Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

SUPPLEMENTARY INFORMATION

Chemical and biological evaluation of unusual sugars, α-aculosides, as novel Michael acceptors

Hiromasa Ikeda, Erika Kaneko, Shunsuke Okuzawa, Daisuke Takahashi, and Kazunobu Toshima*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan. E-mail: toshima@applc.keio.ac.jp; Fax: +81 45-566-1576.

1.	General methods for chemical synthesis.	S2
2.	Synthesis of vineomycin B_2 trisaccharide analogues 1-5.	S2
3.	Synthesis of aculosides 12 and 13.	S8
4.	Michael reactions of 12-16 with 17-19.	S12
5.	Synthesis of coumarin- α -aculoside hybrid 29 .	S16
6.	Michael reaction of 29 with 17 .	S20
7.	Cell culture.	S20
8.	Cell cytotoxicity assay.	S21
9.	MALDI-TOF MS analysis.	S21
10.	Fluorescence microscopic analysis.	S21
11.	References.	S22
12.	¹ H- and ¹³ C-NMR spectra.	S23

General methods for chemical synthesis.

NMR spectra were recorded on a JEOL ECA-500 (500 MHz for ¹H, 125 MHz for ¹³C) and Varian MVX-300 (300 MHz for ¹H) spectrometer. ¹H-NMR data are reported as follows; chemical shift in parts par million (ppm) downfield or upfield from tetramethylsilane (δ 0.00), CDCl₃ (δ 7.26), integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, and m = multiplet) and coupling constants (Hz). ¹³C-NMR chemical shifts are reported in ppm downfield or upfield from CDCl₃ (δ 77.0). ESI-TOF Mass spectra were measured on a Waters LCT premier XE. MALDI TOF MS spectra were measured on a Bruker Ultra flex. Melting points were determined on a micro hot-stage (Yanako MP-S3). Optical rotations were measured on a JASCO P-2200 polarimeter. Silica gel TLC and column chromatography were performed using Merck TLC 60F-254 (0.25 mm) and Silica Gel 60 N (spherical, neutral, 63-210 µm) (Kanto Chemical Co., Inc.), respectively. Air- and/or moisture-sensitive reactions were carried out under an argon atmosphere using oven-dried glassware. In general, organic solvents were purified and dried using appropriate procedures, and evaporation and concentration were carried out under reduced pressure below 30 °C, unless otherwise noted.

<u>Synthesis of vineomycin B₂ trisaccharide analogues 1-5.</u> Compound 7

A suspension of **S1**¹⁾ (474 mg, 2.92 mmol) and Bu₂SnO (2.18 g, 8.76 mmol) in MeOH (9.48 mL) was refluxed for 2 h, and then the reaction mixture was concentrated in *vacuo*. To the residue in CH₂Cl₂ (9.48 mL) were added pyridine (946 μ L, 11.7 mmol) and ClAcCl (351 μ L, 4.38 mmol) at 0 °C. After being stirred at 0 °C for 1 h, the reaction mixture was quenched with H₂O (5 mL). The resulting mixture was extracted with EtOAc (5 mL × 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification of the residue by flash silica-gel column chromatography (3/1 *n*-hexane/EtOAc) gave **7** (236 mg, 0.991 mmol, 34% yield). Colorless syrup; *R_f* 0.47 (3/1 *n*-hexane/EtOAc); [α]²⁶_D +14.2° (*c* 0.8, CHCl₃); ¹H-NMR (300 MHz, CDCl₃, TMS) δ 5.18 (1H, ddd, *J*_{2ax,3} = 11.1 Hz, *J*_{3,4} = 9.3 Hz, *J*_{2eq,3} = 5.7 Hz, H-3), 4.75 (1H, m, H-1), 4.14 & 4.09 (2H, ABq, *J* = 15.0 Hz, ClAc), 3.75 (1H, dq, *J*_{4,5})

= 9.3 Hz, $J_{5,6}$ = 6.3 Hz, H-5), 3.34 (s, 3H, OMe), 3.30 (1H, dd, $J_{3,4}$ = $J_{4,5}$ = 9.3 Hz, H-4), 2.23 (1H, ddd, $J_{2ax,2eq}$ = 12.3 Hz, $J_{2eq,3}$ = 5.7 Hz, $J_{1,2eq}$ = 1.5 Hz, H-2eq), 1.78 (1H, ddd, $J_{2ax,2eq}$ = 12.3 Hz, $J_{2ax,3}$ = 11.1 Hz, $J_{1,2ax}$ = 3.9 Hz, H-2ax), 1.34 (3H, d, $J_{5,6}$ = 6.3 Hz, H-6); ¹³C-NMR (125 MHz, CDCl₃); 167.7, 97.8, 75.4, 64.6, 67.7, 54.7, 40.9, 35.0, 17.7; HRMS (ESI-TOF) *m*/*z* 261.0512 (261.0506 calcd for C₉H₁₅ClO₅Na, [M+Na]⁺).

Compound 1

A suspension of 6^{21} (13.3 mg, 39.8 µmol), 7 (6.3 mg, 26.5 µmol) and MS 4A (13.3 mg) in dry CH₂Cl₂ (532 µL) was stirred at room temperature for 30 min. And then, the suspension was cooled to -78 °C and stirred for 30 min at the same temperature. To the mixture were added NIS (17.9 mg, 79.6 µmol) and a solution of TfOH in CH₂Cl₂ (1.0 µL, 79.6 µmol) at -78 °C. The reaction temperature was gradually warmed to -40 °C during 2 h. After being stirred at -40 °C for 12 h, the reaction mixture was quenched with a solution of sat. NaHCO₃ aq. / sat. Na₂S₂O₃ aq. (1/1, 1 mL). The resulting mixture was extracted with EtOAc (2 mL × 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. The residue was subjected to flash silica-gel column chromatography (1/1 *n*-hexane/EtOAc) to give the crude product **8**.

To a solution of the above crude product **8** and 2,6-lutidine (11.1 µL, 95.2 µmol) in DMF (770 µL) was added thiourea (7.3 mg, 95.2 µmol). After being stirred at 60 °C for 3 h, the reaction mixture was quenched with H₂O (2 mL). The resulting mixture was extracted with EtOAc (2 mL × 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification of the residue by preparative TLC (1/1 *n*-hexane/EtOAc) gave **1** (6.7 mg, 17.4 µmol, 66% yield in 2 steps). Colorless syrup; R_f 0.42 (1/1 *n*-hexane/EtOAc)); $[\alpha]^{21}_{D}$ +43.5° (*c* 0.5, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 6.88 (1H, dd, $J_{2",3"}$ = 9.9 Hz, $J_{1",2"}$ = 3.5 Hz, H-2"), 6.11 (1H, m, H-3"), 5.24 (1H, d, $J_{1",2"}$ = 3.5 Hz, H-1"), 4.96 (1H, m, H-1'), 4.76 (1H, br s, H-1), 4.57 (1H, q, $J_{5",6"}$ = 6.5 Hz, H-5"), 4.21 (1H, dq, $J_{5',6'}$ = 6.5 Hz, $J_{4',5'}$ = 1.5 Hz, H-5'), 3.85 (1H, m, H-3), 3.69-3.63 (2H, m, H-4' & H-5), 3.33 (s, 3H, OMe), 2.98 (1H, m, H-4),

2.17 (1H, m, H-2eq), 2.15-1.50 (5H, m, H-2ax & H-2' & H-3'), 1.38 (3H, d, $J_{5",6"} = 6.5$ Hz, H-6"), 1.28-1.20 (6H, m, H-6 & H-6'); ¹³C-NMR (125 MHz, CDCl₃); 196.6, 142.8, 127.5, 120.1, 99.2, 98.3, 95.4, 89.1, 76.3, 70.7, 67.6, 65.5, 54.7, 36.7, 25.2, 24.4, 18.1, 17.0, 15.2; HRMS (ESI-TOF) *m/z* 387.2016 (387.2019 calcd for C₁₉H₃₁O₈, [M+H]⁺).

Compound 2

A suspension of **1** (5.5 mg, 14.2 µmol) and 10% Pd/C (2.8 mg) in EtOH (275 µL) was stirred under H₂ atmosphere (balloon) at room temperature for 8 h. The mixture was filtered through celite pad, and the filtrate was concentrated in *vacuo*. Purification of the residue by flash silica-gel column chromatography (1/1 *n*-hexane/EtOAc) gave **2** (4.2 mg, 10.8 µmol, 76% yield). Colorless syrup; R_f 0.25 (1/1 *n*-hexane/EtOAc); $[\alpha]^{24}_{\text{ D}}$ –98.2° (*c* 1.0, CHCl₃); ¹H-NMR (300 MHz, CDCl₃, TMS) δ 5.22 (1H, br d, *J* = 3.6 Hz, H-1"), 4.93 (1H, m, H-1'), 4.73 (1H, br d, *J* = 3.0 Hz, H-1), 4.35 (1H, m, H-5"), 4.22-4.10 (1H, m, H-5'), 3.84 (1H, ddd, $J_{2ax,3}$ = 11.5 Hz, $J_{3,4}$ = 9.2 Hz, $J_{2eq,3}$ = 5.4 Hz, H-3), 3.73-3.60 (2H, m, H-4' & H-5), 3.32 (s, 3H, OMe), 2.98 (1H, m, H-4), 2.57-1.50 (10H, m, H-2 & H-2' & H-2" & H-3' & H-3"), 1.33-1.08 (9H, m, H-6 & H-6' & H-6"); ¹³C-NMR (125 MHz, CDCl₃); 210.9, 99.3, 99.1, 98.3, 89.0, 74.8, 71.2, 67.9, 67.6, 65.5, 54.7, 36.6, 33.6, 28.4, 25.3, 24.5, 18.1, 17.0, 14.9; HRMS (ESI-TOF) *m*/*z* 411.2097 (411.2100 calcd for C₁₉H₃₂O₈Na, [M+Na]⁺).

Compound 3

A suspension of **1** (14.7 mg, 38.1 µmol) in dry CH₂Cl₂ (588 µL) was cooled to -78 °C and stirred for 30 min at the same temperature. To the mixture were added NaBH₄ (4.3 mg, 114 µmol) and 0.4 M CeCl₃ in MeOH (57.3 µL, 229 µmol) at -78 °C. The reaction temperature was gradually warmed to -60 °C during 15 min. After being stirred at -60 °C for 2 h, the reaction mixture was quenched with H₂O (2 mL). The resulting mixture was extracted with EtOAc (2 mL × 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification of the residue by flash silica-gel column chromatography (1/1 *n*-hexane/EtOAc) gave **3** (12.7 mg, 32.7 µmol, 86% yield). Colorless syrup; R_f 0.67 (1/1 *n*-hexane/EtOAc); [α]²⁵_D -1.9° (*c* 0.6, CHCl₃); ¹H-NMR (300 MHz, CDCl₃, TMS) δ 5.96-5.77 (2H, m, H-2" & H-3"), 4.98-4.71 (3H, m, H-1 & H-1" & H-1"), 4.22-3.42 (6H, m, H-3 & H-4" & H-4" & H-5 & H-5° & H-5"), 3.32 (s, 3H, OMe), 3.29 (1H, m, H-4), 2.21 (1H, m, H-2eq), 2.07-1.50 (5H, m, H-2ax & H-2' & H-3') , 1.40-1.03 (9H, m, H-6 & H-6' & H-6''); ¹³C-NMR (125 MHz, CDCl₃); 133.4, 126.6, 99.3, 98.3, 96.6, 89.0, 75.7, 69.7, 68.3, 68.0, 67.6, 65.6, 54.8, 36.7, 25.2, 24.8, 18.1, 18.0, 17.1; HRMS (ESI-TOF) *m*/z 411.1988 (411.1995 calcd for C₁₉H₃₂O₈Na, [M+Na]⁺).

Compound 4

To a solution of **3** (8.3 mg, 21.4 µmol) in CH₂Cl₂ (332 µL) were added *o*-nitrobenzene sulfonylhydrazide (28.0 mg, 129 µmol) and Et₃N (23.8 µl, 171 µmol). After being stirred at room temperature for 12 h, the reaction mixture was quenched with H₂O (2 mL). The resulting mixture was extracted with EtOAc (2 mL × 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification of the residue by preparative TLC (1/1 *n*-hexane/EtOAc) gave **4** (6.3 mg, 16.1 µmol, 75% yield). Colorless syrup; R_f 0.25 (1/1 *n*-hexane/EtOAc); $[\alpha]^{21}_{D}$ –36.2° (*c* 0.7, CHCl₃); ¹H-NMR (300 MHz, CDCl₃, TMS) δ 4.98 (1H, br d, J = 3.6 Hz, H-1"), 4.92 (1H, m, H-1'), 4.73 (1H, br d, J = 3.0 Hz, H-1), 4.16 (1H, m, H-5'), 3.83 (1H, m, H-3), 3.90-3.51 (3H, m, H-4" & H-5 & H-5"), 3.32 (s, 3H, OMe), 3.29 (1H, m, H-4'), 2.97 (1H, m, H-4), 2.23-1.51 (10H, m, H-2 & H-2" & H-2" & H-3" & H-3"),

1.38-1.08 (9H, m, H-6 & H-6' & H-6''); ¹³C-NMR (125 MHz, CDCl₃); 99.3, 98.7, 98.3, 89.0, 74.5, 72.2, 70.3, 68.2, 67.6, 65.5, 54.7, 36.7, 29.8, 27.9, 25.4, 24.3, 18.1, 17.8, 17.0; HRMS (ESI-TOF) m/z 413.2133 (413.2155 calcd for C₁₉H₃₄O₈Na, [M+Na]⁺).

Compound 10

A suspension of 9^{2} (17.7 mg, 48.5 μ mol), 7 (7.7 mg, 32.3 μ mol) and MS 4A (17.6 mg) in dry CH₂Cl₂ (708 µL) was stirred at room temperature for 30 min. And then, the suspension was cooled to -78 °C and stirred for 30 min at the same temperature. To the mixture were added NIS (21.8 mg, 97.0 mmol) and a solution of TfOH in CH₂Cl₂ (1.0 μ L, 0.97 mM) at -78 °C. The reaction mixture was gradually warmed to -40 °C during 2 h. After being stirred at -40 °C for 12 h, the reaction mixture was quenched with a solution of sat. NaHCO₃ aq./sat. Na₂S₂O₃ aq. (1/1, 2 mL). The resulting mixture was extracted with EtOAc (2 mL \times 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification of the residue by flash silica-gel column chromatography (3/1 *n*-hexane-EtOAc) gave 10 (13.1 mg, 26.6 µmol, 83% yield). Colorless syrup; R_f 0.67 (3/1 *n*-hexane-EtOAc); $[\alpha]_{D}^{21}$ +28.3° (c 0.9, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) & 7.86-7.70 (4H, m, ArH), 7.52-7.44 (3H, m, ArH), 5.26 (1H, ddd, $J_{2ax,3} = 11.4$ Hz, $J_{3,4} = 9.3$ Hz, $J_{2eq,3} = 5.4$ Hz, H-3), 4.94 (1H, br s, H-1'), 4.72 (1H, br d, J = 3.3 Hz, H-1), 4.14 & 4.09 (2H, ABq, J = 12.3 Hz, ArCH₂), 4.14 & 4.04 (2H, ABq, J = 14.9 Hz, ClAc), 3.97-3.92 (1H, m, H-5'), 3.75 (1H, dq, $J_{4,5} = 9.2$ Hz, $J_{5,6} = 6.5$ Hz, H-5), 3.31 (3H, s, OMe), 3.30 (2H, m, H-4 & H-4'), 2.23 (1H, m, H-2eq), 2.10-1.46 (5H, m, H-2ax & H-2' & H-3'), 1.29 (3H, d, $J_{5,6} = 6.5$ Hz, H-6), 1.18 (3H, d, $J_{5',6'} = 6.5$ Hz, H-6'); ¹³C-NMR (125) MHz, CDCl₃); 167.6, 136.8, 134.0, 133.8, 129.0, 128.7, 128.5, 127.0, 126.9×2, 126.7, 99.8, 98.5, 82.4, 74.3, 73.6, 72.0, 68.4, 67.5, 55.5, 42.1, 36.1, 25.6, 21.8, 19.2, 18.1; HRMS (ESI-TOF) m/z 515.1915 (515.1923 calcd for $C_{26}H_{33}ClO_7Na$, $[M+Na]^+$).

Compound 11

To a two-phase mixture of **10** (20.0 mg, 40.6 µmol) in CH₂Cl₂ (4.06 mL) and 0.1 M phosphate buffer (pH 7.2, 5.08 mL) was added DDQ (18.4 mg, 81.2 µmol). After being stirred at room temperature for 12 h, the reaction mixture was quenched with sat. NaHCO₃ aq. (5 mL). The resulting mixture was extracted with CHCl₃ (5 mL × 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification of the residue by flash column chromatography (1/1 *n*-hexane-EtOAc) gave **11** (8.7 mg, 24.8 µmol, 61 % yield). Colorless syrup; R_f 0.10 (1/1 *n*-hexane/EtOAc); [α]²³_D +21.4° (*c* 0.5, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 5.27 (1H, ddd, $J_{2ax,3}$ = 11.5 Hz, $J_{3,4}$ = 9.2 Hz, $J_{2eq,3}$ = 5.5 Hz, H-3), 4.92 (1H, br s, H-1'), 4.72 (1H, br d, *J* = 2.5 Hz, H-1), 4.09 & 4.06 (2H, ABq, *J* = 15.0 Hz, CIAc), 4.02-3.97 (1H, m, H-5'), 3.75 (1H, dq, $J_{4,5}$ = 9.2 Hz, $J_{5,6}$ = 6.5 Hz, H-5), 3.55 (1H, m, H-4'), 3.30 (s, 3H, OMe), 2.23 (1H, ddd, $J_{2ax,2eq}$ = 13.0 Hz, $J_{2eq,3}$ = 5.5 Hz, $J_{1,2eq}$ = 1.0 Hz, H-2eq), 2.02-1.48 (5H, m, H-2ax & H-2' & H-3'), 1.29 (3H, d, $J_{5,6}$ = 6.5 Hz, H-6), 1.13 (3H, d, $J_{5',6'}$ = 6.5 Hz, H-6'); ¹³C-NMR (125 MHz, CDCl₃); 166.7, 98.8, 97.7, 81.6, 72.9, 67.4, 67.2, 66.6, 54.7, 41.2, 35.2, 25.4, 24.2, 18.4, 17.0; HRMS (ESI-TOF) *m*/z 375.1289 (375.1291 calcd for C₁₅H₂₅ClO₇Na, [M+Na]⁺).

Compound 5

To a solution of **11** (14.3 mg, 40.6 µmol) and 2,6-lutidine (18.8 µL, 162 µmol) in DMF (204 µL) was added thiourea (12.3 mg, 162 µmol). After being stirred at 60 °C for 3 h, the reaction mixture was quenched with H₂O (1 mL). The resulting mixture was extracted with EtOAc (2 mL × 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification of the residue by preparative TLC (10/1 CHCl₃/MeOH) gave **5** (7.2 mg, 26.0 µmol, 64% yield). Colorless syrup; R_f 0.67 (10/1 CHCl₃/MeOH); [α]²³_D +25.6° (*c* 0.5, CHCl₃);

¹H-NMR (300 MHz, CDCl₃, TMS) δ 4.94 (1H, br s, H-1'), 4.74 (1H, br d, J = 3.3 Hz, H-1), 4.21 (1H, m, H-5'), 3.85 (1H, ddd, $J_{2ax,3} = 11.5$ Hz, $J_{3,4} = 9.2$ Hz, $J_{2eq,3} = 5.4$ Hz, H-3), 3.75 (2H, m, H-5 & H-4'), 3.31 (s, 3H, OMe), 2.98 (1H, m, H-4), 2.18 (1H, m, H-2eq), 2.06-1.50 (5H, m, H-2ax & H-2' & H-3'), 1.35-1.20 (6H, m, H-6 & H-6'); ¹³C-NMR (125 MHz, CDCl₃); 99.4, 98.3, 89.2, 68.0, 67.6, 67.4, 65.5, 54.7, 36.7, 25.5, 24.3, 18.1, 17.0; HRMS (ESI-TOF) *m/z* 299.1573 (299.1570 calcd for C₁₃H₂₅O₆Na, [M+Na]⁺).

Synthesis of aculosides 12 and 13.

Scheme S1. Synthesis of aculosides 12 and 13.

Compounds S2 and S3

To a solution of 30^{3} (11.6 g, 54.0 mmol) and 3-pentanol (29.1 mL, 270 mmol) in dry CH₂Cl₂ (350 mL) was added BF₃·Et₂O (6.84 mL, 54.0 mmol) at 0 °C. After being stirred at room

temperature for 3.5 h, the reaction mixture was quenched with sat. NaHCO₃ aq. (100 mL). The resulting mixture was extracted with $CHCl_3$ (300 mL \times 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification of the residue by flash silica-gel column chromatography (80/1 CHCl₃/EtOAc) gave S2 (9.34 g, 38.6 mmol, 72% yield) and S3 (653 mg, 2.70 mmol, 5% yield). S2: Colorless syrup; R_f 0.61 (3/1 *n*-hexane/EtOAc); $[\alpha]^{27}_{D}$ –144° (c 0.88, CHCl₃); ¹H-NMR (300 MHz, CDCl₃, TMS) δ 5.80 (2H, m, H-2 & H-3), 5.04 (2H, m, H-1 & H-4), 4.03 (1H, dq, $J_{4,5} = 9.0$ Hz, $J_{5,6} = 6.3$ Hz, H-5), 3.54 (1H, quin, $J_{1',2'} =$ 6.0 Hz, H-1'), 2.08 (3H, s, Ac), 1.59-1.48 (4H, m, H-2'), 1.21 (3H, d, J_{5.6} = 6.3 Hz, H-6), δ0.95 & 0.90 (each 3H, t, $J_{2',3'}$ = 7.5 Hz, H-3'); ¹³C-NMR (125 MHz, CDCl₃); δ 170.5, 129.4, 128.1, 93.4, 81.0, 70.9, 64.7, 27.3, 26.4, 21.1, 17.8, 9.9, 9.5; HRMS (ESI-TOF) m/z 265.1410 $(265.1416 \text{ calcd. for } C_{13}H_{22}O_4Na, [M+Na]^+)$. **S3**: Colorless syrup; $R_f 0.61 (3/1 n-\text{hexane/EtOAc})$; $[\alpha]^{28}_{D}$ -85.4° (c 0.72, CHCl₃); ¹H-NMR (300 MHz, CDCl₃, TMS) δ 5.89 (2H, m, H-2 & H-3), 5.17 (1H, d, $J_{1,2} = 1.5$ Hz, H-1), 5.06 (1H, dd, $J_{4,5} = 6.3$ Hz, $J_{3,4} = 1.8$ Hz, H-4), 3.83 (1H, dq, $J_{4,5} = 6.3$ Hz, $J_{3,4} = 1.8$ Hz, H-4), 3.83 (1H, dq, $J_{4,5} = 6.3$ Hz, $J_{3,4} = 1.8$ Hz, H-4), 3.83 (1H, dq, $J_{4,5} = 6.3$ Hz, $J_{3,4} = 1.8$ Hz, H-4), 3.83 (1H, dq, $J_{4,5} = 6.3$ Hz, $J_{3,4} = 1.8$ Hz, H-4), 3.83 (1H, dq, $J_{4,5} = 6.3$ Hz, $J_{3,4} = 1.8$ Hz, H-4), 3.83 (1H, dq, $J_{4,5} = 6.3$ Hz, $J_{3,4} = 1.8$ Hz, H-4), 3.83 (1H, dq, $J_{4,5} = 6.3$ Hz, $J_{3,4} = 1.8$ Hz, H-4), 3.83 (1H, dq, $J_{4,5} = 6.3$ Hz, $J_{3,4} = 1.8$ Hz, H-4), 3.83 (1H, dq, $J_{4,5} = 6.3$ Hz, $J_{3,4} = 1.8$ Hz, H-4), 3.83 (1H, dq, $J_{4,5} = 6.3$ Hz, $J_{3,4} = 1.8$ Hz, H-4), 3.83 (1H, dq, $J_{4,5} = 6.3$ Hz, $J_{3,4} = 1.8$ Hz, $J_{3,4} = 1$ $= J_{5,6} = 6.3$ Hz, H-5), 3.59 (1H, quin, $J_{1',2'} = 6.0$ Hz, H-1'), 2.08 (3H, s, Ac), 1.65-1.48 (4H, m, H-2'), 1.30 (3H, d, $J_{5,6} = 6.3$ Hz, H-6), 0.91 & 0.90 (each 3H, t, $J_{2',3'} = 7.8$ Hz, H-3'); ¹³C-NMR (125 MHz, CDCl₃); δ 170.5, 131.3, 127.2, 95.4, 81.1, 71.1, 69.8, 27.1, 25.8, 21.1, 18.7, 9.8, 9.3; HRMS (ESI-TOF) m/z 265.1427 (265.1416 calcd. for $C_{13}H_{22}O_4Na$, $[M+Na]^+$).

Compound S4

To a solution of **S2** (2.00 g, 8.26 mmol) in MeOH (38.7 mL) was added 0.2 M NaOMe in MeOH (41.3 mL, 8.26 mmol) at room temperature. After being stirred at room temperature for 1.5 h, the reaction mixture was quenched with Amberlite[®] IR 120 H⁺ form. The resulting suspension was filtered, and then the filtrate was concentrated in *vacuo*. Purification of the residue by silica-gel column chromatography (2/1 *n*-hexane/EtOAc) gave **S4** (1.68 g, 8.01 mmol, 97% yield). Colorless syrup; R_f 0.51 (2/1 *n*-hexane/EtOAc); $[\alpha]^{26}_{\text{ D}}$ -69.5° (*c* 0.60, CHCl₃); ¹H-NMR (300 MHz, CDCl₃, TMS) δ 5.96-5.88 (1H, m, H-2), 5.78-5.72 (1H, m, H-3), 5.01 (1H, m, H-1), 3.86-3.71 (2H, m, H-4 & H-1'), 3.54 (1H, dq, $J_{4,5}$ = 6.9 Hz, $J_{5,6}$ = 5.7 Hz, H-5), 1.58-1.47 (4H, m, H-2'), 1.31 (3H, d, $J_{5,6}$ = 5.7 Hz, H-6), 0.95 & 0.90 (each 3H, t, $J_{2',3'}$ = 7.5 Hz,

H-3'); ¹³C-NMR (125 MHz, CDCl₃); δ 133.3, 127.0, 93.4, 81.0, 69.7, 68.0, 27.3, 26.5, 17.8, 10.0, 9.5; HRMS (ESI-TOF) *m*/*z* 223.1307 (223.1310 calcd. for C₁₁H₂₀O₃Na, [M+Na]⁺).

Compound 12

To a solution of **S4** (1.63 g, 8.14 mmol) in dry CH₂Cl₂ (65.0 mL) was added MnO₂ (7.08 g, 81.4 mmol) at room temperature. After being stirred at room temperature for 41 h, the mixture was filtered through a pad of Celite. The filtrate was concentrated in *vacuo*. Purification of the residue by silica-gel column chromatography (8/1 *n*-hexane/EtOAc) gave **12** (1.34 g, 6.76 mmol, 83% yield). Colorless syrup; R_f 0.84 (2/1 *n*-hexane/EtOAc); $[\alpha]^{24}_{D}$ –16.3° (*c* 0.55, CHCl₃); ¹H-NMR (300 MHz, CDCl₃, TMS) δ 6.82 (1H, dd, $J_{2,3}$ = 10.2 Hz, $J_{1,2}$ = 3.3 Hz, H-2), 6.06 (1H, d, $J_{2,3}$ = 10.2 Hz, H-3), 5.26 (1H, d, $J_{1,2}$ = 3.3 Hz, H-1), 4.62 (1H, q, $J_{5,6}$ = 6.9 Hz, H-5), 3.63 (1H, quin, $J_{1',2'}$ = 5.7 Hz, H-1'), 1.63-1.54 (4H, m, H-2'), 1.37 (3H, d, $J_{5,6}$ = 6.9 Hz, H-6), 0.95 & 0.92 (each 3H, t, $J_{2',3'}$ = 7.5 Hz, H-3'); ¹³C-NMR (125 MHz, CDCl₃); δ 197.3, 143.9, 127.0, 92.3, 81.6, 70.3, 64.7, 27.0, 26.0, 15.1, 9.8, 9.3; HRMS (ESI-TOF) *m/z* 199.1344 (199.1334 calcd. for C₁₁H₁₉O₃, [M+H]⁺).

Compound S5

To a solution of **S3** (620 mg, 2.56 mmol) in MeOH (12.0 mL) was added 0.2 M NaOMe in MeOH (12.8 mL, 2.56 mmol) at room temperature. After being stirred at room temperature for 2.5 h, the reaction mixture was quenched with Amberlite[®] IR 120 H⁺ form. The resulting suspension was filtered, and then the filtrate was concentrated in *vacuo*. Purification of the

residue by silica-gel column chromatography (2/1 *n*-hexane/EtOAc) gave **S5** (472 mg, 2.36 mmol, 92% yield). Colorless syrup; R_f 0.51 (2/1 *n*-hexane/EtOAc); $[\alpha]^{26}{}_{\rm D}$ -13.1° (*c* 1.0, CHCl₃); ¹H-NMR (300 MHz, CDCl₃, TMS) δ 5.95-5.89 (1H, m, H-2), 5.79-5.75 (1H, m, H-3), 5.14 (1H, m, H-1), 3.98-3.88 (1H, m, H-4), 3.58 (2H, m, H-5 & H-1'), 1.67-1.50 (4H, m, H-2'), 1.35 (3H, d, $J_{5,6} = 6.3$ Hz, H-6), 0.91 & 0.90 (each 3H, t, $J_{2',3'} = 7.2$ Hz, H-3'); ¹³C-NMR (125 MHz, CDCl₃); δ 131.7, 129.7, 96.2, 81.3, 74.3, 68.7, 27.2, 26.0, 18.4, 9.8, 9.3; HRMS (ESI-TOF) *m*/*z* 223.1314 (223.1310 calcd. for C₁₁H_{'0}O₃Na, [M+Na]⁺).

Compound 13

To a solution of **S5** (472 mg, 2.36 mmol) in dry CH₂Cl₂ (18.0 mL) was added MnO₂ (2.05 g, 23.6 mmol) at room temperature. After being stirred at room temperature for 22 h, the mixture was filtered through a pad of Celite. The filtrate was concentrated in *vacuo*. Purification of the residue by silica-gel column chromatography (8/1 *n*-hexane/EtOAc) gave **13** (248 mg, 12.5 mmol, 53% yield). Colorless syrup; R_f 0.84 (2/1 *n*-hexane/EtOAc); $[\alpha]_{D}^{28}$ –2.2° (*c* 0.28, CHCl₃); ¹H-NMR (300 MHz, CDCl₃, TMS) δ 6.89 (1H, dd, $J_{2,3}$ = 10.5 Hz, $J_{1,2}$ = 1.8 Hz, H-2), 6.11 (1H, dd, $J_{2,3}$ = 10.5 Hz, $J_{1,3}$ = 1.5 Hz, H-3), 5.40-5.38 (1H, m, H-1), 4.16 (1H, q, $J_{5,6}$ = 6.6 Hz, H-5), 3.67 (1H, quin, $J_{1',2'}$ = 6.0 Hz, H-1'), 1.68-1.53 (4H, m, H-2'), 1.46 (3H, d, $J_{5,6}$ = 6.6 Hz, H-6), 0.95 & 0.92 (each 3H, t, $J_{2',3'}$ = 7.5 Hz, H-3'); ¹³C-NMR (125 MHz, CDCl₃); δ 197.1, 147.9, 128.1, 95.2, 82.0, 75.1, 27.0, 25.7, 16.8, 9.6, 9.2; HRMS (ESI-TOF) *m*/*z* 199.1333 (199.1334 calcd. for C₁₁H₁₉O₃, [M+H]⁺).

Michael reactions of 12-16 with 17-19.

Scheme S2. Michael reactions of 12-16 with 17.

Compound 20

To a solution of **17** (24.5 mg, 104 µmol) in DMF (2.12 mL)/phosphate buffer (0.1 M, pH 7.4, 7.28 mL) was added 12 in DMF (1.00 mL, 104 µmol) at 37 °C. After being stirred at 37 °C for 1 min, the reaction mixture was quenched with 2-iodoacetamide⁴⁾ (96.2 mg, 520 µmol). The resulting mixture was stirred at 37 °C for 10 min, and then poured into sat. Na₂S₂O₃ aq. (25 mL). The resulting mixture was extracted with EtOAc (25 mL \times 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification of the residue by silica-gel column chromatography (3/1 n-hexane/EtOAc) gave 20 as a mixture of inseparable diastereomers (36.0 mg, 83.2 μ mol, 80% yield, 13/1 dr). White solid; R_f 0.47 (3/1 *n*-hexane/EtOAc); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 5.46 (13/14H, d, J = 7.7 Hz, NH), 5.38-5.30 (1/14H, d, J = 6.6 Hz, NH), 5.02 (1/14H, d, J_{1,2} = 2.6 Hz, H-1), 4.99 (13/14H, d, J_{1,2} = 5.2 Hz, H-1), 4.61-4.48 (1H, m, H-α), 4.30 (1/14H, m, H-5), 4.24 (13/14H, q, *J*_{5,6} = 6.9 Hz, H-5), 3.76 (3H, s, CO₂Me), 3.65-3.58 (1H, m, H-1'), 3.20-2.95 (3H, m, H-β & H-2), 2.87-2.69 (1/7H, m, H-3), 2.74 (13/14H, dd, $J_{3a,3b} = 16.1$ Hz, $J_{2,3a} = 4.6$ Hz, H-3a), 2.58 (13/14H, dd, $J_{3a,3b} = 16.1$ Hz, J_{2,3b} = 10.3 Hz, H-3b), 1.65-1.53 (4H, m, H-2'), 1.45 (9H, s, Boc), 1.28 (39/14H, d, J_{5,6} = 6.9 Hz, H-6), 1.27 (3/14H, m, H-6), 0.99-0.82 (3/7H, m, H-3'), 0.93 (39/7H, t, J_{2',3'} = 7.5 Hz, H-3'); ¹³C-NMR (125 MHz, CDCl₃), major isomer; δ 208.9, 171.1, 155.1, 99.9, 80.2, 79.9, 71.1, 53.6, 52.6, 44.6, 41.0, 33.7, 28.3, 26.7, 25.5, 14.8, 9.9, 9.3; HRMS (ESI-TOF) m/z 456.2020 $(456.2032 \text{ calcd. for } C_{20}H_{35}NO_7NaS, [M+Na]^+).$

Compound 21

To a solution of **17** (24.5 mg, 104 µmol) in DMF (2.12 mL)/phosphate buffer (0.1 M, pH 7.4, 7.28 mL) was added **13** in DMF (1.00 mL, 104 µmol) at 37 °C. After being stirred at 37 °C for 1 min, the reaction mixture was quenched with 2-iodoacetamide (96.2 mg, 520 µmol). The resulting mixture was stirred at 37 °C for 10 min, and then poured into sat. Na₂S₂O₃ aq. (25 mL). The resulting mixture was extracted with EtOAc (25 mL × 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification of the residue by silica-gel column chromatography (3/1 *n*-hexane/EtOAc) gave **21** as a mixture of diastereomers (30.2 mg, 69.7 µmol, 67% yield, 4/1 dr). Colorless syrup; R_f 0.47 (major isomer), 0.41 (minor isomer) (3/1 *n*-hexane/EtOAc); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 5.43-5.37 (1/5H, m, NH),

5.30 (4/5H, d, J = 7.5 Hz, NH), 5.10 (1/5H, d, $J_{1,2} = 2.1$ Hz, H-1), 4.75 (4/5H, d, $J_{1,2} = 7.7$ Hz, H-1), 4.59-4.50 (1H, m, H- α), 4.09 (1/5H, q, $J_{5,6} = 6.9$ Hz, H-5), 4.00 (4/5H, q, $J_{5,6} = 6.9$ Hz, H-5), 3.76 (3/5H, s, CO₂Me), 3.75 (12/5H, s, CO₂Me), 3.65-3.59 (1H, m, H-1'), 3.39-3.33 (1/5H, m, H-2), 3.39-3.27 (4/5H, dd, $J_{\beta a,\beta b} = 13.8$ Hz, $J_{\alpha,\beta a} = 4.3$ Hz, H- βa), 3.26-3.18 (4/5H, m, H-2), 3.07 (2/5H, d, $J_{a,\beta} = 5.1$ Hz, H- β), 2.95 (4/5H, dd, $J_{\beta a,\beta b} = 13.8$ Hz, $J_{\alpha,\beta b} = 6.3$ Hz, H- βb), 2.88 (4/5H, dd, $J_{3a,3b} = 16.6$ Hz, $J_{2,3a} = 6.3$ Hz, H-3a), 2.75 (2/5H, d, $J_{2,3} = 7.8$ Hz, H-3), 2.29 (4/5H, dd, $J_{3a,3b} = 16.6$ Hz, $J_{2,3b} = 11.5$ Hz, H-3b), 1.68-1.51 (4H, m, H-2'), 1.45 (9H, s, Boc), 1.33 (3/5H, d, $J_{5,6} = 6.9$ Hz, H-6), 1.31 (12/5H, d, $J_{5,6} = 6.9$ Hz, H-6), 0.95 & 0.91 (each 12/5H, t, $J_{2',3'}$ = 7.4 Hz, H-3'), 0.95-0.85 (6/5H, m, H-3'); ¹³C-NMR (125 MHz, CDCl₃), major isomer; δ 205.3, 171.4, 155.1, 103.4, 80.9, 80.2, 76.3, 53.0, 52.5, 45.1, 42.0, 34.7, 28.3, 26.7, 25.4, 15.4, 9.5, 9.3; HRMS (ESI-TOF) *m*/z 456.2034 (456.2032 calcd. for C₂₀H₃₅NO₇NaS, [M+Na]⁺).

Compound 22

To a solution of **17** (24.5 mg, 104 µmol) in DMF (2.12 mL)/phosphate buffer (0.1 M, pH 7.4, 7.28 mL) was added **14** in DMF (1.00 mL, 104 µmol) at 37 °C. After being stirred at 37 °C for 1 min, the reaction mixture was quenched with 2-iodoacetamide (96.2 mg, 520 µmol). The resulting mixture was stirred at 37 °C for 10 min, and then poured into sat. Na₂S₂O₃ aq. (25 mL). The resulting mixture was extracted with EtOAc (25 mL × 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification of the residue by silica-gel column chromatography (1/1 *n*-hexane/EtOAc) gave **22** as a mixture of inseparable diastereomers (35.6 mg, 98.8 µmol, 95% yield, 7/5 dr). White solid; *R_f* 0.49 (1/1 *n*-hexane/EtOAc) ; ¹H-NMR (500 MHz, CDCl₃, TMS) δ 5.56 (5/12H, d, *J* = 7.8 Hz, NH), 5.35 (7/12H, d, *J* = 7.8 Hz, NH), 4.64 (1H, m, H- α), 3.91 (7/12H, m, H-3), 3.82 (5/12H, m, H-3), 3.79 (3H, s, CO₂Me), 3.57 (2H, q, *J*_{1',2'} = 7.2 Hz, H-1'), 3.57 (7/12H, m, H-βa), 3.42 (5/12H, dd, *J*_{βa,βb} = 14.1 Hz, *J*_{a,βa} = 5.4 Hz, H-βa), 3.17 (5/12H, dd, *J*_{βa,βb} = 13.8 Hz, *J*_{a,βb} = 13.8 Hz, *J*_{a,4a} = 18.9 Hz, *J*_{3,4a} = 9.3 Hz, H-4a), 3.10 (5/12H, dd, *J*_{4a,4b} = 18.9 Hz, *J*_{3,4a} = 9.0 Hz, H-4a), 2.98 (7/12H, dd, *J*_{βa,βb} = 13.8 Hz, *J*_{a,βa} = 7.8 Hz, H-βb), 2.46 (5/12H, dd, *J*_{4a,4b} = 18.9 Hz, *J*_{3,4a} = 8.9 Hz, *J*_{3,4b} = 13.9 Hz, H-4b), 1.46 (9H,

s, Boc), 1.18 (3H, t, $J_{1',2'}$ = 7.2 Hz, H-2'); ¹³C-NMR (125 MHz, CDCl₃); δ 176.4, 176.2, 174.2, 174.1, 171.3, 155.3, 155.1, 80.3, 53.5, 52.8, 52.7, 52.5, 39.1, 38.4, 36.0, 35.6, 34.5, 34.1, 34.0, 28.2, 12.8; HRMS (ESI-TOF) *m*/*z* 383.1250 (383.1253 calcd. for C₁₅H₂₄N₂O₆NaS, [M+Na]⁺).

Compound 23

To a solution of **17** (24.5 mg, 104 µmol) in DMF (2.12 mL)/phosphate buffer (0.1 M, pH 7.4, 7.28 mL) was added **15** in DMF (1.00 mL, 104 µmol) at 37 °C. After being stirred at 37 °C for 1 min, the reaction mixture was quenched with 2-iodoacetamide (96.2 mg, 520 µmol). The resulting mixture was stirred at 37 °C for 10 min, and then poured into sat. Na₂S₂O₃ aq. (25 mL). The resulting mixture was extracted with EtOAc (25 mL × 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification of the residue by silica-gel column chromatography (3/2 *n*-hexane/EtOAc) gave **23** as a mixture of inseparable diastereomers (15.5 mg, 46.8 µmol, 45% yield, 1/1 dr). White solid; *R_f* 0.47 (3/2 *n*-hexane/EtOAc); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 5.39-5.28 (1H, m, NH), 4.60-4.51 (1H, m, H-a), 3.77 (3H, s, CO₂Me), 3.15-3.06 (1H, m, H-3), 3.06-2.94 (2H, m, H- β), 2.73-2.66 (1H, m, H-2a), 2.38-2.26 (3H, m, H-2b & H-6), 2.17-2.08 (2H, m, H-5), 1.75-1.67 (2H, m, H-4), 1.26 (9H, s, Boc); ¹³C-NMR (125 MHz, CDCl₃); δ 208.2, 171.2, 155.0, 80.2, 53.3, 53.2, 52.6×2, 47.8, 43.1×2, 40.8×2, 32.8, 32.6, 31.4×2, 28.2, 23.9; HRMS (ESI-TOF) *m/z* 354.1357 (354.1351 calcd. for C₁₅H₂₅NO₅NaS, [M+Na]⁺).

Scheme S3. Michael reactions of 12 and 14 with 18 or 19.

Compound 26

To a solution of **18** (24.5 mg, 104 μmol) in DMF (2.12 mL)/phosphate buffer (0.1 M, pH 7.4, 7.28 mL) was added **14** in DMF (1.00 mL, 104 μmol) at 37 °C. After being stirred at 37 °C for 4 h, the reaction mixture was quenched with H₂O (25 mL). The resulting mixture was extracted with EtOAc (25 mL × 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification of the residue by silica-gel column chromatography (6/1 CH₃Cl/MeOH) gave **26** as a mixture of inseparable diastereomers (18.7 mg, 57.2 µmol, 55% yield, 1/1 dr). Colorless syrup; R_f 0.47 (6/1 CH₃Cl/MeOH); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 6.09 (1H, d, J = 6.6 Hz, NH), 4.62 (1H, m, H-α), 3.75 (3H, s, CO₂Me), 3.75-3.72 (1H, m, H-3), 3.56 (2H, q, $J_{1',2'} = 7.2$ Hz, H-1'), 2.94-2.88 (1H, dd, $J_{4a,4b} = 17.8$ Hz, $J_{3,4a} = 8.0$ Hz, H-4a), 2.73-2.55 (2H, m, H-ε), 2.53-2.46 (1H, dd, $J_{4a,4b} = 17.8$ Hz, $J_{3,4b} = 3.8$ Hz, H-4b), 2.03 (3H, s, Ac), 1.90-1.64 (2H, m, H-β), 1.57-1.48 (2H, m, H-δ), 1.44-1.32 (2H, m, H-γ), 1.17 (3H, t, $J_{1',2'} = 7.2$ Hz, H-2'); ¹³C-NMR (125 MHz, CDCl₃); δ 177.7, 175.1, 173.0, 169.8, 56.3×2, 52.4 2, 51.9, 47.3, 47.2, 36.2×2, 33.8, 32.3×2, 29.4×2, 23.2, 22.7×2, 12.9; HRMS (ESI-TOF) *m/z* 328.1861 (328.1872 calcd. for C₁₅H₂₆N₃O₅, [M+H]⁺).

Synthesis of coumarin-α-aculoside hybrid 29.

Compound 31

To a solution of **30** (1.50 g, 7.00 mmol) and 2-bromoethanol (1.00 mL, 14.0 mmol) in dry CH_2Cl_2 (60.0 mL) was added (±)-10-CSA (325 mg, 1.40 mmol) at 0 °C. After being stirred at room temperature for 2.5 h, the reaction mixture was quenched with sat. NaHCO₃ aq. (60 mL). The resulting mixture was extracted with $CHCl_3$ (60 mL × 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification of the residue by

silica-gel column chromatography (10/1 toluene/EtOAc) gave **31** as a mixture of inseparable diastereomers (1.11 g, 3.85 mmol, 57% yield, $\alpha/\beta = 8/1$). Pale brown syrup; R_f 0.49 (10/1 toluene/EtOAc); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 5.97-5.80 (2H, m, H-2 & H-3), 5.07 (8/9H, m, H-4), 5.03-5.01 (8/9H, m, H-1), 5.07-5.01 (2/9H, m, H-1 & H-4), 4.10-4.00 (8/9H, m, H-5), 4.10-3.83 (2H, m, H-1'), 3.90-3.83 (1/9H, m, H-5), 3.52 (2H, m, H-2'), 2.09 (3H, s, Ac), 1.32 (1/3H, d, $J_{5,6} = 6.3$ Hz, H-6), 1.23 (24/9H, d, $J_{5,6} = 6.3$ Hz, H-6); ¹³C-NMR (125 MHz, CDCl₃), α isomer; δ 170.5, 130.1, 127.2, 94.7, 70.6, 68.5, 65.1, 30.8, 21.0, 17.9; HRMS (ESI-TOF) m/z 301.0052 (301.0051 calcd. for C₁₀H₁₅O₄NaBr, [M+Na]⁺).

Compound 32

To a solution of **31** (1.36 g, 4.87 mmol) in dry DMF (33.0 mL) was added NaN₃ (1.58 g, 24.4 mmol) at room temperature. After being stirred at room temperature for 24 h, the reaction mixture was quenched with H₂O (30 mL). The resulting mixture was extracted with EtOAc (30 mL × 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification of the residue by silica-gel column chromatography (4/1 *n*-hexane/EtOAc) gave **32** as a mixture of inseparable diastereomers (1.06 g, 4.38 mmol, 90% yield, $\alpha/\beta = 6/1$). Colorless syrup; R_f 0.46 (4/1 *n*-hexane/EtOAc); ¹H-NMR (300 MHz, CDCl₃, TMS) δ 5.98-5.78 (2H, m, H-2 & H-3), 5.10-5.03 (6/7H, m, H-4), 5.02-5.00 (6/7H, m, H-1), 5.10-5.02 (2/7H, m, H-1 & H-4), 4.03-3.90 (6/7H, m, H-5), 4.00-3.85 (1/7H, m, H-5), 4.03-3.65 (2H, m, H-1^{*}), 3.53-3.35 (2H, m, H-2^{*}), 2.10 (18/7H, s, Ac), 2.09 (3/7H, s, Ac), 1.33 (3/7H, d, $J_{5,6} = 6.6$ Hz, H-6), 1.24 (18/7H, d, $J_{5,6} = 6.6$ Hz, H-6); ¹³C-NMR (125 MHz, CDCl₃), α isomer; δ 170.5, 130.0, 127.2, 94.7, 70.7, 67.1, 65.0, 50.8, 21.0, 17.9; HRMS (ESI-TOF) *m/z* 242.1132 (242.1141 calcd. for C₁₀H₁₆N₃O₄, [M+H]⁺).

Compound 33

To a solution of **32** (44.0 mg, 182 µmol) in MeOH (850 µL) was added 0.2 M NaOMe in MeOH (910 µL, 182 µmol) at room temperature. After being stirred at room temperature for 2.5 h, the reaction mixture was quenched with Amberlite[®] IR 120 H⁺ form. The resulting suspension was filtered, and then the filtrate was concentrated in *vacuo*. Purification of the residue by silica-gel column chromatography (1/1 *n*-hexane/EtOAc) gave **33** (26.9 mg, 135 µmol, 74% yield). Colorless syrup; R_f 0.53 (1/1 *n*-hexane/EtOAc); $[\alpha]^{27}_{\text{D}}$ –14.5° (*c* 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 5.98-5.93 (1H, m, H-2), 5.80-5.76 (1H, m, H-3), 5.00-4.97 (1H, m, H-1), 3.90-3.82 (1H, m, H-4), 3.77-3.70 (1H, dq, $J_{4,5}$ = 8.6 Hz, $J_{5,6}$ = 6.3 Hz, H-5), 3.98-3.65 (2H, m, H-1'), 3.49-3.37 (2H, m, H-2'), 1.45 (1H, d, *J* = 8.3 Hz, OH), 1.34 (3H, d, $J_{5,6}$ = 6.3 Hz, H-6); ¹³C-NMR (125 MHz, CDCl₃); δ 133.7, 126.1, 94.6, 69.5, 68.1, 67.0, 50.8, 17.9; HRMS (ESI-TOF) *m/z* 200.1038 (200.1035 calcd. for C₈H₁₄N₃O₃, [M+H]⁺).

Compound 34

To a solution of **33** (48.0 mg, 241 µmol) in dry CH₂Cl₂ (1.44 mL) was added MnO₂ (628 mg, 7.23 mmol) at room temperature. After being stirred at room temperature for 19 h, the mixture was filtered through a pad of Celite. The filtrate was concentrated in *vacuo*. Purification of the residue by silica-gel column chromatography (2/1 *n*-hexane/EtOAc) gave **34** (26.2 mg, 133 µmol, 55% yield). Colorless syrup; R_f 0.61 (2/1 *n*-hexane/EtOAc); $[\alpha]^{23}_{D}$ +14.5° (*c* 1.0, CHCl₃); ¹H-NMR (300 MHz, CDCl₃, TMS) δ 6.85 (1H, dd, $J_{2,3} = 10.2$ Hz, $J_{1,2} = 3.6$ Hz, H-2), 6.11 (1H, d, $J_{2,3} = 10.2$ Hz, H-3), 5.24 (1H, d, $J_{1,2} = 3.6$ Hz, H-1), 4.59 (1H, q, $J_{5,6} = 6.6$ Hz, H-5), 4.18-3.72 (2H, m, H-1'), 3.58-3.40 (2H, m, H-2'), 1.41 (3H, d, $J_{5,6} = 6.6$ Hz, H-6); ¹³C-NMR (125 MHz, CDCl₃); δ 196.6, 142.7, 127.5, 93.4, 70.5, 67.9, 50.7, 15.2; HRMS (ESI-TOF) *m/z*

198.0889 (198.0879 calcd. for $C_8H_{12}N_3O_3$, $[M+H]^+$).

Compound 29

To a solution of **34** (9.0 mg, 45.6 µmol) and **35** (11.3 mg, 38.0 µmol) in *t*-BuOH/H₂O/DMF (5/4/3, 1.36 mL) were added sodium ascorbate (15.9 mg, 7.98 µmol), CuSO₄·5H₂O (1.98 mg, 7.98 µmol) and triazole ligand (1.97 mg, 3.80 µmol) at room temperature. After being stirred at room temperature for 6 h, the reaction mixture was quenched with H_2O (5 mL). The resulting mixture was extracted with $CHCl_3$ (10 mL \times 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification of the residue by silica-gel column chromatography (9/1 CHCl₃/MeOH) gave 29 (10.3 mg, 20.9 μ mol, 55% yield). Yellow solid; R_f 0.60 (9/1 CHCl₃/MeOH); $[\alpha]_{D}^{27}$ +58.1° (c 0.25, CHCl₃); mp 148.0-149.0 °C; ¹H-NMR (300 MHz, CDCl₃, TMS) δ 9.23 (1H, m, NH), 8.68 (1H, s, H-8'), 7.67 (1H, s, H-c), 7.43 (1H, d, J_{5',6'} = 9.0 Hz, H-6'), 6.76 (1H, dd, $J_{2,3}$ = 10.2 Hz, $J_{1,2}$ = 3.3, H-2), 6.65 (1H, dd, $J_{5',6'}$ = 9.0 Hz, $J_{4',5'}$ = 2.4, H-5'), 6.50 (1H, d, $J_{4',5'}$ = 2.4 Hz, H-4'), 6.05 (1H, d, $J_{2,3}$ = 10.2 Hz, H-3), 5.11 (1H, d, $J_{1,2}$ = 3.3 Hz, H-1), 4.72 (2H. d, J = 5.7 Hz, H-d), 4.65-4.49 (2H, m, H-b), 4.35 (1H, q, J_{5,6} = 6.9 Hz, H-5), 4.28-3.93 (2H, m, H-a), 3.46 (4H, q, $J_{1",2"} = 7.2$ Hz, H-1"), 1.33 (3H, d, $J_{5,6} = 6.9$ Hz, H-6), 1.24 (6H, t, $J_{1,2,2}$ = 7.2 Hz, H-2"); ¹³C-NMR (125 MHz, CDCl₃); δ 196.4, 163.4, 162.6, 157.7, 152.7, 148.2, 145.4, 142.5, 131.2, 127.6, 123.3, 110.0, 109.8, 108.3, 96.6, 93.4, 70.5, 67.3, 50.1, 45.1, 35.3, 15.2, 12.4; HRMS (ESI-TOF) m/z 496.2209 (496.2196 calcd. for $C_{25}H_{30}N_5O_6$, [M+H]⁺).

Michael reaction of 29 with 17.

Compound 36

To a solution of 17 (11.4 mg, 23.4 µmol) in DMF (1.54 mL)/phosphate buffer (0.1 M, pH 7.4, 700 μ L) was added **29** in DMF (100 μ L, 23.4 μ mol) at 37 °C. After being stirred at 37 °C for 1 min, the reaction mixture was quenched with 2-iodoacetamide (21.6 mg, 117 µmol). The resulting mixture was stirred at 37 °C for 10 min, and then poured into sat. Na₂S₂O₃ aq. (5 mL). The resulting mixture was extracted with $CHCl_3$ (10 mL \times 3). The extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification of the residue by silica-gel column chromatography (4/3 toluene/acetone) gave **36** as a single diastereomer (11.9 mg, 16.4 µmol, 70% yield). Yellow solid; $R_f 0.42$ (4/3 toluene/acetone); $[\alpha]_{D}^{27}$ -63.6° (c 0.58, CHCl₃); mp 59.0-60.5 °C; ¹H-NMR (500 MHz, CDCl₃, TMS) & 9.27-9.23 (1H, m, NH), 8.68H, s, H-8"), 7.77 (1H, s, H-3'), 7.45 (1H, d, J_{5",6"} = 8.9 Hz, H-6"), 6.65 (1H, dd, J_{5",6"} = 8.9 Hz, $J_{4,5,7} = 2.1$ Hz, H-5"), 6.49 (1H, d, $J_{4,5,7} = 2.1$ Hz, H-4"), 5.71 (1H, d, J = 8.6 Hz, NHBoc), 4.90 (1H, d, *J*_{1,2} = 4.6 Hz, H-1), 4.72 (2H, d, *J* = 5.8 Hz, H-4'), 4.64-4.50 (3H, m, H-α & H-2'), 4.22-3.89 (3H, m, H-1' & H-5), 3.75 (3H, s, CO₂Me), 3.45 (4H, q, $J_{1,...,2,...}$ = 7.2 Hz, H-1'''), 3.18-3.10 (1H, m, H-2), 3.06-2.92 (2H, m, H- β), 2.67 (1H, dd, $J_{3a,3b} = 16.3$ Hz, $J_{2,3a} = 4.3$ Hz, H-3a), 2.51 (1H, dd, $J_{3a,3b} = 16.3$ Hz, $J_{2,3b} = 10.9$ Hz, H-3b), 1.42 (9H, s, Boc), 1.27-1.18 (9H, m, H-2^{'''} & H-6); ¹³C-NMR (125 MHz, CDCl₃); δ 207.7, 171.3, 163.4, 162.6, 157.7, 155.3, 152.7, 148.3, 145.4, 131.2, 123.5, 110.0, 108.3, 102.0, 96.6, 80.2, 71.1, 66.2, 53.3, 52.7, 49.9, 45.1, 43.5, 40.4, 35.5, 33.8, 29.7, 28.3, 14.8, 12.4; HRMS (ESI-TOF) m/z 731.3073 (731.3074 calcd. for $C_{34}H_{47}N_6O_{10}S$, $[M+H]^+$).

<u>Cell culture.</u>

MCF-7 human breast cancer cells were grown at 37 °C in 5% CO₂ in air in DMEM medium supplemented with phenol red, L-glutamine (2 mM), penicillin (100 Units/mL), kanamycin (100 μ g/mL) and 10% Fetal bovine serum (FBS). Sarcoma 180 solid tumor cells were grown at 37 °C in 5% CO₂ in air in RPMI medium 1640 supplemented with phenol red, L-glutamine (2 mM), penicillin (100 Units/mL), kanamycin (100 μ g/mL) and 5% FBS.

MCF-7 and Sarcoma 180 were provided by the RIKEN BRC through the National Bio-Resource Project of the MEXT, Japan. FBS was purchased from MP Biomedicals.

Cell cytotoxicity assay.

MCF-7 or Sarcoma 180 cells were seeded at 5.0×10^3 cells/well in 96-well in 10% FBS DMEM or 5% FBS RPMI, respectively. After 24 h, samples were incubated with the variable concentrations of compounds. Compounds were diluted with DMSO at 400-fold the desired final test concentrations. Cells were then kept for 24 h at 37 °C and in 5% CO₂ in air, and then MTT or WST reagent was added to each well and cells were incubated for up to 3 additional hours at 37 °C. The absorbance at a single wavelength of 540 or 450 nm was read on a plate reader SAFIRE (TECAN).

MALDI-TOF MS analysis.

To a solution of **29** (150 μ M) in phosphate buffer (0.1 M, pH 7.4, 667 μ L) containing 8.6% DMF was added BSA (30 μ M) in phosphate buffer (0.1 M, pH 7.4, 333 μ L) containing 8.6% DMF at 37 °C and the reaction proceeded for 1 hour at 37 °C. The reaction mixture was purified using Amicon[®] Ultra 30K device and the resulting solution was lyophilized. The residue was diluted with H₂O (5.0 μ L), and the resulting solution was mixed with a matrix solution (5.0 μ L) of 3,5-dimethoxy 4-hydroxycinnamic acid (in 50:50 MeCN/H₂O containing 0.1% TFA). Analyses by MALDI TOF MS were performed in the positive ion mode on a Ultra flex (Bruker).

Fluorescence microscopic analysis.

MCF-7 cells were cultured on ϕ 18 mm micro cover glass (Matsunami Glass Industrial, Ltd.) in 6-well plate (1.5×10^5 cells/well) in 10% FBS DMEM. After 24 h, the cells were incubated with the media containing compound **29** or **35** (final concentration of 33 µM) for 30 min at 37 °C and in 5% CO₂ in air. Compounds were diluted with DMSO at 200-fold the desired final test concentration. For the 2-iodoacetamide treated sample, the cells were incubated with the media containing 2-iodoacetamide (final concentration of 10 mM) for 1 h at 37 °C before compound **35** was incubated. Cells were then washed five times with phosphate buffered saline (PBS) and fixed with 4% paraformaldehyde phosphate buffer solution for 30 min at room temperature. After removing paraformaldehyde, cells were washed three times with PBS. The cells were observed by inverted fluorescence microscope (EVOS FL Cell Imaging System; Life Technologies).

References.

1) S. Koepper and J. Thiem, J. Carbohydr. Chem., 1987, 6, 57.

2) (a) K. Sasaki, S. Matsumura and K. Toshima, Tetrahedron Lett., 2007, 48, 6982. (b) S.

Kusumi, S. Tomono, S. Okuzawa, E. Kaneko, T. Ueda, K. Sasaki, D. Takahashi and K. Toshima, *J. Am. Chem. Soc.*, 2013, **135**, 15909.

- 3) M. Bergmann and H. Schotte, Ber. Dtsch. Chem. Ges., 1921, 54, 440.
- 4) R. F. Luduena and M. C. Roach, *Biochemistry*, 1981, 20, 4437.

¹H and ¹³C-NMR spectra.

Figure S1¹H-NMR spectrum of 7

Figure S2 ¹³C-NMR spectrum of 7

Figure S4 ¹³C-NMR spectrum of 1

Figure S10¹³C-NMR spectrum of 2

Figure S5¹H-NMR spectrum of 3

Figure S6¹³C-NMR spectrum of 3

Figure S8¹³C-NMR spectrum of 4

Figure S11 ¹H-NMR spectrum of 10

Figure S12¹³C-NMR spectrum of 10

Figure S14 ¹³C-NMR spectrum of 11

Figure S16¹³C-NMR spectrum of 5

Figure S17¹H-NMR spectrum of S2

Figure S18 ¹³C -NMR spectrum of S2

Figure S19 ¹H-NMR spectrum of S3

Figure S20¹³C -NMR spectrum of S3

Figure S21 ¹H-NMR spectrum of S4

Figure S22 ¹³C -NMR spectrum of S4

Figure S24 ¹³C -NMR spectrum of 12

Figure S26¹³C -NMR spectrum of S5

Figure S27 ¹H-NMR spectrum of 13

Figure S28 ¹³C -NMR spectrum of 13

Figure S30 ¹³C -NMR spectrum of 20

Figure S32 ¹³C -NMR spectrum of 21

Figure S33 ¹H-NMR spectrum of 22

Figure S34 ¹³C -NMR spectrum of 22

Figure S35 ¹H-NMR spectrum of 23

Figure S36¹³C -NMR spectrum of 23

Figure S38 ¹³C -NMR spectrum of 26

Figure S39 ¹H-NMR spectrum of 31

Figure S40 ¹³C -NMR spectrum of 31

Figure S42 ¹³C -NMR spectrum of 32

Figure S43 ¹H-NMR spectrum of 33

Figure S44 ¹³C -NMR spectrum of 33

Figure S46¹³C -NMR spectrum of 34

Figure S47 ¹H-NMR spectrum of 29

Figure S48 ¹³C -NMR spectrum of 29

Figure S50 ¹³C -NMR spectrum of 36