 (t, *J* = 7.2 Hz, 3H), 1.01 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 152.5, 151.4, 148.4, 144.2, 142.5,

135.0, 133.8, 130.3, 129.7, 128.5, 128.4, 128.2, 128.1, 126.4, 126.2, 119.3, 118.1, 55.9, 37.6, 30.7, 23.7, 23.6, 14.7, 14.4; **HRMS (EI**⁺): calcd for C₃₀H₂₉NO₂435.2198, found 435.2196; **IR (KBr, cm⁻¹):** 2962 and 1612.

NOE and NOESY spectra of 3ag

NOE spectra of compound 3ag

NOESY spectra of compound 3ag

References

- 1. Dubost, E.; Fossey, C.; Cailly, T.; Rault, S.; Fabis, F. J. Org. Chem. 2011, 76, 6414 6420.
- 2. Léo, P.-M.; Morin, C.; Philouze, C. Org. Lett. 2002, 4, 2711-2714.
- 3. Laughrey, Z. R.; Gibb, C. L. D.; Senechal, T.; Gibb, B. C. *Chem. Eur. J.* **2003**, *9*, 130-139.
- 4. Lin, Y.-D.; Chien, C.-T.; Lin, S.-Y.; Chang, H.-H.; Liu, C.-Y.; Chow, T. J. J. *Photochem. Photobiol. A* **2011**, *222*, 192-202.
- 5. Yang, K.; Li, Z.; Wang, Z.; Yao, Z.; Jiang, S. Org. Lett. 2011, 13, 4340-4343.
- Nawrat, C. C.; Palmer, L. I.; Blake, A. J.; Moody, C. J. J. Org. Chem. 2013, 78, 5597-5603.
- Shioe, K.; Sahara, Y.; Horino, Y.; Harayama, T.; Takeuchi, Y.; Abe, H. *Tetrahedron* 2011, 67, 1960-1970.
- Jain, A. K.; Reddy, V. V.; Paul, A.; Muniyappa, K.; Bhattacharya, S. *Biochemistry* 2009, 48, 10693-10702.

1H and 13C NMR Spectra

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ spectra of compound 1a

¹H and ¹³C spectra of compound **1b**

S26

¹H and ¹³C spectra of compound **1**c

¹H and ¹³C spectra of compound **1d**

¹H and ¹³C spectra of compound **1e**

¹H and ¹³C spectra of compound **1f**

¹H and ¹³C spectra of compound **1g**

¹H and ¹³C spectra of compound **1h**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ spectra of compound 1i

¹H and ¹³C spectra of compound **1j**

¹H and ¹³C spectra of compound **1**k

¹H and ¹³C spectra of compound **11**

¹H and ¹³C spectra of compound **1m**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

¹H and ¹³C spectra of compound **1n**

¹H and ¹³C spectra of compound **10**

S40

¹H and ¹³C spectra of compound **3ab**

¹H and ¹³C spectra of compound **3ac**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

¹H and ¹³C spectra of compound **3ad**

¹H and ¹³C spectra of compound **3ae**

¹H and ¹³C spectra of compound **3ag**

¹H and ¹³C spectra of compound **3ah**

¹H and ¹³C spectra of compound **3ah'**

¹H and ¹³C spectra of compound **3ai**

¹H and ¹³C spectra of compound **3ba**

¹H and ¹³C spectra of compound **3ca**

¹H and ¹³C spectra of compound **3da**

¹H and ¹³C spectra of compound **3ea**

S54

¹H and ¹³C spectra of compound **3ha**

¹H and ¹³C spectra of compound **3ia**

¹H and ¹³C spectra of compound **3ja**

¹H and ¹³C spectra of compound **3ma**

¹H and ¹³C spectra of compound **30a**

¹H and ¹³C spectra of compound **4**

The X-ray structure

X-ray structure of 3aa

Table 1. Crystal data and structure refinement for mo_130319lt_0m (3aa).

mo_130319lt_0m	
C23 H19 N O3	
357.39	
100(2) K	
0.71073 Å	
Monoclinic	
P 1 21/c 1	
a = 11.2184(5) Å	α= 90°.
b = 11.0939(5) Å	β= 103.1300(10)°.
c = 15.1186(7) Å	$\gamma = 90^{\circ}$.
1832.41(14) Å ³	
4	
1.295 Mg/m ³	
0.086 mm ⁻¹	
	mo_130319lt_0m C23 H19 N O3 357.39 100(2) K 0.71073 Å Monoclinic P 1 21/c 1 a = 11.2184(5) Å b = 11.0939(5) Å c = 15.1186(7) Å 1832.41(14) Å ³ 4 1.295 Mg/m ³ 0.086 mm ⁻¹

F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 26.42° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole 752 0.30 x 0.28 x 0.26 mm³ 1.86 to 26.42°. -14<=h<=8, -13<=k<=13, -16<=l<=18 14922 3747 [R(int) = 0.0289] 99.6 % Semi-empirical from equivalents

0.9486 and 0.8897 Full-matrix least-squares on F² 3747 / 0 / 246 1.019 R1 = 0.0400, wR2 = 0.0983 R1 = 0.0506, wR2 = 0.1053 0.576 and -0.210 e.Å⁻³ X-ray structure of **3ga**

Table 1. Crystal data and structure refinement for	130931LT (3ga).		
Identification code	130931lt		
Empirical formula	C22 H16 Br N O2		
Formula weight	406.27		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 17.3636(16) Å	α= 90°.	
	b = 10.3459(9) Å	β= 92.111(2)°.	
	c = 9.9494(10) Å	$\gamma = 90^{\circ}$.	
Volume	1786.1(3) Å ³		
Ζ	4		
Density (calculated)	1.511 Mg/m ³		
Absorption coefficient	2.317 mm ⁻¹		
F(000)	824		
Crystal size	0.25 x 0.20 x 0.20 mm ³		

S67

Theta range for data collection	1.17 to 26.42°.
Index ranges	-21<=h<=21, -12<=k<=12, -12<=l<=12
Reflections collected	14119
Independent reflections	3664 [R(int) = 0.0353]
Completeness to theta = 26.42°	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9486 and 0.7854
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3664 / 0 / 236
Goodness-of-fit on F ²	1.130
Final R indices [I>2sigma(I)]	R1 = 0.0256, $wR2 = 0.0615$
R indices (all data)	R1 = 0.0388, wR2 = 0.0786
Largest diff. peak and hole	0.344 and -0.289 e.Å ⁻³

S69

Data / restraints / parameters	3428 / 0 / 227
Goodness-of-fit on F ²	1.031
Final R indices [I>2sigma(I)]	R1 = 0.0494, wR2 = 0.1252
R indices (all data)	R1 = 0.0723, wR2 = 0.1394
Largest diff. peak and hole	0.835 and -0.249 e.Å ⁻³