Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

to

Conformational equilibria in the selected A-type trimeric procyanidins

by

Marta K. Dudek (Jamróz)^{a,*}, Sławomir Kaźmierski^{a,b}, Kamil Stefaniak^a, Vitold B. Gliński^c, Jan A. Gliński^c

^a Physical Chemistry Department, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02097 Warsaw, Poland,

^b Centre of Molecular and Macromolecular Studies PAS, Sienkiewicza 112, 90363 Lodz, Poland, kaslawek@cbmm.lodz.pl

^c Planta Analytica LLC, 39 Rose Street, Danbury, CT 06810, USA, jan@plantaanalytica.com

CONTENT:

¹ H NMR spectrum of 1 in MeOD	page 3
¹ H NMR spectrum of 1 in DMSO	page 4
¹ H NMR spectrum of 1 in acetone- d_6	page 5
¹ H NMR spectrum of 1 in pyridine- d_5	page 6
¹ H NMR spectrum of 2 in MeOD	page 7
¹ H NMR spectrum of 2 in DMSO	page 8
¹ H NMR spectrum of 2 in acetone- d_6	page 9
¹ H NMR spectrum of 2 in pyridine- d_5	page 10
¹ H NMR spectrum of 3 in MeOD	page 11
¹ H NMR spectrum of 3 in DMSO	page 12
¹ H NMR spectrum of 3 in acetone- d_6	page 13
¹ H NMR spectrum of 3 in pyridine- d_5	page 14
¹ H NMR spectrum of 4 in MeOD	page 15
¹ H NMR spectrum of 4 in DMSO	page 16
¹ H NMR spectrum of 4 in acetone- d_6	page 17
¹ H NMR spectrum of 4 in pyridine- d_5	page 18
Table 1SI (computational data for the lowest-energy conformers)	page 19
Signal assignment for minor and major rotamers of 1-4 in MeOD and DMSO- d_6	pages 20-25
ΔG^{298} calculations procedure from the ¹ H temperature NMR spectra	page 26

....

	B3LYP			M062X	M062X		
	φ [°]	Е	ΔG	φ[°]	Е	ΔG	
(1)	-91.0	0.2	0	-90.3	3.6	1.7	
	+89.8	0	1.7	+90.7	0	0	
(2)	-95.6	2.3	0	-88.2	4.9	1.9	
	+91.9	0	2.3	+92.5	0	0	
(3)	-100.4	5.3	2.3	-99.1	7.0	5.1	
	+85.8	0	0	+84.4	0	0	
(4)	-102.5	15.1	0	-99.9	21.4	17.5	
	+80.0	0	7.8	+80.1	0	0	

Table SI1. Internal energies (E) and Gibbs free energies (ΔG) differences between the two lowestenergy conformers of **1-4** (in kcal/mol) calculated with two functionals: B3LYP and M062X and 6-31G(d,p) basis set.

Signal assignment for minor and major rotamers of 1-4 in MeOD and DMSO-d₆

Cinnamtannin B1 (1). Major rotamer in MeOD (integral 1.0): ¹H NMR (500 MHz, T =270K): δ 2.83 (br, 2H, H-4"), 3.25 (d, 1H, ${}^{3}J$ = 3.4Hz, H-3), 3.85 (br s, 1H, H-3"), 4.08 (s, 1H, H-3'), 4.13 (d, 1H, ${}^{3}J$ = 3.0Hz, H-4), 4.40 (br, 1H, H-2"), 4.56 (s, 1H, H-4'), 5.70 (s, 1H, H-2'), 5.77 (s, 1H, H-6'), 5.96 (d, 1H, ${}^{4}J$ = 1.8Hz, H-8), 5.99 (d, 1H, ${}^{4}J$ = 1.8Hz, H-6), 6.08 (s, 1H, H-6"), 6.74 (br, 2H, H-15, H-16"), 6.81 (br, 3H, H-16, H-15', H-12"), 6.83 (d, 1H, ${}^{3}J =$ 8.0Hz, H-15"), 7.01 (H-12), 7.21 (br d, 1H, ${}^{3}J = 8.4$ Hz, H-16'), 7.32 (br s, 1H, H-12'); ${}^{13}C$ NMR (126 MHz): § 29.0 (C-4), 30.0 (C-4"), 38.4 (C-4"), 67.3 (C-3), 67.7 (C-3"), 72.7 (C-3"), 79.0 (C-2'), 80.4 (C-2"), 96.2 (C-6'), 96.7 (C-6, C-6"), 98.4 (C-8), 100.1 (C-2, C-10"), 105.1 (C-10), 106.5 (C-8'), 106.8 (C-10'), 109.0 (C-8"), 115.6 (C-12"), 115.9 (C-12, C-15', C-15"), 116.1 (C-15), 116.8 (C-12'), 119.5 (C-16"), 120.0 (C-16), 121.5 (C-16'), 131.9 (C-11'), 132.5 (C-11), 133.3 (C-11"), 145.4 (C-14"), 145.6 (C-13, C-13"), 146.0 (C-13'), 146.4 (C-14'), 146.7 (C-14), 151.2 (C-7'), 151.9 (C-9'), 154.3 (C-5), 155.7 (C-9"), 155.8 (C-5'), 155.9 (C-5"), 156.1 (C-7"), 156.9 (C-9), 158.0 (C-7). Minor rotamer in MeOD (integral 0.30): ¹H NMR (500 MHz, T = 270K): δ 2.80 (overlapped, H-4"a), 2.94 (dd, 1H, ${}^{2}J = 17.0$ Hz, ${}^{3}J = 4.9$ Hz, H-4"b), 3.89 (br s, 1H, H-3'), 4.06 (d, 1H, ${}^{3}J$ = 3.4Hz, H-3), 4.24 (br, 1H, H-3"), 4.43 (d, 1H, ${}^{3}J$ = 3.0Hz, H-4), 4.66 (s, 1H, H-4'), 4.96 (s, 1H, H-2"), 5.25 (s, 1H, H-2'), 5.89 (s, 1H, H-6'), 6.01 (d, 1H, ${}^{4}J$ = 1.9Hz, H-6), 6.06 (d, 1H, ${}^{4}J$ = 1.9Hz, H-8), 6.10 (s, 1H, H-6"), 6.73 (overlapped, H-15), 6.76 (d, 1H, ${}^{3}J$ = 8.0Hz, H-15"), 6.80 (overlapped, H-15'), 6.86 (br d, 1H, ${}^{3}J = 8.4$ Hz, H-16"), 6.91 (br d, 1H, ${}^{3}J = 8.0$ Hz, H-16'), 7.02 (overlapped, H-16), 7.07 (br, 1H, H-12'), 7.10 (br, 1H, H-12"), 7.14 (br, 1H, H-12); ¹³C NMR (126 MHz): δ 29.6 (C-4), 30.3 (C-4"), 38.4 (C-4'), 67.2 (C-3"), 68.6 (C-3), 73.3 (C-3'), 79.0 C-2'), 79.9 (C-2"), 96.8 (C-8, C-6"), 97.6 (C-6'), 98.5 (C-6), 100.3 (C-10"), 100.4 (C-2), 104.4 (C-10), 105.5 (C-8"), 107.3 (C-8'), 107.7 (C-10'), 115.3 (C-12"), 116.0 (C-12), 116.3 (C-12', C-15"), 116.4 (C-15'), 119.2 (C-16"), 119.9 (C-16), 120.7 (C-16"), 131.8 (C-11"), 132.3 (C-11"), 132.7 (C-11), 145.7 (C-13), 146.3 (C-14'), 152.6 (C-9'), 154.1 (C-5), 154.9 (C-7"), 156.6 (C-5'), 157.3 (C-9). Major rotamer in DMSO (integral 1.0): ¹H NMR (500 MHz): δ 2.35 (dd, 1H, ²J = 16.0Hz, ³J = 5.2Hz, H-4"a), 2.68 (dd, 1H, ${}^{2}J = 16.1$ Hz, ${}^{3}J = 3.9$ Hz, H-4"b), 3.76 (br, 1H, H-3'), 3.83 (br, 1H, H-3), 4.17 (br, 1H, H-3"), 4.27 (br d, 1H, ${}^{3}J = 2.0$ Hz, H-4), 4.46 (s, 1H, H-4"), 4.93 (s, 1H, H-2"), 5.11 (s, 1H, H-2'), 5.79 (s, 1H, H-6"), 5.86 (d, 1H, ${}^{4}J$ = 2.2Hz, H-8), 5.89 (d, 1H, ${}^{4}J = 2.2$ Hz, H-6), 5.93 (s, 1H, H-6'), 6.62 (d, 1H, ${}^{3}J = 8.3$ Hz, H-15'), 6.68 (br, H-15''), 6.74 (d, 1H, ${}^{3}J = 8.3$ Hz, H-15), 6.79 (dd, 1H, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 1.6$ Hz, H-16), 6.85 (dd, 1H, ${}^{3}J = 1.6$ Hz, H-16), 6.85 (dd, 1H, {}^{3}J = 1.6Hz, H-16), 6.85 (dd, 1H, { 8.0Hz, ${}^{4}J$ = 2.0Hz, H-16'), 6.91 (overlapped, H-16''), 6.92 (br, 1H, H-12'), 7.00 (d, 1H, ${}^{4}J$ = 1.8Hz, H12"), 7.01 (d, 1H, ${}^{4}J$ = 2.0Hz, H-12). <u>Minor rotamer in DMSO</u> (integral 0.66): {}^{1}H NMR (500 MHz): δ 2.50 (overlapped, H-4"a), 2.61 (br, 1H, H-4"b), 3.42 (overlapped, H-3), 3.68 (br, 1H, H-3"), 3.90 (br, 1H, H-3'), 4.04 (d, 1H, ${}^{3}J = 3.3$ Hz, H-4), 4.23 (s, 1H, H-2"), 4.27 (overlapped, 1H, H-4'), 5.39 (s, 1H, H-2'), 5.65 (s, 1H, H-6'), 5.77 (d, 1H, ${}^{4}J = 2.2$ Hz, H-6), 5.82 (d, 1H, ${}^{4}J$ = 2.2Hz, H-8), 6.05 (s, 1H, H-6"), 6.51 (dd, 1H, ${}^{3}J$ = 8.3Hz, ${}^{4}J$ = 1.6Hz, H-16"), 6.67 (overlapped, H-15"), 6.68 (overlapped, H-16, H-12"), 6.72 (br, 1H, H-15'), 6.74 (br, 1H, H-15), 6.95 (d, 1H, ${}^{4}J$ = 1.8Hz, H-12), 6.98 (dd, 1H, ${}^{3}J$ = 8.2Hz, ${}^{4}J$ = 1.8Hz, H-16'), 7.19 (d, 1H, ${}^{4}J$ = 1.8Hz, H-12').

Cinnamtannin D1 (2). <u>Major rotamer in MeOD</u> (integral 1.0): ¹H NMR (500 MHz, T = 270K): $\delta 2.45$ (dd, 1H, ²J = 16.5Hz, ³J = 10.3Hz, H-4"a), 3.05 (dd, 1H, ²J = 16.5Hz, ³J = 6.2Hz, H-4"b), 3.46 (d, 1H, ³J = 3.3Hz, H-3), 3.67 (br, 1H, H-3"), 3.96 (d, 1H, ³J = 9.3Hz, H-2"), 4.00 (d, 1H, ³J = 3.3Hz, H-4), 4.06 (br s, 1H, H-3"), 4.53 (s, 1H, H-4"), 5.52 (s, 1H, H-2"), 5.84 (s, 1H, H-6"), 5.94 (d, 1H, ⁴J = 1.9Hz, H-6), 6.00 (d, 1H, ⁴J = 1.9Hz, H-8), 6.10 (s, 1H, H-6"), 6.66 (dd, 1H, ³J = 8.2Hz, ⁴J = 1.7Hz, H-16"), 6.75 (d, 1H, ⁴J = 1.7Hz, H-12") 6.76 (d, 1H, ³J = 8.3Hz, H-15"), 6.84 (d, 2H, ³J = 8.3 Hz, H-15, H-15"), 6.94 (dd, 1H, ³J = 8.6Hz, ⁴J = 1.9Hz, H-16), 7.07 (d, 1H, ³J = 2.1Hz, H-12), 7.09 (dd, 1H, ³J = 8.2Hz, ⁴J = 1.9Hz, H-16°), 7.23 (d, 1H, ⁴J = 1.3Hz, H-12"); ¹³C NMR (126 MHz): $\delta 29.1$ (C-4), 30.8 (C-4"), 38.4

(C-4'), 67.3 (C-3), 70.2 (C-3"), 72.6 (C-3'), 78.8 (C-2'), 83.5 (C-2"), 96.2 (C-6'), 96.6 (C-6"), 96.7 (C-8), 98.5 (C-6), 100.2 (C-2), 101.9 (C-10"), 105.2 (C-10), 106.4 (C-8"), 106.7 (C-10"), 108.8 (C-8"), 115.9 (C-12, C-15'), 116.0 (C-12"), 116.4 (C-15, C-15"), 116.7 (C-12'), 120.1 (C-16), 120.2 (C-16"), 121.2 (C-16"), 131.7 (C-11"), 132.6 (C-11), 132.8 (C-11"), 145.6 (C-13, C-13"), 145.9 (C-14"), 146.0 (C-13'), 146.4 (C-14'), 146.8 (C-14), 151.2 (C-7'), 151.9 (C-9'), 154.3 (C-5), 155.5 (C-5", C-7", C-9"), 156.0 (C-5'), 156.8 (C-9), 157.9 (C-7). Minor rotamer in MeOD (integral 0.24): ¹H NMR (500 MHz, T = 270K): δ 2.60 (dd, 1H, ²J = 16.4Hz, ${}^{3}J = 5.6$ Hz, H-4"a), 2.66 (dd, 1H, ${}^{2}J = 16.4$ Hz, ${}^{3}J = 4.4$ Hz, H-4"b), 4.02 (br s, 1H, H-3'), 4.08 (d, 1H, ${}^{3}J$ = 3.9Hz, H-3), 4.11 (q, 1H, ${}^{3}J$ = 5.4Hz, H-3"), 4.44 (d, 1H, ${}^{3}J$ = 3.3Hz, H-4), 4.70 (s, 1H, H-4'), 4.92 (d, 1H, ${}^{3}J$ = 5.5Hz, H-2"), 5.33 (s, 1H, H-2'), 5.87 (s, 1H, H-6"), $6.00 (d, 1H, {}^{4}J = 2.4Hz, H-6), 6.07 (d, 1H, {}^{4}J = 2.4Hz, H-8), 6.09 (s, 1H, H-6'), 6.72 (d, 1H,$ ${}^{3}J = 8.0$ Hz, H-15"), 6.79 (d, 1H, ${}^{3}J = 8.0$ Hz, H-15'), 6.81 (d, 1H, ${}^{3}J = 8.3$ Hz, H-15), 6.85 (overlapped, 1H, H-12"), 6.87 (dd, 1H, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 1.9$ Hz, H-16"), 6.96 (dd, 1H, ${}^{3}J =$ 8.4Hz, ${}^{4}J$ = 1.9Hz, H-16'), 7.04 (dd, 1H, ${}^{3}J$ = 8.1Hz, ${}^{4}J$ = 2.0Hz, H-16), 7.13 (d, 1H, ${}^{3}J$ = 2.0Hz, H-12'), 7.16 (d, 1H, ${}^{3}J$ = 2.1Hz, H-12); ${}^{13}C$ NMR (126 MHz): δ 26.9 (C-4"), 29.6 (C-4), 38.0 (C-4'), 68.5 (C-3"), 68.6 (C-3), 72.8 (C-3'), 79.2 (C-2'), 82.2 (C-2"), 96.5 (C-6'), 96.8 (C-8), 97.2 (C-6"), 98.5 (C-6), 100.4 (C-2), 100.7 (C-10"), 104.3 (C-10), 105.7 (C-10'), 106.9 (C-8'), 108.3 (C-8"), 114.7 (C-12", C-15"), 115.8 (C-15), 115.9 (C-12), 116.2 (C-15'), 116.4 (C-12'), 119.5 (C-16''), 119.9 (C-16), 120.8 (C-16'), 131.8 (C-11'), 132.8 (C-11), 145.0 (C-14"), 145.8 (C-13'), 146.2 (C-14', C-13"), 146.8 (C-14), 152.6 (C-9'), 153.9 (C-9"), 156.0 (C-7"), 157.2 (C-5'). Major rotamer in DMSO (integral 1.0): ¹H NMR (500 MHz): δ 2.36 (br, 1H, H-4"a), 2.42 (br, 1H, H-4"b), 3.77 (br, 1H, H-3'), 3.81 (br d, 1H, ${}^{3}J$ = 2.8Hz, H-3), 3.91 (q, 1H, ${}^{3}J = 5.3$ Hz, H-3"), 4.26 (d, 1H, ${}^{3}J = 3.2$ Hz, H-4), 4.44 (br s, 1H, H-4'), 4.48 (d, 1H, ${}^{3}J$ = 5.3Hz, H-2"), 4.86 (d, 1H, ${}^{3}J$ = 5.3Hz, OH-3'), 5.19 (s, 1H, H-2'), 5.30 (br d, 1H, ${}^{3}J$ = 3.2Hz, OH-3), 5.77 (s, 1H, H-6"), 5.86 (d, 1H, ${}^{4}J$ = 2.3Hz, H-8), 5.87 (d, 1H, ${}^{4}J$ = 2.3Hz, H- 6), 5.92 (s, 1H, H-6'), 6.62 (d, 1H, ${}^{3}J$ = 7.8Hz, H-15"), 6.70 (d, 1H, ${}^{3}J$ = 7.8Hz, H-15'), 6.73 (d, 1H, ${}^{4}J$ = 2.3Hz, H-12"), 6.74 (d, 1H, ${}^{3}J$ = 8.5Hz, H-15), 6.78 (dd, 1H, ${}^{3}J$ = 8.2Hz, ${}^{4}J$ = 1.9Hz, H-16"), 6.85 (dd, 1H, ${}^{3}J$ = 7.8Hz, ${}^{4}J$ = 1.9Hz, H-16), 6.92 (dd, 1H, ${}^{3}J$ = 8.2Hz, ${}^{4}J$ = 1.9Hz, H-16'), 6.94 (d, 1H, ${}^{4}J$ = 1.9Hz, H-12'), 7.00 (d, 1H, ${}^{4}J$ = 1.9Hz, H-12). Minor rotamer in DMSO (integral 0.42): ¹H NMR (500 MHz): δ 2.24 (dd, 1H, ${}^{2}J$ = 16.1Hz, ${}^{3}J$ = 9.5Hz, H-4"a), 2.79 (dd, 1H, ${}^{2}J$ = 16.1Hz, ${}^{3}J$ = 5.6Hz, H-4"b), 3.47 (overlapped, H-3"), 3.49 (d, 1H, ${}^{3}J$ = 3.6Hz, H-3), 3.80 (overlapped, 1H, H-2"), 3.82 (overlapped, H-4), 3.87 (br, 1H, H-3"), 4.24 (s, 1H, H-4"), 4.81 (d, 1H, ${}^{3}J$ = 4.1Hz, OH-3") 5.23 (s, 1H, H-2"), 5.66 (s, 1H, H-6"), 5.73 (d, 1H, ${}^{4}J$ = 2.3Hz, H-6), 5.81 (d, 1H, ${}^{4}J$ = 1.6Hz, H-12"), 6.68 (d, 1H, ${}^{3}J$ = 8.0Hz, H-15"), 6.73 (overlapped, H-16"), 6.58 (d, 1H, ${}^{4}J$ = 1.6Hz, H-16"), 6.77 (overlapped, H-15), 6.96 (overlapped, H-15"), 6.74 (dverlapped, H-15"), 6.74 (dverlapped, H-15"), 6.75 (overlapped, H-16), 6.77 (overlapped, H-15"), 6.96 (overlapped, H-16), 6.77 (overlapped, H-15), 6.96 (overlapped, H-16"), 6.98 (d, 1H, ${}^{4}J$ = 2.1Hz, H-12"), 7.12 (d, 1H, ${}^{4}J$ = 1.8Hz, H-12").

Aesculitannin B (3). <u>Major rotamer in MeOD</u> (integral 1.0): ¹H NMR (500 MHz, T = 270K): $\delta 2.76$ (br d, 1H, ²J = 17.2Hz, H-4"a), 2.87 (dd, 1H, ²J = 17.2Hz, ³J = 4.8Hz, H-4"b), 3.26 (d, 1H, ³J = 3.4Hz, H-3), 3.94 (d, 1H, ³J = 3.5Hz, H-4), 4.06 (br d, 1H, ³J = 4.1Hz, H-3"), 4.36 (br s, 1H, H-2"), 4.51 (d, 1H, ³J = 8.8Hz, H-4'), 4.56 (t, 1H, ³J = 8.7Hz, H-3'), 4.61 (d, 1H, ³J = 9.4Hz, H-2'), 5.78 (s, 1H, H-6'), 5.83 (d, 1H, ⁴J = 2.3Hz, H-6), 5.98 (d, 1H, ⁴J = 2.3Hz, H-8), 6.06 (s, 1H, H-6"), 6.79 (d, 1H, ³J = 8.1Hz, H-15"), 6.83 (br, 2H, H-15, H-16), 6.89 (d, 1H, ³J = 8.2Hz, H-15'), 6.90 (dd, 1H, ³J = 8.2Hz, ⁴J = 1.7Hz, H-16"), 6.98 (d, 1H, ⁴J = 1.7Hz, H-12"), 6.99 (d, 1H, ⁴J = 2.0Hz, H-12), 7.16 (dd, 1H, ³J = 8.2Hz, ⁴J = 2.0Hz, H-16'), 7.19 (d, 1H, ⁴J = 2.0Hz, H-12'); ¹³C NMR (126 MHz): $\delta 29.1$ (C-4), 30.3 (C-4"), 39.2 (C-4'), 67.2 (C-3), 67.8 (C-3"), 74.1 (C-3'), 79.8 (C-2"), 84.7 (C-2'), 96.6 (C-8, C-6"), 97.3 (C-6'), 98.0 (C-6), 100.3 (C-2), 101.0 (C-10"), 104.2 (C-10), 107.0 (C-8'), 108.8 (C-8"), 109.1 (C-10'), 115.4 (C-12"), 115.8 (C-12, C-15"), 116.1 (C-15), 116.5 (C-15'), 116.7 (C-12'), 119.4 (C-16"), 120.0 (C-16), 121.3 (C-16'), 131.2 (C-11'), 132.4 (C-11), 133.1 (C-11"), 145.4 (C-13), 145.7 (C-14), 146.0 (C-13"), 146.3 (C-13'), 146.8 (C-14'), 146.9 (C-14"), 151.4 (C-7'), 152.4 (C-9'), 154.1 (C-9), 155.4 (C-9"), 155.6 (C-5"), 156.4 (C-5", C7"), 156.7 (C-5), 158.1 (C-7). Major rotamer in DMSO (integral 1.0): ¹H NMR (500 MHz): δ 2.61 (br, 1H, H-4"a), 2.71 (br, 1H, H-4"b), 3.85 (br d, 1H, ${}^{3}J$ = 3.0Hz, H-3), 4.10 (d, 1H, ${}^{3}J$ = 3.1Hz, H-4), 4.29 (br, 1H, H-3'), 4.35 (d, 1H, ${}^{3}J$ = 9.6Hz, H-2'), 4.41 (br, 1H, H-4'), 4.82 (s, 1H, H-2"), 5.80 (d, 1H, ${}^{4}J$ = 2.4Hz, H-6), 5.84 (d, 1H, ${}^{4}J$ = 2.4Hz, H-8), 5.85 (s, 1H, H-6'), 5.86 (s, 1H, H-6''), 6.65 – 6.60 (m, 5H, H-15, H-15', H-16', H-15'', H-16''), 6.82 (dd, 1H, ${}^{3}J = 8.1$ Hz, ${}^{4}J = 2.2$ Hz, H-16), 6.92 (d, 1H, ${}^{4}J$ = 1.9Hz, H-12''), 6.93 ((d, 1H, ${}^{4}J$ = 1.8Hz, H-12'), 6.97 ((d, 1H, ${}^{4}J$ = 2.1Hz, H-12). Minor rotamer in DMSO (integral 0.8): ¹H NMR (500 MHz): δ 2.51 (overlapped, H-4"a), 2.63 (br, 1H, H-4"b), 3.36 (overlapped, H-3), 3.88 (d, 1H, ${}^{3}J$ = 3.2Hz, H-4), 3.92 (br s, 1H, H-3"), 4.17 (br, 1H, H-3'), 4.19 (s, 1H, H-2"), 4.31 (d, 1H, ${}^{3}J = 9.2$ Hz, H-4'), 4.43 (br, 1H, H-2'), 5.62 (s, 1H, H-6'), 5.72 (d, 1H, ${}^{4}J$ = 2.4Hz, H-6), 5.81 (d, 1H, ${}^{4}J$ = 2.4Hz, H-8), 5.97 (s, 1H, H-6"), 6.65 – 6.93 (9H, H-12, H-15, H-16, H-12', H-15', H-16', H-12", H-15", H-16"). *Lindetannin (4).* Major rotamer in MeOD (integral 1.0): ¹H NMR (500 MHz, T = 270K): δ 2.43 (dd, 1H, ${}^{2}J$ = 16.5Hz, ${}^{3}J$ = 10.0Hz, H-4"a), 3.03 (dd, 1H, ${}^{2}J$ = 16.4Hz, ${}^{3}J$ = 6.4Hz, H-4"b), 3.64 (d, 1H, ${}^{3}J$ = 3.0Hz, H-3), 3.72 (d, 1H, ${}^{3}J$ = 3.0Hz, H-4), 3.77 (br, 1H, H-3"), 3.92 (d, 1H, ${}^{3}J = 9.1$ Hz, H-2"), 4.35 (t, 1H, ${}^{3}J = 9.2$ Hz, H-3'), 4.45 (d, 1H, ${}^{3}J = 8.8$ Hz, H-4'), 4.48 1.9Hz, H-8), 6.06 (s, 1H, H-6"), 6.77 (dd, 1H, ${}^{3}J = 7.9$ Hz, ${}^{4}J = 1.5$ Hz, H-16"), 6.84 (d, 2H, ${}^{3}J$ = 7.2Hz, H-15, H-15"), 6.90 (d, 1H, ${}^{3}J$ = 8.2Hz, H-15"), 6.93 (d, 1H, ${}^{4}J$ = 1.5Hz, H-12"), 6.97 (br, 1H, H-16), 6.98 (br, 1H, H-16'), 7.06 (d, 1H, ${}^{4}J$ = 1.7Hz, H-12'), 7.10 (d, 1H, ${}^{4}J$ = 1.9Hz, H-12); ¹³C NMR (126 MHz): δ 29.0 (C-4), 31.0 (C-4"), 39.0 (C-4"), 67.4 (C-3), 69.8 (C-3"), 74.5 (C-3'), 83.0 (C-2"), 84.5 (C-2'), 96.5 (C-6"), 96.6 (C-8), 97.3 (C-6'), 98.0 (C-6), 100.4 (C-2), 102.5 (C-10"), 104.2 (C-10), 106.8 (C-8"), 108.9 (C-8"), 109.1 (C-10"), 115.8 (C-12"), 115.9 (C-12), 116.0 (C-15"), 116.3 (C-15), 116.6 (C-12', C-15'), 120.1 (C-16), 120.9 (C-16', C-16"), 131.4 (C-11'), 132.5 (C-11), 132.6 (C-11"), 145.8 (C-13), 146.1 (C-14, C-13', C-13"), 146.7 (C-14"), 146.9 (C-14"), 151.3 (C-7"), 152.5 (C-9"), 154.2 (C-9), 155.1 (C-7"), 155.5 (C-9"), 155.7 (C-5"), 156.4 (C-5'), 156.6 (C-5), 158.1 (C-7). Major rotamer in DMSO (integral 1.0): ¹H NMR (500 MHz): δ 2.36 (br, 1H, H-4"a), 2.82 (br, 1H, H-4"b), 3.55 (br, 1H, H-3"), 3.83 (br t, 1H, ${}^{3}J$ = 3.7Hz, H-3), 4.07 (d, 1H, ${}^{3}J$ = 3.7Hz, H-4), 4.20 (br, 1H, H-3"), 4.26 (d, 1H, ${}^{3}J = 8.5$ Hz, H-4'), 4.31 (d, 1H, ${}^{3}J = 9.4$ Hz, H-2'), 4.40 (d, 1H, ${}^{3}J = 8.8$ Hz, H-2"), 5.78 (d, 1H, ${}^{4}J$ = 2.3Hz, H-6), 5.82 (s, 2H, H-6', H6"), 5.83 (d, 1H, ${}^{4}J$ = 2.3Hz, H-8), 6.66 (d, 1H, ${}^{3}J = 8.2$ Hz, H-15"), 6.71 (br, H-15'), 6.73 (br, H-12"), 6.78 (br, H-15, H-16"), 6.81 (br, H-16'), 6.82 (br, H-16), 6.91 (d, 1H, ${}^{4}J$ = 1.7Hz, H-12'), 6.97 (br, 1H, H-12). <u>Minor rotamer</u> in DMSO (integral 0.6): ¹H NMR (500 MHz): δ 2.24 (dd, 1H, ²J = 16.5Hz, ³J = 10.3Hz, H-4"a), 2.82 (br, 1H, H-4"b), 3.57 (br, 1H, H-3"), 3.60 (d, 1H, ${}^{3}J$ = 3.7Hz, H-4), 3.63 (d, 1H, ${}^{3}J$ = 3.6Hz, H-3), 3.75 (d, 1H, ${}^{3}J$ = 9.6Hz, H-2"), 3.98 (overlapped, H-3'), 4.23 (d, 1H, ${}^{3}J$ = 5.9Hz, H-4'), 4.26 (overlapped, H-2'), 5.66 (s, 1H, H-6'), 5.68 (d, 1H, ${}^{4}J$ = 2.3Hz, H-6), 5.82 (overlapped, H-8), 5.97 (s, 1H, H-6"), 6.54 (dd, 1H, ${}^{3}J = 8.1$ Hz, ${}^{4}J = 1.6$ Hz, H-16"), 6.70 (overlapped, H-15, H-15"), 6.73 (overlapped, H-12), 6.75 (d, 1H, ${}^{4}J = 1.7$ Hz, H-12"), 6.78 (overlapped, H-16'), 6.81 (overlapped, H-16), 6.83 (overlapped, H-15'), 6.97 (overlapped, H-12').

ΔG²⁹⁸ calculations procedure from the ¹H temperature NMR spectra

For 1-4 the ΔG values were calculated using the Eyring's equation:

$$\Delta G_{Tc} = 4.58T_c * (10.32 + \log \frac{T_c}{k_c})$$

where T_c is the coalescence temperature and k_c is the rate constant at the coalescence temperature.

In order to calculate k_c from the NMR spectra, one has to measure the separation between the NMR signals (in Hz) at temperature far away from the coalescence temperature (Δv):

$$k_c = \frac{\pi * \Delta \nu}{\sqrt{2}}$$

Here, Δv values were measured for 230K.

Coalescence temperature is different for different signals and depends on the signal separation and the differences in the chemical environment of the given nucleus in both rotamers. In many cases the coalescence temperature exceeded the boiling point of the solvent (methanol). Then, it is possible to estimate T_c from linear approximation: one has to measure signals separation values in Hz (Δv) for different temperatures and find T at which $\Delta v=0$ (coalescence temperature).

The differences in the coalescence temperatures for different signals in the same compound result in the different Gibbs free energies. In order to calculate ΔG at 298K one can take the obtained ΔG values and plot them against temperatures for which they were calculated. Then, again from linear approximation, ΔG^{298} can be calculated. The Δv , T_c, k_c, and ΔG^{Tc} values obtained in the present paper are available upon request.

The applied ΔG^{298} calculation method implies the usage of linear approximation twice and therefore, despite very good linear correlations, the obtained results are encumbered with error and, as such, are only estimated values.