Supporting Information

Ptl₂-Catalyzed Cyclization of 3-Acyloxy-1,5-enynes with the Elimination of HOAc and a Benzyl Shift: Synthesis of Unsymmetrical *m*-Terphenyls

Kai M. Huang, Hong K. Wang, Jun Y. Wang, Chen C. Zhou, Xiao N. ke, Xiu F. Xu^{*b}, Ling Y. Liu^{*a}, Jing Li^{*a}

^a State key Laboratory of Elemento-Organic Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071 (China); Synergetic Innovation Center of Chemical Science and Engineering (Tianjin 300071, China) E-mail: lijing@nankai.edu.cn; liulingyan@nankai.edu.cn

^b Prof. Dr. X. F. Xu, the Department of Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071 (China)

E-mail: xxfang@nankai.edu.cn

Ι.	General Information
II.	Synthesis and Characterization of homopropargylic alcohol s(1a-1)S4-S5
III.	Synthesis and Characterization of 3-OH-1-en-5-ynes (2a-2) and 3-OAC-1-en-5-yne
	(3a-3)
IV.	PtI_2 catalyzed 3-OAc-1-en-5-yne to synthesis of biphenyl and m-terphenyls derivatives (4a-4)
<i>V</i> .	The crystal data of product 4aS41-S42
VI.	References
VII.	Computational results for PtI ₂ -Catalyzed Cyclization of 3-Acyloxy-1,5-EnynesS43-S94

1. The true function of N-phenylmaleimide in this reaction system remains unclear currently

The true function of N-phenylmaleimide in this reaction system remains unclear currently. To ascertain the exact function of N-phenylmaleimide, we had done some controlled experiments. One schlenk tube were added into the 0.1mmol **3a**, 10 mol% PtI₂ and 2 mL toluene as solvent, 50 mol% N-phenylmaleimide as additive; while the other tube was filled with the similar substrates and catalysis without the N-phenylmaleimide. These two reactions proceeded at 110 °C and completed after about 90 mins (detected by TLC). It was observed that these two reaction systems had the differences as shown in the following figure: the left, the reaction system had less black precipitate than that of the right one. We presumed that the N-phenylmaleimide additive maybe act as a ligand to improve the solubility of platinum metal catalyst in toluene, and thus shortened the reaction time and reduced the possible oligomer formation or decomposition of this enyne substrate under the reaction condition. But unfortunately, no obvious change was observed in the ¹H NMR and ¹³C NMR spectra of platinum and N-phenylmaleimide as possible ligand. Further study is ongoing.

Figure S1 additive= N-phenylmaleimide

Table S1. The effect of the leaving group on the reaction

Standard procedure as Table 2 (main text)shows. ^{*a*} Isolated yield. ^{*b*} Using 20 mol% loading of PtI₂ catalyst. ^{*c*} The starting material disappeared traced by TLC.

To understand the effect of the leaving group at the C3-position of the 1,5-envne substrate on the reaction, other hydroxy protecting groups were investigated (Table 3). It was found that the 3acyloxy-1-en-5-yne 3a gave better result than that of all other enyne substrates 3a', 2a, 3a'' in the presence of PtI₂. Given upon a closer insight, the substrate with OAc leaving group could give the corresponding product in 85 % yield in 80 mins, For the OTBS protected 1,5-envne substrate, it is necessary to prolong the reaction time to 90 mins and increase the amount of the PtI_2 to 20 mol%. Consequently, 73% isolated yield of *m*-terphenyls was obtained (entry 2). In the presence of 10 mol% PtI_2 , the reaction time need to be extended to 3.5 h to consume the substrate completely which is detected once every 15 mins by TLC. Moreover, the isolated yield of 4a is 57% which is lower than that of 3-OAC-1,5-envne as substrate (85%) under the same reaction condition (entries 3 vs 1). Whereas for the 1,5-envne with free hydroxy group, the starting material disappeared after 12 h traced by TLC, and resulted in only 17% target product with other side reactions (oligopolymerization or anything else) (entry 4). The direct elimination of water and methanol needs longer reaction time and afford a lower yield of 4a (entry 5). Summarily, the acetyl group is the best hydroxy protecting group in our methodology. We deduced the carbonyl group of the acetyl group formed available intramolecule hydrogen bond with the hydrogen atom at C4 position, which makes the elimination of acetic acid more easily to occur.

Optimal conditions: 5 mol% PtI₂, 50 mol% N-phenylmalimde, toluene, 110 °C. (b) The ratio of these cyclic products and its isomer were

detected by proton NMR.

For the enyne 3w, two regioselective products 2,3-dimethyl biphenyl 4w' and 3,4-dimethyl biphenyl 4w were generated (eq. 3, Scheme 3). In the case of terminal alkyne 3x which was reported by Zhang's group (Scheme 1b in main text, reference 8), the biphenyl 4x was obtained in a lower yield (6%) besides the cyclohexadiene 2 in 13% isolated yield. This result disclosed that the internal alkyne is important for this transformation into biphenyls or terphenyls derivatives. All these results demonstrated that substituents of the alkene moiety or alkyne terminal have a crucial effect on the regioselectivity or chemoselectivity of this cyclization reaction.

I General Information

The ¹H NMR and ¹³C NMR spectra were recorded at Bruker AV 400MHz or 600 MHz. ¹H and ¹³C NMR Chemical shifts were calibrated to tetramethylsilane as an internal reference. Chemical shifts are given in (ppm) and coupling constants (*J*) in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet: t, triplet; q, quartet; m, multiplet; Infrared spectra were recorded on an Bruker Fourier transform spectrometer (FT-IR) and are reported in wave numbers (cm⁻¹). GC-MS spectra were recorded on Finnigan Polaris Q spectrometer. HRMS were obtained on an Agilent 6520 Q-TOF LC-MS with ESI resource. Mass spectra (MS) and high-resolution mass spectra (HRMS) were recorded on a GCT CA127 TOF-MS spectrometer (EI, 70 eV.). Compounds described in the literature were characterized by comparison of their ¹H, and/or ¹³C NMR spectra to the previously reported data.

Enyne substrates were synthesized according to the following sequence:

II Synthesis and Characterization of Propargylic alcohols¹

Representative Procedure 1:

To a vigorously stirred solution of cinnamaldehyde (2.64 g, 20 mmol) and 3 equiv. 3-bromopropyne (7.10 g, 60 mmol) in H₂O (20 mL) 0.75 equiv. tin powder (1.78, 15 mmol) and 20 mol% Lewis acid SnCl₂· H₂O (0.83 g, 4 mmol) was added at 30 °C in a 50 mL flask. This solution was stirred at 30 °C until the complete consumption of the starting material as monitored by TLC. After adjusting the pH value to 8-9, the mixture was extracted three times with ethyl acetate (3×40 mL). The combined organic layer was dried over MgSO₄ and the solvent was removed in vacuum. The residue was purified by silica gel column chromatography (hexane /ethyl acetate : 10/1) to give the desired product.

Yellow oil, 2.03 g, Yield 59%; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.26 (ddd, J = 27.7, 19.6, 7.3 Hz, 6H), 6.69 (d, J = 15.9 Hz, 1H), 6.31 (dd, J = 15.9, 6.3 Hz, 1H), 4.50 (q, J = 6.0 Hz, 1H), 2.67-2.48 (m,

2H), 2.34(br, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 136.5, 131.5, 130.1, 128.8, 128.1, 126.8, 80.4, 71.3, 70.9, 27.9.

(E)-1-(4-bromophenyl)hex-1-en-5-yn-3-ol

Yellow oil, 2.45 g, Yield 49%; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 6.60 (d, *J* = 15.9 Hz, 1H), 6.27 (dd, *J* = 15.9, 6.2 Hz, 1H), 4.46 (q, *J* = 5.6 Hz, 1H), 2.66-2.44 (m, 2H), 2.39-2.18 (m, 1H), 2.10 (t, *J* = 2.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 135.4, 131.9, 130.9, 130.3, 128.3, 121.8, 80.2, 71.5, 70.7, 27.8

(E)-1-(4-chlorophenyl)hex-1-en-5-yn-3-ol

1c

Yellow oil, 2.18 g, Yield 53%; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.18 (m, 4H), 6.61 (d, *J* = 15.9 Hz, 1H), 6.25 (dd, *J* = 15.9, 6.2 Hz, 1H), 4.46 (p, *J* = 5.3 Hz, 1H), 2.66-2.45 (m, 2H), 2.33 (d, *J* = 4.7 Hz, 1H), 2.10 (t, *J* = 2.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 135.0, 133.7, 130.7, 130.2, 128.9, 128.0, 80.3, 71.5, 70.7, 27.9.

(E)-1-m-tolylhex-1-en-5-yn-3-ol

1d

Yellow oil, 2.08 g, Yield 56%; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.18 (m, 3H), 7.12-7.05 (m, 1H), 6.64 (d, *J* = 15.9 Hz, 1H), 6.27 (dd, *J* = 15.9, 6.4 Hz, 1H), 4.48 (dd, *J* = 11.2, 5.5 Hz, 1H), 2.65-2.48 (m, 2H), 2.35 (s, 3H), 2.25 (d, *J* = 4.5 Hz, 1H), 2.10 (t, *J* = 2.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 138.3, 136.4, 136.0, 131.6, 129.9, 128.9, 128.7, 127.5, 123.9, 80.5, 71.3, 70.9, 27.9, 21.6.

(E)-2-methyl-1-phenylhex-1-en-5-yn-3-ol

Yellow oil, 2.26 g, Yield 61%; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.11 (m, 5H), 6.55 (s, 1H), 4.33 (t, *J* = 6.4 Hz, 1H), 2.73 (s, 1H), 2.53 (dd, *J* = 6.4, 2.7 Hz, 2H), 2.06 (t, *J* = 2.6 Hz, 1H), 1.85 (d, *J* = 1.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 138.2, 137.3, 129.1, 129.1, 129.1, 129.1, 129.0, 129.0, 129.0, 129.0, 129.0, 129.0, 128.3, 128.2, 128.1, 126.6, 126.6, 126.5, 126.5, 80.8, 75.6, 71.0, 26.0, 13.5.

(E)-5-benzylideneundec-1-yn-4-ol

Yellow oil, 2.30 g, Yield 45%; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.07 (m, 5H), 6.54 (s, 1H), 4.40-4.24 (m, 1H), 2.60-2.38 (m, 2H), 2.38-2.15 (m, 2H), 2.04 (ddd, J = 12.4, 9.5, 5.2 Hz, 2H), 1.52-1.31 (m, 2H), 1.30-1.07 (m, 7H), 0.78 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 137.6, 128.8, 128.3, 126.7, 126.2, 81.0, 73.6, 71.1, 31.6, 29.7, 29.1, 28.7, 27.0, 22.7, 14.2.

(Z)-2-bromo-1-phenylhex-1-en-5-yn-3-ol

Yellow oil, 2.50 g, Yield 50%; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 6.0 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 3H), 7.23 (s, 1H), 4.57 (s, 1H), 3.53 (s, 1H), 2.92-2.68 (m, 2H), 2.21 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 134.7, 129.1, 128.2, 128.1, 127.1, 79.7, 75.5, 71.6, 26.2.

Yellow oil, 506 mg, Yield 23%; ¹H NMR (400 MHz, CDCl₃) δ 5.81-5.67 (m, 1H), 5.54 (ddd, *J* = 15.3, 6.7, 1.4 Hz, 1H), 4.33-4.12 (m, 1H), 2.47-2.36 (m, 2H), 2.16 (d, *J* = 4.3 Hz, 1H), 2.04 (t, *J* = 2.6 Hz, 1H), 1.69 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 132.1, 128.2, 80.8, 70.9, 27.7, 17.8.

Preparation of the deuterium-labeling homopropargylic alcohol

The d_2 -propargyl bromide is synthesized according to the reference²; Spectral data obtained for the compound is in agreement with the data reported.

(E)-1-(4-bromophenyl)-(4,4'-di-deuterium)-hex-1-en-5-yn-3-ol

According to the procedure **1a**; Yellow oil, 480 mg, Yield 52%; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 2H), 7.26 (d, J = 8.1 Hz, 2H), 6.61 (d, J = 15.9 Hz, 1H), 6.29 (dd, J = 16.0, 6.1 Hz, 1H), 4.47 (d, J = 6.1 Hz, 1H), 2.38 (s, 1H), 2.12 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 135.4, 131.8, 131.6, 130.9, 130.2, 128.3, 127.9, 121.8, 80.2, 77.5, 77.2, 76.9, 71.5, 70.5, 27.6, 27.4, 27.2, 27.0, 26.8, 1.2.

III Synthesis and Characterization of 3-OH-1-en-5-ynes and 3-OAc-1-en-5-ynes

Representative Procedure 1 to synthesis of 3-OH-1-en-5-ynes³:

In a typical experiment, Pd(PPh₃)₄ (1 mol%, 11 mg) and CuI (3 mg, 2 mol%), piperidine (3 mmol, 360

uL) and the substituted Iodobenzene (1.1 mmol) were dissolved in DMF (10 mL) in a sealed Schlenk, after terminal alkynes **1** (1 mmol) was added, the solution is degassed by alternately freezing, evacuating and thawing. Under the nitrogen atmosphere, the reaction mixture was stirred at 80 °C for 16 h. After cooling to room temperature, the reaction mixture was quenched with saturated NaCl (aq), and the product was extracted three times with ethyl acetate (20 mL). The combined organic layer was washed with brine and was dried over magnesium sulfate and the solvent was removed in vacuo. The product was purified by silica gel column chromatography (petrol ether/EtOAc 10:1) to afford the compound **2**.

White solid, 196 mg, Yield 79%; m.p. 76-78 °C. IR (FT-IR): 3389, 3027, 1598, 1444, 1245, 1041, 967, 915, 754, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.21 (m, 10H), 6.73 (d, *J* = 15.9 Hz, 1H), 6.37 (dd, *J* = 15.9, 6.3 Hz, 1H), 4.64-4.51 (m, 1H), 2.91-2.69 (m, 2H), 2.22 (d, *J* = 4.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 136.6, 131.9, 131.4, 130.5, 128.8, 128.5, 128.2, 128.0, 126.8, 123.4, 85.6, 83.6, 77.5, 77.2, 76.9, 71.2, 29.0; HR-MS (ESI+) calculated for C₁₈H₁₆O (M+Na⁺) 271.1093, found 271.1093.

2b

White solid, 170 mg, Yield 64%; m.p. 67-69 °C; IR (FT-IR): 3405, 2909, 1601, 1505, 1230, 1041, 968, 836, 750, 697, 529 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.21 (m, 7H), 7.01 (t, *J* = 8.3 Hz, 2H), 6.73 (d, *J* = 15.9 Hz, 1H), 6.37 (dd, *J* = 15.9, 6.1 Hz, 1H), 4.58 (d, *J* = 5.7 Hz, 1H), 2.93-2.72 (m, 2H), 2.38 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 163.7, 161.2, 136.6, 133.7, 133.7, 131.4, 130.4, 128.8,

128.0, 126.7, 119.5, 119.5, 115.8, 115.5, 85.5, 82.3, 77.5, 77.2, 76.9, 71.2, 28.8; HR-MS (ESI+) calculated for C₁₈H₁₅FO (M+Na⁺) 289.0999, found 289.1000.

(E)-6-(2-fluorophenyl)-1-phenylhex-1-en-5-yn-3-ol

2c

Yellow oil, 215 mg, Yield 81%; IR (FT-IR): 3384, 3028, 2907, 1661, 1575, 1492, 1215, 1103, 967, 820, 754, 694 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ 7.35 (ddd, J = 29.1, 22.8, 7.3 Hz, 8H), 7.09 (d, J = 8.1 Hz, 2H), 6.73 (d, J = 15.9 Hz, 1H), 6.39 (dd, J = 15.9, 6.1 Hz, 1H), 4.60 (q, J = 5.8 Hz, 1H), 2.95-2.78 (m, 2H), 2.62 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 164.3, 161.8, 136.6, 133.7, 131.4, 130.3, 129.9, 129.8, 128.8, 128.0, 126.8, 124.1, 124.0, 115.7, 115.5, 112.0, 111.9, 91.3, 77.5, 77.2, 76.9, 76.8, 71.1, 29.1; HR-MS (ESI+) calculated for C₁₈H₁₅FO (M+Na⁺) 289.0999, found 289.0994

(E)-6-(3-chlorophenyl)-1-phenylhex-1-en-5-yn-3-ol

Yellow solid, 208 mg, Yield 74%; m.p. 49-51 °C. IR (FT-IR): 3385, 3027, 1592, 966, 784, 748, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.22 (m, 9H), 6.77 (d, *J* = 15.9 Hz, 1H), 6.40 (dd, *J* = 15.9, 6.2 Hz, 1H), 4.62 (d, *J* = 5.5 Hz, 1H), 2.98-2.73 (m, 2H), 2.25 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 134.2, 131.8, 131.6, 130.3, 130.0, 129.7, 128.8, 128.5, 128.1, 126.8, 125.2, 87.2, 82.1, 77.5, 77.2, 76.9, 71.2, 28.9; HR-MS (ESI+) calculated for C₁₈H₁₅ClO (M+Na⁺) 305.0709; found 305.0703.

(E)-6-(4-iodophenyl)-1-phenylhex-1-en-5-yn-3-ol

White solid, 149 mg, Yield 40%; m.p. 112-114 °C. IR (FT-IR): 3302, 2921, 1657, 1578, 1446, 1389, 1096, 974, 826,750, 733, 694, 522 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.1 Hz, 2H), 7.34

(ddd, J = 27.6, 19.9, 6.8 Hz, 6H), 7.15 (d, J = 8.1 Hz, 2H), 6.71 (d, J = 15.9 Hz, 1H), 6.34 (dd, J = 15.9, 6.3 Hz, 1H), 4.57 (d, J = 5.1H), 2.88-2.67 (m, 2H), 2.18 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 137.6, 136.5, 133.4, 131.5, 130.4, 128.8, 128.1, 126.8, 123.0, 93.9, 87.4, 82.6, 77.5, 77.2, 76.9, 71.2, 29.0; HR-MS (ESI+) calculated for C₁₈H₁₅IO (M+Na⁺) 397.0065, found 397.0057.

(E)-6-(4-methoxyphenyl)-1-phenylhex-1-en-5-yn-3-ol

Pd(PPh₃)₄ (5 mol%, 11 mg) and CuI (1 mg, 3 mol%), piperidine (0.6 mmol, 100 uL) and the *p*-methoxyIodobenzene (1.1 mmol) were dissolved in DMF (3 mL) in a sealed Schlenk, after terminal alkynes **1a** (0.2 mmol) was added, the solution is degassed by alternately freezing, evacuating and thawing. Under the nitrogen atmosphere, the reaction mixture was stirred at the 60 °C for 16 h. After cooling to room temperature, the reaction mixture was quenched with saturated NaCl (aq), and the product was extracted three times with ethyl acetate (20 mL). The combined organic layer was washed with brine and was dried over magnesium sulfate and the solvent was removed in vacuo. The product was purified by silica gel column chromatography (petroleum ether/EtOAc 5:1) to afford the compound **2f**. White solid, 33 mg, Yield 59%; m.p. 87-89 °C; IR (FT-IR): 3460, 2930, 1605, 1510, 1035, 968, 833, 750, 696, 607 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.56 (m, 8H), 7.18 (d, J = 7.5 Hz, 2H), 7.06 (d, J = 15.9 Hz, 1H), 6.70 (dd, J = 15.9, 6.0 Hz, 1H), 4.90 (d, J = 5.4 Hz, 1H), 4.15 (s, 3H), 3.20-3.04 (m, 2H), 2.76 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 136.5, 133.1, 131.1, 130.4, 128.6, 127.8, 126.6, 115.4, 113.9, 84.0, 83.2, 77.4, 77.1, 76.8, 71.1, 55.3, 28.9; HR-MS (ESI+) calculated for C₁₉H₁₈O₂(M+ H⁺) 279.1385, found 279.1380.

(E)-3-(4-hydroxy-6-phenylhex-5-en-1-ynyl)benzonitrile

Colorless oil, 229 mg, Yield 84%; IR (FT-IR): 3441, 3028, 2232, 1664, 1597, 1478, 967, 798, 750, 684 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.53 (d,

1H), 7.47-7.21 (m, 6H), 6.70 (d, J = 15.9 Hz, 1H), 6.32 (dd, J = 15.9, 6.4 Hz, 1H), 4.68-4.44 (m, 1H), 2.81 (dd, J = 17.1, 5.8 Hz, 2H), 2.41 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 136.4, 136.0, 135.2, 131.6, 131.3, 130.2, 129.3, 128.8, 128.1, 126.7, 125.1, 118.3, 112.7, 88.9, 81.0, 77.5, 77.2, 76.9, 71.1, 28.7; HR-MS (ESI+) calculated for C₁₉H₁₅NO (M+Na⁺) 296.1051; found 296.1046.

(E)-6-(4-nitrophenyl)-1-phenylhex-1-en-5-yn-3-ol

2h

According to the synthesis of **2f**; White solid, 28 mg, Yield 46%; m.p. 80-81 °C; IR (FT-IR): 3392, 3023, 2881, 1592, 1517, 1344, 1105, 970, 853, 750, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.24-8.07 (m, 2H), 7.65-7.47 (m, 2H), 7.46-7.22 (m, 5H), 6.71 (d, *J* = 15.9 Hz, 1H), 6.33 (dd, *J* = 15.9, 6.4 Hz, 1H), 4.68-4.50 (m, 1H), 2.94-2.72 (m, 2H), 2.30 (d, *J* = 4.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 136.3, 132.6, 131.7, 130.5, 130.1, 128.8, 128.2, 126.7, 123.7, 92.1, 81.7, 77.5, 77.2, 76.9, 71.1, 28.9; HR-MS (ESI+) calculated for C₁₈H₁₅NO₃ (M+Na⁺) 316.0950, found 316.1044.

(E)-1-(4-chlorophenyl)-6-phenylhex-1-en-5-yn-3-ol

White solid, 194 mg, Yield 69%; m.p. 95-96 °C; IR (FT-IR): 3403, 2925, 1596, 967, 806, 757, 693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.19 (m, 10H), 6.66 (d, J = 15.9 Hz, 1H), 6.32 (dd, J = 15.9, 6.1 Hz, 1H), 4.55 (q, J = 5.9 Hz, 1H), 2.85-2.70 (m, 2H), 2.44 (br, 1H); ¹¹³C NMR (101 MHz, CDCl₃) δ 135.1, 133.6, 131.9, 131.1, 130.1, 128.9, 128.5, 128.2, 128.0, 123.3, 85.5, 83.6, 77.5, 77.2, 76.9, 71.0, 28.9; HR-MS (ESI+) calculated for C₁₈H₁₅ClO (M+Na⁺) 305.0709; found 305.0699.

(E)-1-(4-bromophenyl)-6-phenylhex-1-en-5-yn-3-ol

White solid, 215 mg Yield 66%; m.p. 95-97 °C; IR (FT-IR): 3418, 2925, 1597, 1487, 968, 803, 757, 693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.07 (m, 11H), 6.59 (d, *J* = 15.9 Hz, 1H), 6.29 (dd, *J* = 15.9, 6.1 Hz, 1H), 4.50 (q, *J* = 5.8 Hz, 1H), 2.92-2.43 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 135.5, 131.8, 131.2, 130.0, 128.4, 128.2, 128.2, 123.3, 121.7, 85.6, 83.5, 77.5, 77.2, 76.9, 71.0, 28.8; HR-MS (ESI+) calculated for C₁₈H₁₅BrO (M+Na⁺) 349.0204; found 349.0207.

(E)-1-(4-bromophenyl)-6-(4-methoxyphenyl)hex-1-en-5-yn-3-ol

2k

Following the procedure of **2f**; White solid, 57 mg, Yield 80%; m.p. 141-142 °C; IR (FT-IR): 3352, 2931, 1604, 1031, 973, 835, 807, 540 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.10 (m, 6H), 6.73 (d, *J* = 8.8 Hz, 2H), 6.55 (d, *J* = 15.9 Hz, 1H), 6.23 (dd, *J* = 15.9, 6.0 Hz, 1H), 4.43 (d, *J* = 5.9 Hz, 1H), 3.71 (s, 3H), 2.77-2.57 (m, 2H), 2.26 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 159.6, 135.6, 133.2, 131.9, 131.3, 130.0, 128.3, 121.7, 115.4, 114.1, 83.8, 83.5, 77.5, 77.2, 76.9, 71.0, 55.4, 29.0; HR-MS (ESI+) calculated for C₁₉H₁₈BrO₂ (M+H⁺) 357.0490, found 357.0466.

(E)-6-phenyl-1-m-tolylhex-1-en-5-yn-3-ol

White solid, 201 mg, Yield 77%; m.p. 65-67°C; IR (FT-IR): 3432, 2924, 1601, 966, 778, 757, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dd, J = 6.5, 3.1 Hz, 2H), 7.31 (dt, J = 25.9, 4.3 Hz, 6H), 7.21-7.05 (m, 1H), 6.71 (dd, J = 15.9, 0.5 Hz, 1H), 6.37 (dd, J = 15.9, 6.3 Hz, 1H), 4.59 (q, J = 5.7 Hz, 1H), 2.95-2.72 (m, 2H), 2.55 (s, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.2, 136.5, 131.8, 131.4, 130.3, 128.7, 128.6, 128.4, 128.1, 127.4, 123.9, 123.4, 85.8, 83.4, 77.5, 77.2, 76.9, 71.2, 28.9, 21.5; HR-MS (ESI+) calculated for C₁₉H₁₈O (M+Na⁺) 285.1255; found 285.1260.

(E)-2-methyl-1,6-diphenylhex-1-en-5-yn-3-ol

2m

Colorless oil, 212 mg, Yield 81%; IR (FT-IR): 3441, 2914, 1715, 1599, 1491, 1444, 1070, 756, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (dt, *J* = 27.1, 22.7 Hz, 10H), 6.67 (s, 1H), 4.47 (s, 1H), 2.83 (d, *J* = 5.3 Hz, 2H), 2.33 (s, 1H), 1.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 138.5, 137.5, 131.8, 129.2, 128.4, 128.3, 128.1, 126.7, 126.6, 123.5, 86.1, 83.4, 77.5, 77.2, 76.9, 75.9, 27.3, 13.8; HR-MS (ESI+) calculated for C₁₉H₁₈O (M+H⁺) 263.1436, found 263.1441.

(E)-5-benzylidene-1-phenylundec-1-yn-4-ol

Colorless oil, 199 mg, Yield 86%; IR (FT-IR): 3384, 3056, 2926, 1599, 1491, 1028, 916, 755, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.16 (m, 11H), 6.67 (s, 1H), 4.47 (s, 1H), 2.80 (qd, *J* = 16.8, 6.1 Hz, 2H), 2.49-2.34 (m, 2H), 2.18 (dt, *J* = 13.8, 8.0 Hz, 1H), 1.51 (dd, *J* = 15.6, 7.9 Hz, 2H), 1.37-1.19 (m, 8H), 0.88 (dt, *J* = 13.6, 6.7 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 137.7, 131.8, 128.8, 128.4, 128.3, 128.0, 126.6, 126.2, 123.5, 86.3, 83.4, 77.5, 77.2, 76.9, 73.8, 31.6, 29.8, 29.8, 29.1, 28.8, 28.0, 22.7, 14.2; HR-MS (ESI+) calculated for C₂₄H₂₈O (M+Na⁺) 355.2038, found 355.2031.

(Z)-2-bromo-1,6-diphenylhex-1-en-5-yn-3-ol

Yellow oil, 218 mg, Yield 67%; IR (FT-IR): 3422, 2917, 2849, 1490, 1045, 755, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 6.8 Hz, 2H), 7.58-7.28 (m, 9H), 4.61 (d, *J* = 5.0 Hz, 1H), 3.15-2.92 (m, 2H), 2.69 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 135.1, 131.8, 129.3, 129.3, 128.4, 128.4, 128.2,

127.6, 123.3, 84.9, 83.9, 77.5, 77.2, 76.9, 75.9, 27.8; HR-MS (ESI+) calculated for C₁₈H₁₅BrO (M+Na⁺) 349.0204, found 349.0204.

(E)-1-phenyl-6-(thiophen-2-yl)hex-1-en-5-yn-3-ol

Yellow oil, 178 mg, Yield 70%; IR (FT-IR): 3394, 2905, 966, 848, 750, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (ddd, *J* = 44.1, 36.1, 8.6 Hz, 7H), 6.92 (d, *J* = 3.4 Hz, 1H), 6.68 (d, *J* = 15.9 Hz, 1H), 6.31 (dd, *J* = 15.9, 5.4 Hz, 1H), 4.53 (s, 1H), 2.91-2.67 (m, 2H), 2.29 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 136.5, 131.8, 131.5, 130.3, 128.8, 128.0, 127.0, 126.8, 126.7, 123.5, 89.9, 77.5, 77.2, 76.9, 76.5, 71.1, 29.2; HR-MS (ESI+) calculated for C₁₆H₁₄OS (M+Na⁺) 277.0663; found 277.0664.

(E)-6-(naphthalen-2-yl)-1-phenylhex-1-en-5-yn-3-ol

2q

White solid, 211 mg, Yield 71%; m.p. 67-68 °C; IR (FT-IR): 3392, 3057, 2904, 1584, 1495, 1395, 1029, 966, 800, 774, 750,693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 8.3 Hz, 1H), 7.83 (t, *J* = 9.8 Hz, 2H), 7.67 (d, *J* = 6.9 Hz, 1H), 7.60-7.24 (m, 8H), 6.79 (d, *J* = 15.9 Hz, 1H), 6.46 (dd, *J* = 15.9, 6.0 Hz, 1H), 4.67 (s, 1H), 2.99 (t, *J* = 8.0 Hz, 2H), 2.40 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 136.5, 133.6, 133.3, 131.6, 130.6, 130.5, 128.8, 128.6, 128.4, 128.1, 126.8, 126.5, 126.4, 125.3, 121.1, 90.7, 81.5, 77.5, 77.2, 76.9, 71.4, 29.2; HR-MS (ESI+) calculated for C₂₂H₁₈O (M+Na⁺) 321.1255; found 321.1257.

(E)-1-phenylhept-1-en-5-yn-3-ol⁴

A round-bottomed flask was wrapped in aluminum foil and equipped with a dropping funnel and a thermometer. The flask was charged with (*E*)-1-phenylhex-1-en-5-yn- 3-ol (258 mg, 1.5 mmol, 1.0 equiv.) and tetrahydrofuran (4 mL). The resulting solution was cooled to -78 °C and a 2.5 M solution of *n*-butyllithium in hexane (1.2 mL, 3 mmol, 2.0 equiv.) was added dropwise. The mixture was stirred at -78 °C for a further 90 minutes and iodomethane (0.5 mL, 7.5 mmol, 5.0 equiv.) was added dropwise. The mixture was allowed to warm to room temperature for 1 hour and 1.0 M hydrochloric acid (10 mL) was added dropwise. The mixture was stirred for a further 30 minutes at room temperature, the organic layer separated and the aqueous layer extracted with diethyl ether (3 x 15 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated *in vacuo*. The product was purified by silica gel column chromatography (hexane /ethyl acetate: 10/1) to give the desired product **2q**. Yellow oil, 176 mg, Yield 63%; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.14 (m, 6H), 6.62 (d, *J* = 15.9 Hz, 1H), 6.24 (dd, *J* = 15.9, 6.3 Hz, 1H), 4.38 (dd, *J* = 11.8, 5.9 Hz, 1H), 2.58-2.38 (m, 2H), 2.21 (s, 1H), 1.80 (t, *J* = 2.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 136.5, 131.0, 130.5, 128.6, 127.8, 126.6, 78.8, 77.4, 77.1, 76.7, 74.7, 71.0, 28.2, 3.6; GC-MS (EI, 70 eV): m/z (%) = 186 (2)[M⁺], 168 (6), 153 (10), 133 (100), 115 (51).

According to the synthesis of **2f**; Colorless oil, 42 mg, Yield 72%; IR (FT-IR): 3424, 2837, 1605, 1569, 1509, 1443, 1246, 1173, 1032, 832, 750,700,536 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.08 (m, 8H), 6.93-6.77 (m, 2H), 6.64 (s, 1H), 4.44 (t, *J* = 5.9 Hz, 1H), 3.80 (s, 3H), 2.86-2.72 (m, 2H), 2.37 (s, 1H), 1.93 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 138.6, 137.6, 133.2, 129.2, 128.3, 126.7, 126.5, 115.6, 114.0, 114.0, 84.4, 83.2, 77.5, 77.2, 76.9, 75.9, 55.4, 27.4, 13.8; HR-MS (ESI+) calculated for C₂₀H₂₀O₃ (M+H⁺) 293.1543, found 293.1535.

(E)-1-(4-bromophenyl)-6-(4-methoxyphenyl)-(4,4'-di-deuterium)-

hex-1-en-5-yn-3-ol

According to the procedure for the synthesis of **2f**; White solid, 56 mg, Yield 79%; m.p. 112-114 °C; IR (FT-IR): 3342, 3172, 1757, 1676, 1247, 1105, 1030, 974,800 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.20 (m, 7H), 6.82 (d, *J* = 8.6 Hz, 2H), 6.62 (d, *J* = 15.9 Hz, 1H), 6.32 (dd, *J* = 15.9, 6.0 Hz, 1H), 4.51 (d, *J* = 5.7 Hz, 1H), 3.79 (s, 3H), 2.41 (s, 1H);¹³C NMR (101 MHz, CDCl₃) δ 159.5, 135.6, 133.2, 133.1, 131.8, 131.3, 130.0, 128.3, 121.7, 115.4, 114.0, 83.8, 83.5, 77.5, 77.2, 76.9, 70.9, 55.4; HR-MS (ESI+) calculated for C₁₉H₁₅D₂BrO₂ (M+H⁺) 359.0616, found 359.0594.

(E)-1-phenylhept-5-en-1-yn-4-ol

2u

Colorless oil, 152 mg, Yield 82%; IR (FT-IR): 3385, 2917, 1674, 1598, 1490, 1443, 1026, 966, 757, 692, 527 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.36 (m, 3H), 7.34-7.27 (m, 3H), 5.79 (dq, *J* = 12.8, 6.4 Hz, 1H), 5.62 (dd, *J* = 15.3, 6.6 Hz, 1H), 4.38-4.27 (m, 1H), 2.74-2.57 (m, 2H), 2.31 (d, *J* = 4.1 Hz, 1H), 1.74 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 133.2, 132.3, 128.1, 115.6, 114.0, 84.4, 83.0, 77.5, 77.2, 76.9, 71.2, 55.4, 28.9, 17.9; HR-MS (ESI+) calculated for C₁₃H₁₄O (M+H⁺) 187.1123, found 187.1118.

(E)-1-(4-methoxyphenyl)hept-5-en-1-yn-4-ol

S17

According to the synthesis of **2f**; Colorless oil, 34 mg, Yield 78%; IR (FT-IR): 3417, 2915, 1606, 1510, 1246, 1173, 1032, 966, 832, 536 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.7 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 5.77 (dt, *J* = 12.8, 6.4 Hz, 1H), 5.68-5.43 (m, 1H), 4.38-4.25 (m, 1H), 3.79 (s, 3H), 2.74-2.52 (m, 2H), 2.15 (d, *J* = 4.3 Hz, 1H), 1.73 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 133.2, 132.3, 128.1, 115.6, 114.0, 84.4, 83.0, 77.5, 77.2, 76.9, 71.2, 55.4, 28.9, 17.9; HR-MS (ESI+) calculated for C₁₄H₁₆O₂ (M+H⁺) 217.1229 , found 217.1221.

(E)-2-methyl-1-phenylhept-1-en-5-yn-3-ol

According to the procedure of **2q**; Colorless oil, 111 mg, Yield 37%; ¹H NMR (400 MHz, CDCl3) δ 7.41-7.16 (m, 6H), 6.57 (s, 1H), 4.35-4.23 (m, 1H), 2.59-2.41 (m, 2H), 2.24 (s, 1H), 1.89 (d, J = 15.2 Hz, 3H), 1.82 (d, J = 1.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.5, 137.5, 129.0, 128.1, 126.5, 126.1, 78.7, 77.4, 77.1, 76.7, 75.7, 75.1, 26.6, 13.7, 3.6; GC-MS (EI, 70 eV): m/z (%) = 182 (2), 147 (97), 129 (100), 91 (22).

Following the general procedure 2; White solid; Yield 56%; 124 mg; m.p. 113-114 °C. IR (FT-IR): 3326, 2911, 1739, 1444, 1244, 1046, 918, 747, 699, 548 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.18 (m, 15H), 6.62 (s, 2H), 4.43 (t, *J* = 6.1 Hz, 2H), 2.79 (d, *J* = 6.3 Hz, 4H), 2.28 (s, 2H), 1.91 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 138.3, 137.3, 131.5, 129.0, 128.2, 126.6, 126.5, 122.9, 87.7, 85.4, 82.8, 77.4, 77.1, 76.7, 75.8, 27.2, 13.6; HR-MS (ESI+) calculated for C₃₂H₃₀O₂ (M+NH₄⁺) 464.2590, found 464.2583.

Representative Procedure 3 to synthesis of 3-OAc-1-en-5-ynes⁵:

To a solution of the 3-OH-1-en-5-ynes **2** (0.5 mmol), Et₃N (0.7 mL, 5.0 mmol) and DMAP (0.06 g, 0.5 mmol) in anhydrous CH_2Cl_2 (5.0 mL) at 0°C, was slowly added acetic anhydride (0.25 mL, 2.5 mmol). The reaction was stirred at room temperature overnight, and then concentrated upon the disappearance of the enynyl alcohol (monitored by TLC). The residue obtained was purified through silica gel flash column chromatography (petrol ether/EtOAc: 20:1) to yield the desired acetate **3**.

(E)-1, 6-diphenylhex-1-en-5-yn-3-yl acetate

Colorless oil, 139 mg, Yield 96%; IR (FT-IR): 3028, 2913, 1738, 1598, 1491, 1444, 1371, 1232, 1021, 966, 754, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.20 (m, 11H), 6.73 (d, *J* = 15.9 Hz, 1H), 6.30 (dd, *J* = 15.9, 7.1 Hz, 1H), 5.62 (q, *J* = 6.3 Hz, 1H), 2.95-2.72 (m, 2H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 136.3, 133.6, 131.8, 128.8, 128.4, 128.3, 128.1, 126.9, 126.2, 123.5, 85.0, 83.0, 77.5, 77.2, 76.9, 72.8, 26.1, 21.4; HR-MS (ESI+) calculated for C₂₀H₁₈O₂ (M+Na⁺) 313.1199, found 313.1202.

(E)-6-(4-fluorophenyl)-1-phenylhex-1-en-5-yn-3-yl acetate

Colorless oil, 144 mg, Yield 94%; IR (FT-IR): 3028, 2910, 1738, 1601, 1506, 1371, 1232, 1156, 1021, 966, 836, 750, 693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.25 (m, 7H), 6.98 (t, *J* = 8.1 Hz, 2H), 6.75 (d, *J* = 15.9 Hz, 1H), 6.30 (dd, *J* = 15.9, 7.1 Hz, 1H), 5.64 (q, *J* = 6.3 Hz, 1H), 2.97-2.77 (m, 2H), 2.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 163.6, 161.2, 136.2, 133.6, 133.6, 128.8, 128.3, 126.8, 126.1, 119.6, 119.6, 115.7, 115.5, 84.7, 81.9, 77.5, 77.2, 76.9, 72.7, 26.0, 21.3; HR-MS (ESI+) calculated for C₂₀H₁₇FO₂ (M+Na⁺) 331.1110, found 331.1111.

(E)-6-(2-fluorophenyl)-1-phenylhex-1-en-5-yn-3-yl acetate

Colorless oil, 132 mg, Yield 86%; IR (FT-IR): 3028, 2930, 1737, 1658, 1575, 1492, 1448, 1371, 1231, 1021, 965, 818, 751, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.22 (m, 7H), 7.09 (t, *J* = 8.0 Hz, 2H), 6.79 (d, *J* = 15.9 Hz, 1H), 6.79 (d, *J* = 15.9 Hz, 1H), 6.36 (dd, *J* = 15.9, 6.9 Hz, 1H), 6.36 (dd, *J* = 15.9, 6.9 Hz, 1H), 5.69 (d, *J* = 6.2 Hz, 1H), 5.69 (d, *J* = 6.2 Hz, 1H), 3.03-2.84 (m, 2H), 2.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 164.3, 161.8, 136.2, 133.6, 133.5, 129.7, 129.6, 128.7, 128.2, 126.8, 126.0, 123.9, 123.9, 115.6, 115.4, 112.0, 111.9, 90.4, 77.5, 77.2, 76.8, 76.3, 72.5, 26.2, 21.3, 21.2; HR-MS (ESI+) calculated for C₂₀H₁₇FO₂ (M+Na⁺) 331.1110, found 331.1109.

(E)-6-(3-chlorophenyl)-1-phenylhex-1-en-5-yn-3-yl acetate

Yellow oil, 136 mg, Yield 84%; IR (FT-IR): 3027, 2924, 2853, 1738, 1592, 1560, 1474, 1370, 1231, 1020, 964, 784, 747, 682 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.00 (m, 9H), 6.62 (d, *J* = 15.9 Hz, 1H), 6.17 (dd, *J* = 15.9, 6.4 Hz, 1H), 5.52 (d, *J* = 6.0 Hz, 1H), 2.85-2.65 (m, 2H), 2.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 136.1, 134.1, 133.7, 131.6, 129.9, 129.6, 128.8, 128.4, 128.3, 126.8, 126.0, 125.2, 86.5, 81.7, 77.5, 77.2, 76.9, 72.5, 26.0, 21.3; HR-MS (ESI+) calculated for C₂₀H₁₇ClO₂ (M+Na⁺) 347.0815; found 347.0814.

White solid, 185 mg, Yield 89%; m.p. 72-73 °C; IR (FT-IR): 3058, 3027, 2930, 1739, 1483, 1371, 1233, 1021, 1007, 965, 820, 750, 693, 522 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.5-7.25 (m, 6H), 7.14 (d, *J* = 8.2 Hz, 2H), 6.76 (d, *J* = 15.9 Hz, 1H), 6.31 (dd, *J* = 15.9, 7.2 Hz,

1H), 5.66 (q, J = 6.4 Hz, 1H), 3.01-2.79 (m, 2H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 137.5, 136.1, 133.6, 133.3, 128.8, 128.3, 126.8, 126.0, 123.0, 93.9, 86.6, 82.1, 77.5, 77.2, 76.9, 72.5, 26.1, 21.4; HR-MS (ESI+) calculated for C₂₀H₁₇IO₂ (M+Na⁺) 439.0171, found 439.0163.

(E)-6-(4-methoxyphenyl)-1-phenylhex-1-en-5-yn-3-yl acetate

White solid, 33 mg, Yield 86%; m.p. 62-63 °C; IR (FT-IR): 3027, 2932, 2837, 1739, 1606, 1510, 1447, 1371, 1290, 1244, 1030, 966, 832, 750, 694, 535 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.15 (m, 7H), 6.74 (d, *J* = 8.7 Hz, 2H), 6.65 (d, *J* = 15.9 Hz, 1H), 6.23 (dd, *J* = 15.9, 7.1 Hz, 1H), 5.54 (q, *J* = 6.5 Hz, 1H), 3.72 (s, 3H), 2.76 (dd, *J* = 6.2, 3.9 Hz, 2H), 2.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 159.4, 136.3, 133.4, 133.1, 128.8, 128.7, 128.2, 126.8, 126.3, 115.7, 114.0, 83.4, 82.8, 77.5, 77.2, 76.8, 72.8, 55.4, 29.8, 26.1, 21.4; HR-MS (ESI+) calculated for C₂₁H₂₀O₃ (M+Na⁺)343.1310, found 343.1311.

(E)-6-(3-cyanophenyl)-1-phenylhex-1-en-5-yn-3-yl acetate

Colorless oil, 150 mg, Yield 95%; IR (FT-IR): 3029, 2917, 2232, 1738, 1372, 1233, 1021, 966, 799, 750, 684 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.43 (m, 3H), 7.41-7.15 (m, 6H), 6.66 (d, J = 15.9 Hz, 1H), 6.19 (dd, J = 15.9, 7.2 Hz, 1H), 5.55 (q, J = 6.3 Hz, 1H), 2.85-2.71 (m, 2H), 2.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 136.0, 135.9, 135.1, 133.8, 131.3, 129.3, 128.8, 128.4, 126.8, 125.8, 125.0, 118.2, 112.8, 88.0, 80.8, 77.5, 77.2, 76.9, 72.4, 26.0, 21.3; HR-MS (ESI+) calculated for C₂₁H₁₇NO₂ (M+Na⁺) 338.1157; found 338.1152.

White solid, 28 mg, Yield 89%; m.p. 73-75 °C; IR (FT-IR): 3080, 2924, 2851, 1736, 1593, 1515, 1340, 1229, 1020, 853, 749, 690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.8 Hz, 2H), 7.56-7.20 (m, 7H), 6.72 (d, *J* = 15.9 Hz, 1H), 6.25 (dd, *J* = 15.9, 7.2 Hz, 1H), 5.63 (q, *J* = 6.4 Hz, 1H), 2.89 (dd, *J* = 6.2, 1.7 Hz, 2H), 2.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 147.0, 136.0, 133.9, 132.5, 130.4, 128.8, 128.4, 126.8, 125.7, 123.6, 123.6, 91.1, 81.5, 77.5, 77.2, 76.9, 72.4, 29.8, 26.2, 21.3; HR-MS (ESI+) calculated for C₂₀H₁₇NO₄ (M+Na⁺) 358.1055; found 358.0724.

(E)-1-(4-chlorophenyl)-6-phenylhex-1-en-5-yn-3-yl acetate

Colorless oil, 143 mg, Yield 88%; IR (FT-IR): 3034, 2909, 1739, 1491, 1371, 1231, 1093, 1014, 967, 806, 756, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.14 (m, 9H), 6.61 (d, *J* = 15.9 Hz, 1H), 6.21 (dd, *J* = 15.9, 7.0 Hz, 1H), 5.65-5.49 (m, 1H), 2.89-2.70 (m, 2H), 2.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 134.6, 133.8, 132.1, 131.7, 128.8, 128.3, 128.1, 128.0, 128.0, 126.8, 123.4, 84.8, 83.1, 77.5, 77.2, 76.9, 72.4, 25.9, 21.2; HR-MS (ESI+) calculated for C₂₀H₁₇ClO₂ (M+Na⁺) 347.0815; found 347.0812.

(E)-1-(4-bromophenyl)-6-phenylhex-1-en-5-yn-3-yl acetate

3j

Colorless oil, 167 mg, Yield 91%; IR (FT-IR): 3033, 2928, 1739, 1488, 1371, 1232, 1071, 967, 803, 756, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.28 (m, 4H), 7.19 (dt, *J* = 14.5, 10.0 Hz, 5H), 6.58 (d, *J* = 15.9 Hz, 1H), 6.21 (dd, *J* = 15.9, 7.0 Hz, 1H), 5.55 (q, *J* = 6.3 Hz, 1H), 2.91-2.67 (m, 2H), 2.05

(s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 135.0, 132.1, 131.7, 131.6, 131.6, 131.5, 128.3, 128.2, 128.0, 126.9, 123.3, 122.0, 84.8, 83.0, 77.5, 77.2, 76.9, 73.2, 72.4, 27.4, 25.8, 21.2; HR-MS (ESI+) calculated for C₂₀H₁₇BrO₂ (M+Na⁺) 391.0310; found 391.0310.

(E)-1-(4-bromophenyl)-6-(4-methoxyphenyl)hex-1-en-5-yn-3-yl acetate

3k

Colorless oil, 58 mg, Yield 92%; IR (FT-IR): 3002, 1734, 1606, 1510, 1371, 1245, 1173, 1071, 1030, 967, 832, 536 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.1 Hz, 2H), 7.27 (dd, *J* = 17.4, 7.9 Hz, 5H), 6.79 (d, *J* = 8.3 Hz, 2H), 6.64 (d, *J* = 16.0 Hz, 1H), 6.26 (dd, *J* = 15.9, 7.0 Hz, 1H), 5.57 (q, *J* = 6.4 Hz, 1H), 3.78 (s, 3H), 2.81 (dd, *J* = 13.7, 8.3 Hz, 2H), 2.11 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 159.6, 135.3, 133.2, 132.3, 131.9, 128.4, 127.3, 122.1, 115.7, 114.1, 83.2, 83.0, 77.5, 77.2, 76.9, 72.7, 55.5, 26.0, 21.4; HR-MS (ESI+) calculated for C₂₁H₁₉BrO₃ (M+Na⁺) 421.0415, found 421.0410.

(E)-6-phenyl-1-m-tolylhex-1-en-5-yn-3-yl acetate

Colorless oil, 130 mg, Yield 86%; IR (FT-IR): 3031, 2921, 1738, 1489, 1370, 1231, 1020, 964, 778, 756, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.42 (ddd, *J* = 13.5, 8.1, 5.9 Hz, 6H), 7.26 (dd, *J* = 5.7, 2.6 Hz, 1H), 6.90 (d, *J* = 15.9 Hz, 1H), 6.48 (dd, *J* = 15.9, 7.2 Hz, 1H), 5.84 (q, *J* = 6.5 Hz, 1H), 3.18-2.96 (m, 2H), 2.52 (s, 3H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 138.1, 136.0, 133.5, 131.6, 128.9, 128.5, 128.5, 128.2, 127.9, 127.4, 125.9, 123.9, 123.4, 85.0, 82.9, 77.5, 77.2, 76.9, 72.6, 29.7, 25.9, 21.3, 21.1; HR-MS (ESI+) calculated for C₂₁H₂₀O₂ (M+Na⁺) 327.1361; found 327.1361.

(E)-2-methyl-1, 6-diphenylhex-1-en-5-yn-3-yl acetate

Colorless oil, 141 mg, Yield 93%; IR (FT-IR): 3057, 2963, 2857, 1739, 1370, 1234, 1020, 800, 756, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.22 (m, 10H), 6.72 (s, 1H), 5.60 (t, *J* = 6.8 Hz, 1H), 2.92 (qd, *J* = 16.8, 6.8 Hz, 2H), 2.17 (s, 3H), 2.01 (dd, *J* = 6.7, 1.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 137.0, 134.7, 131.6, 129.1, 128.7, 128.3, 128.2, 128.0, 126.9, 123.5, 85.3, 82.9, 77.5, 77.2, 77.1, 76.9, 24.6, 21.3, 13.9; HR-MS (ESI+) calculated for C₂₁H₂₀O₂ (M+Na⁺) 327.1361; found 327.1355.

(E)-5-benzylidene-1-phenylundec-1-yn-4-yl acetate

Colorless oil, 177 mg, Yield 95%; IR (FT-IR): 3057, 3024, 2928, 2857, 1742, 1598, 1491, 1443, 1233, 1027, 756, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.07 (m, 11H), 6.57 (s, 1H), 5.49 (t, *J* = 6.5 Hz, 1H), 2.79 (d, *J* = 6.5 Hz, 2H), 2.36-2.11 (m, 2H), 2.06 (s, 3H), 1.49 (dd, *J* = 9.3, 4.7 Hz, 3H), 1.22 (dd, *J* = 16.1, 10.0 Hz, 7H), 0.79 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 140.0, 137.3, 131.8, 128.9, 128.4, 128.2, 128.0, 126.9, 123.6, 85.6, 82.9, 77.5, 77.2, 76.9, 75.4, 31.7, 29.8, 29.0, 29.0, 25.4, 22.8, 21.5, 14.3; HR-MS (ESI+) calculated for C₂₆H₃₀NaO₂ (M+Na⁺) 397.2143, found 397.2142.

(Z)-2-bromo-1,6-diphenylhex-1-en-5-yn-3-yl acetate

Colorless oil, 149 mg, Yield 81%; IR (FT-IR): 3056, 2926, 1740, 1488, 1442, 1368, 1219, 1018, 916, 753, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.0 Hz, 2H), 7.38-7.18 (m, 9H), 7.16 (s, 1H), 5.59 (t, *J* = 6.8 Hz, 1H), 3.01-2.86 (m, 2H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 134.8,

132.1, 131.8, 131.8, 129.4, 128.7, 128.4, 128.4, 128.2, 123.4, 122.9, 84.2, 83.5, 77.5, 77.2, 76.9, 76.6, 25.1, 21.3; HR-MS (ESI+) calculated for $C_{20}H_{17}BrO_2$ (M+NH₄⁺) 386.0756; found 386.0753.

(E)-1-phenyl-6-(thiophen-2-yl)hex-1-en-5-yn-3-yl acetate

Yellow oil, 136 mg, Yield 92%; IR (FT-IR): 3105, 3027, 2925, 1733, 1652, 1598, 1518, 1494, 1370, 1228, 1016, 964, 847, 748, 692, 601 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.24 (m, 5H), 7.25-7.11 (m, 2H), 6.96 (dd, *J* = 5.1, 3.7 Hz, 1H), 6.76 (d, *J* = 15.9 Hz, 1H), 6.32 (dd, *J* = 15.9, 7.2 Hz, 1H), 5.66 (q, *J* = 6.3 Hz, 1H), 3.00-2.81 (m, 2H), 2.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 136.1, 133.5, 131.6, 128.7, 128.2, 126.9, 126.9, 126.8, 126.8, 126.7, 126.6, 126.6, 126.0, 123.5, 89.1, 77.5, 77.2, 76.9, 76.2, 72.4, 26.2, 21.2; HR-MS (ESI+) calculated for C₁₈H₁₆O₂S (M+Na⁺) 319.0769; found 319.0768.

(E)-6-(naphthalen-2-yl)-1-phenylhex-1-en-5-yn-3-yl acetate

White solid, 153 mg, Yield 90%; m.p. 62-63 °C. IR (FT-IR): 3058, 2934, 1738, 1371, 1234, 1020, 966, 800, 775, 750, 693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 8.2 Hz, 1H), 7.87 (dd, *J* = 14.2, 8.2 Hz, 2H), 7.75 (d, *J* = 7.1 Hz, 1H), 7.66-7.30 (m, 9H), 6.92 (d, *J* = 15.9 Hz, 1H), 6.50 (dd, *J* = 15.9, 7.2 Hz, 1H), 5.85 (q, *J* = 6.5 Hz, 1H), 3.13 (d, *J* = 6.2 Hz, 2H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 136.1, 133.7, 133.5, 133.2, 130.2, 128.7, 128.6, 128.5, 128.4, 128.2, 126.8, 126.8, 126.7, 126.3, 126.3, 126.2, 125.2, 121.1, 90.0, 81.1, 77.5, 77.2, 76.9, 72.8, 26.2, 21.3; HR-MS (ESI+) calculated for C₂₄H₂₀O₂ (M+Na⁺) 363.1361; found 363.1360.

(E)-1-phenylhept-1-en-5-yn-3-yl acetate

Yellow oil, 93 mg, Yield 82%; IR (FT-IR): 3028, 2920, 1739, 1494, 1371, 1234, 1021, 966, 750, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.06 (m, 6H), 6.59 (d, *J* = 15.9 Hz, 1H), 6.16 (dd, *J* = 16.0, 7.0 Hz, 1H), 5.41 (d, *J* = 5.8 Hz, 1H), 2.49 (s, 2H), 2.04 (s, 4H), 1.71 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 136.4, 133.4, 129.2, 128.8, 128.2, 126.9, 126.5, 78.3, 77.6, 77.5, 77.2, 76.9, 74.2, 73.0, 25.4, 21.5, 3.8; HR-MS (ESI+) calculated for C₁₅H₁₆O₂ (M+Na⁺) 251.1048, found 251.1036.

(E)-6-(4-methoxyphenyl)-2-methyl-1-phenylhex-1-en-5-yn-3-yl acetate

Colorless oil, 42 mg, Yield 88%; IR (FT-IR): 3054, 2999, 2955, 2934, 1738, 1606, 1569, 1509, 1443, 1369, 1242, 1173, 1028, 832, 749, 700, 536 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.11 (m, 8H), 6.79 (d, *J* = 8.8 Hz, 2H), 6.63 (s, 1H), 5.51 (t, *J* = 6.8 Hz, 1H), 3.77 (s, 3H), 2.83 (qd, *J* = 16.8, 6.8 Hz, 2H), 2.12 (s, 3H), 1.93 (d, *J* = 1.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 159.4, 137.2, 134.9, 133.1, 129.2, 128.7, 128.3, 126.9, 115.7, 114.0, 83.7, 82.7, 77.5, 77.4, 77.2, 76.9, 55.4, 24.7, 21.4, 14.0; HR-MS (ESI+) calculated for C₂₂H₂₂O₃ (M+H⁺) 335.1647, found 335.1641.

(E)-1-(4-bromophenyl)-6-(4-methoxyphenyl)-4,4-di-deuterium-hex-1-en-5-yn-3-yl acetate

Colorless oil, 54 mg, Yield 94%; IR (FT-IR): 3038, 2832, 2837, 1738, 1606, 1509, 1370, 1244, 1173, 1071, 1029, 967, 832, 804, 535 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.1 Hz, 2H), 7.34 (dd, *J* = 17.4, 7.9 Hz, 4H), 6.86 (d, *J* = 8.3 Hz, 2H), 6.70 (d, *J* = 16.0 Hz, 1H), 6.33 (dd, *J* = 15.9, 7.0

Hz, 1H), 5.64 (q, J = 6.4 Hz, 1H), 3.85 (s, 3H), 2.87 (t, J = 5.6 Hz, 2H), 2.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 159.5, 135.3, 133.2, 132.2, 131.9, 128.4, 127.2, 122.1, 115.6, 114.0, 83.2, 83.0, 77.5, 77.2, 76.9, 72.6, 55.4, 21.4; HR-MS (ESI+) calculated for C₂₁H₁₇D₂BrO (M+Na⁺) 423.0541, found 423.0533.

(E)-1-phenylhept-5-en-1-yn-4-yl acetate

Colorless oil, 93 mg, Yield 82%; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J = 6.4, 3.0 Hz, 2H), 7.28 (dd, J = 8.2, 5.2 Hz, 4H), 5.86 (dq, J = 13.1, 6.4 Hz, 1H), 5.59 (ddd, J = 15.3, 7.3, 1.4 Hz, 1H), 5.40 (q, J = 6.5 Hz, 1H), 2.73 (dd, J = 6.2, 2.1 Hz, 2H), 2.09 (s, 3H), 1.81-1.70 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 131.8, 130.5, 128.4, 128.3, 128.0, 123.7, 85.4, 82.7, 77.5, 77.2, 76.9, 72.9, 26.0, 21.4, 18.0; HR-MS (ESI+) calculated for C₁₅H₁₆O₂ (M+Na⁺) 251.1048, found 251.1036.

(E)-1-(4-methoxyphenyl)hept-5-en-1-yn-4-yl acetate

Colorless oil, 111 mg, Yield 87%; IR (FT-IR): 3300, 2957, 2933, 2838, 1740, 1607, 1510, 1442, 1371, 1289, 1244, 1173, 1031, 965, 833, 536 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.7 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 5.84 (dd, *J* = 15.2, 6.6 Hz, 1H), 5.58 (ddd, *J* = 15.3, 7.3, 1.5 Hz, 1H), 5.38 (q, *J* = 6.5 Hz, 1H), 3.79 (s, 3H), 2.81-2.64 (m, 2H), 2.08 (s, 3H), 1.80-1.69 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 159.4, 133.1, 130.4, 128.3, 115.8, 114.0, 83.8, 82.4, 77.5, 77.2, 76.9, 73.0, 55.4, 26.0, 21.4, 18.0; HR-MS (ESI+) calculated for C₁₆H₁₈O₃ (M+H⁺) 259.1334, found 259.1331.

(E)-2-methyl-1-phenylhept-1-en-5-yn-3-yl acetate

Colorless oil, 107 mg, Yield 89%; IR (FT-IR): 3056, 3024, 2920, 1739, 1492, 1443, 1369, 1235, 1019, 748, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ 7.29 (ddd, J = 21.2, 14.0, 7.2 Hz, 5H), 6.58 (s, 1H), 5.38 (t, J = 6.6 Hz, 1H), 2.70-2.48 (m, 2H), 2.11 (s, 3H), 1.88 (s, 3H), 1.77 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 137.3, 135.0, 129.2, 128.5, 128.3, 126.9, 78.1, 77.6, 77.5, 77.2, 76.9, 74.5, 24.0, 21.4, 13.9, 3.7; HR-MS (ESI+) calculated for C₁₆H₁₈O₂ (M+Na⁺) 265.1204, found 265.1201.

(E)-1-phenylhex-1-en-5-yn-3-yl acetate

Colorless oil, 101 mg, Yield 94%; IR (FT-IR): 3295, 3028, 1738, 1494, 1450, 1372, 1234, 1023, 967, 751, 694, 645 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.17 (m, 6H), 6.71 (d, *J* = 15.9 Hz, 1H), 6.26 (dd, *J* = 15.9, 7.2 Hz, 1H), 5.56 (q, *J* = 6.3 Hz, 1H), 2.65 (dd, *J* = 6.1, 2.6 Hz, 2H), 2.13 (s, 3H), 2.06 (t, *J* = 2.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 136.2, 133.7, 128.8, 128.4, 126.9, 125.8, 79.5, 77.5, 77.2, 76.9, 72.4, 71.0, 25.1, 21.4. Spectral data obtained for the compound are in agreement with the data reported. ⁵

(1E,1'E)-6,6'-(1,4-phenylene)bis(2-methyl-1-phenylhex-1-en-5-yne-6,3-diyl) diacetate

3y

Following the general procedure 3. Colorless oil, Yield 81%, 107 mg. IR (FT-IR): 3025, 2920, 1739, 1505, 1494, 1369, 1233, 1018, 838, 747, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ 7.40 – 7.21 (m, 17H), 6.66 (s, 2H), 5.54 (t, J = 6.7 Hz, 2H), 2.89 (qd, J = 16.9, 6.8 Hz, 4H), 2.15 (s, 6H), 1.96 (d, J = 1.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.1, 136.9, 134.5, 131.4, 129.0, 128.7, 128.2, 126.8, 122.9, 86.8, 82.5, 77.4, 77.1, 77.0, 76.7, 24.6, 21.2, 13.8; HR-MS (ESI+) calculated for C₃₆H₃₄O₄ (M+NH₄⁺) 548.2801, found 548.2801.

(E)-tert-butyl(1,6-diphenylhex-1-en-5-yn-3-yloxy)dimethylsilane⁶

The (*E*)-1,6-diphenylhex-1-en-5-yn-3-ol **3a**, upon treatment with dimethyl-tert- butylsilyl chloride (1.2 equiv.) and imidazole (2.5 equiv) in dry DMF (2 mL/g of 3a) at 35 °C for 10 hours, produced the (*E*)-tert-butyl(1,6-diphenylhex- 1-en-5-yn-3-yloxy)dimethylsilane **3a**'. Yellow oil, 322 mg, Yield 89%; IR (FT-IR): 2954, 2858, 1491, 1253, 1071, 835, 777, 754, 691 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.08 (m, 13H), 6.59 (d, *J* = 15.8 Hz, 1H), 6.29 (dd, *J* = 15.9, 6.0 Hz, 1H), 4.60-4.44 (m, 1H), 2.64 (qd, *J* = 16.5, 6.5 Hz, 2H), 0.91 (s, 9H), 0.09 (d, *J* = 13.1 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 137.0, 132.0, 131.8, 130.0, 128.8, 128.4, 127.9, 127.7, 126.7, 124.0, 87.3, 82.4, 77.5, 77.2, 76.9, 72.6, 29.9, 26.1, 18.5, -4.2, -4.5; GC-MS (EI, 70 eV): m/z (%) = 305 (10), 248 (20), 247 (100), 231 (21), 73 (91).

(*E*)-(3-methoxyhex-1-en-5-yne-1,6-diyl)dibenzene⁷

A 50 mL two necked round-bottomed flask was charged with a 60% dispersion of NaH (38 mg, 1.6 mmol) in paraffin oil, which was washed with hexane (5 mL x 2). To this was added THF (5mL) and the suspension was cooled to 0 °C. (*E*)-1, 6-diphenylhex-1-en-5-yn-3-ol (92 mg, 0.4 mmol) was added dropwise and the resulting solution was warmed up to room temperature. After being stirred for 1 h, 1-iodobutane (170 mg, 1.2 mmol) was added dropwise over a period of 5 min, and the mixture was stirred for 20 h. The solution was diluted with Et₂O (20 mL) and washed with saturated NH₄Cl aqueous solution (5 mL x 2). The aqueous solution was extracted with Et₂O (10 mL x 2) and the combined organic layer was washed with saturated NaHCO₃ aqueous solution (5 mL) and brine (5 mL), and then dried over anhydrous sodium sulfate. The product was purified by silica gel column chromatography (hexane /ethyl acetate : 20/1) to give the desired product **3a''**. Yellow oil, 79 mg,

Yield 76%; IR (FT-IR): 3027, 2929, 2822, 1598, 1491, 1446, 1361, 1093, 968, 753, 692, 533 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.06 (m, 10H), 6.58 (d, *J* = 15.9 Hz, 1H), 6.12 (dd, *J* = 15.9, 7.7 Hz, 1H), 3.89 (dd, *J* = 13.6, 6.4 Hz, 1H), 3.31 (s, 3H), 2.69 (ddd, *J* = 23.4, 16.7, 6.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 136.6, 133.3, 131.8, 128.8, 128.8, 128.3, 128.0, 127.9, 126.8, 123.9, 86.4, 82.5, 81.0, 77.5, 77.2, 76.9, 56.8, 26.9, 1.2; GC-MS (EI, 70 eV): m/z (%) = 229 (8), 148 (11), 147 (100), 116 (17), 115 (48), 91 (13).

Under the nitrogen atmosphere, PtI_2 (5 mol%, 2.2 mg) and N-Phenylmaleimide (50 mol%, 8.6 mg) were added to a solution of 3-OAc-1-en-5-yne **3a** (0.1 mmol, 29 mg) in anhydrous toluene (2 mL). The reaction mixture was stirred at 110 °C until complete disappearance of **3a** observed by TLC. Solvent was removed under reduced pressure and the crude mixture was purified by flash chromatography on silica gel.

4a

White solid, 21 mg, Yield 92%; m.p. 83-84 °C; IR (FT-IR): 3058, 2958, 1597, 1568, 1262, 1098, 801, 750, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.67 (d, *J* = 7.6 Hz, 4H), 7.60 (dd, *J* = 6.9, 1.5 Hz, 2H), 7.53 (dd, *J* = 8.7, 6.5 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 4H), 7.39 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 141.4, 129.4, 129.0, 127.6, 127.5, 126.4, 126.3. GC-MS (EI, 70 eV): m/z (%) 231 (20), 230 (100) [M⁺], 202 (6), 152 (3), 115 (1). Spectral data obtained for the compound are in agreement with the data reported.⁸

4-fluoro-[1,1';3',1"] terphenyl

4b

White solid, 22 mg, Yield 87%,. m.p. 85-86 °C; IR (FT-IR): 3061, 1595, 1513, 886, 842, 797, 758, 700 cm⁻¹; ¹H NMR (40 0 MHz, CDCl₃) δ 7.77 (d, *J* = 1.3 Hz, 1H), 7.70 -7.56 (m, 5H), 7.52 (ddd, *J* = 21.5, 10.9, 4.8 Hz, 4H), 7.43-7.36 (m, 1H), 7.21-7.12 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 161.5, 142.1, 141.3, 141.0, 137.5, 129.5, 129.0, 129.0, 127.7, 127.5, 126.3, 126.2, 126.2, 116.0, 115.8, 1.2. GC-MS (EI, 70 eV): m/z (%) 249 (20), 248 (100) [M⁺], 247 (9), 220 (3), 170 (1). Spectral data obtained for the compound are in agreement with the data reported.⁹

2-fluoro-[1,1';3',1"] terphenyl

4c

Colorless oil, 22 mg, Yield 87%; IR (FT-IR): 3060, 3032, 1599, 1496, 1473, 1406, 1210, 834, 802, 753, 730, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 1.0 Hz, 1H), 7.74-7.64 (m, 3H), 7.62-7.48 (m, 5H), 7.46-7.36 (m, 2H), 7.33-7.19 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 158.8, 141.7, 141.2, 136.5, 131.0, 131.0, 129.3, 129.3, 129.1, 129.0, 128.2, 127.6, 127.5, 126.7, 124.6, 124.6, 116.5, 116.2; MS (EI, 70 eV): m/z (%) 250 (1), 249 (11), 248 (100), 247 (6), 226 (6), 149 (5); HR-MS (EI+) calculated for C₁₈H₁₃F (M⁺) 248.1001, found 248.1005.

3-chloro-[1,1';3',1"] terphenyl

Colorless oil, 40 mg, Yield 90%; IR (FT-IR): 3059, 3032, 1593, 1565, 1468, 1394, 1079, 880, 782, 756, 739, 696, 613 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 1.7 Hz, 1H), 7.69-7.64 (m, 3H), 7.62 (dt, *J* = 6.7, 1.9 Hz, 1H), 7.58-7.52 (m, 3H), 7.49 (dd, *J* = 10.3, 4.7 Hz, 2H), 7.43-7.33 (m, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 143.2, 142.2, 141.1, 140.6, 134.9, 130.2, 129.5, 129.0, 127.7, 127.6, 127.6, 127.5, 126.9, 126.3, 126.2, 125.6; MS (EI, 70 eV): m/z (%) 267 (4), 266 (21), 265 (12), 264 (100), 228 (17), 227 (7), 226 (10), 132 (4); HR-MS (EI+) calculated for C₁₈H₁₃Cl (M⁺) 264.0706, found 264.0709.

4-iodo-[1,1';3',1"] terphenyl

White solid, 30 mg, Yield 80%; m.p. 96-100 °C; IR (FT-IR): 3077, 2920, 1582, 1492, 827, 794, 757, 697, 515 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.76 (m, 3H), 7.69-7.63 (m, 2H), 7.63-7.58 (m, 1H), 7.57-7.45 (m, 4H), 7.40 (dt, *J* = 7.1, 1.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.2, 141.1, 140.8, 140.8, 138.1, 129.5, 129.3, 129.0, 127.7, 127.4, 126.7, 126.0, 126.0, 93.4; MS (EI, 70 eV): m/z (%) 358 (1), 357 (14), 356 (100), 230 (3), 229 (7), 228 (19), 227 (8), 226 (9), 202 (5), 178 (3); HR-MS (EI+) calculated for C₁₈H₁₃I (M⁺) 356.0062, found 356.0068.

4-methoxy-[1,1';3',1"] terphenyl

White solid, 24 mg, Yield 89%; m.p. 128-130 °C; IR (FT-IR): 2955, 1605, 1495, 1246, 836, 796, 760, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.66 (d, *J* = 7.5 Hz, 2H), 7.60 (d, *J* = 8.7 Hz, 2H), 7.51 (ddd, *J* = 18.7, 11.2, 4.8 Hz, 5H), 7.39 (d, *J* = 7.4 Hz, 1H), 7.02 (d, *J* = 8.7 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 141.9, 141.5, 141.5, 133.9, 129.3, 129.0, 128.5, 127.6, 127.5, 125.9, 125.9, 125.8, 114.4, 55.6; GC-MS (EI, 70 eV): m/z (%) 261 (22), 260 (100) [M⁺], 245 (40), 217 (28), 215 (13), 189 (4), 151 (1). Spectral data obtained for the compound are in agreement with the data reported.¹⁰

[1,1';3',1"] terphenyl-3-carbonitrile

Colorless oil, 18 mg, Yield 69%; IR (FT-IR): 3059, 2229, 1597, 1472, 889, 793, 756, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.79 (d, *J* = 7.9 Hz, 1H), 7.68 (s, 1H), 7.61-7.53 (m, 4H), 7.53-7.44 (m, 3H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.32 (t, *J* = 7.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 142.5, 140.9, 139.6, 131.8, 131.0, 131.0, 129.8, 129.8, 129.1, 127.9, 127.4, 126.2, 126.2, 119.0, 113.2; MS (EI, 70 eV): m/z (%) 257 (2), 256 (16), 255 (100), 254 (12), 253 (7), 227 (4), 226 (5), 152 (2); HR-MS (EI+) calculated for C₁₉H₁₃N(M⁺) 255.1048, found 255.1052.

4-nitro-[1,1';3',1"] terphenyl

4h

White solid, 21 mg, Yield 75%; m.p. 78-79 °C; IR (FT-IR): 2917, 1594, 1513, 1344, 853, 798, 746, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.37-8.29 (m, 2H), 7.80 (ddd, *J* = 9.4, 4.7, 2.0 Hz, 3H), 7.67 (ddd, *J* = 11.9, 6.0, 4.5 Hz, 3H), 7.63-7.54 (m, 2H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 147.3, 142.5, 140.8, 139.5, 129.8, 129.1, 128.1, 128.0, 127.9, 127.4, 126.5, 126.4, 124.3; GC-MS (EI, 70 eV): m/z (%) 276 (20), 275 (100) [M⁺], 245 (23), 228 (26), 202 (13), 152 (3), 113 (2). Spectral data obtained for the compound are in agreement with the data reported.¹¹

White solid, 22 mg, Yield 82%; m.p. 70-71 °C; IR (FT-IR): 3060, 2924, 1595, 1494, 837, 795, 757, 698, 521 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 1.5 Hz, 1H), 7.66-7.61 (m, 2H), 7.61-7.55

(m, 3H), 7.53 (dt, J = 8.5, 4.3 Hz, 2H), 7.44 (tt, J = 9.1, 2.1 Hz, 4H), 7.37 (dd, J = 8.3, 6.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) $\delta = 142.2$, 141.2, 140.7, 139.8, 133.7, 129.5, 129.2, 129.0, 128.7, 127.7, 127.5, 126.7, 126.2, 126.1, 77.5, 77.2, 76.9; MS (EI, 70 eV): m/z (%) 267 (4), 266 (23), 265 (14), 264 (100), 229 (8), 228 (20), 227 (8), 226 (11), 202 (5), 152 (4), 132 (4), 113 (4); HR-MS (EI+) calculated for C₁₈H₁₃Cl (M⁺)264.0706, found 264.0709.

4-bromo-[1,1';3',1"] terphenyl

4j

White solid, 32 mg, Yield 93%; m.p. 85-86 °C; IR (FT-IR): 3055, 1657, 1561, 1491, 831, 795, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 1.3 Hz, 1H), 7.67-7.62 (m, 2H), 7.60 (dq, J = 8.7, 2.1 Hz, 3H), 7.56-7.50 (m, 4H), 7.48 (dd, J = 10.3, 4.8 Hz, 2H), 7.39 (ddd, J = 7.3, 3.8, 1.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 142.2, 141.2, 140.7, 140.3, 132.1, 129.5, 129.0, 127.7, 127.5, 126.7, 126.1, 126.1, 121.9; MS (EI, 70 eV): m/z (%) 312 (1), 311 (14), 310 (92), 309 (15), 308 (100), 228 (32), 227 (15), 226 (20), 202 (9), 152 (6), 113(7); HR-MS (EI+) calculated for C₁₈H₁₃⁷⁹Br (M⁺) 308.0201, found 308.0205.

4"-bromo-4-methoxyl-[1,1';3',1"] terphenyl

10 mol% PtI₂ without additive; White solid, 47 mg, Yield 76%; m.p. 138-140 °C; IR (FT-IR): 2924, 1606, 1515, 1033, 833, 789, 694 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.71 (s, 1H), 7.60-7.56 (m, 4H), 7.56-7.53 (m, 1H), 7.51 (dd, *J* = 8.6, 1.9 Hz, 2H), 7.49 (d, *J* = 5.0 Hz, 2H), 7.02-6.98 (m, 2H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 141.8, 140.7, 140.4, 133.7, 132.1, 129.5, 129.0, 128.5, 126.3, 125.7, 125.5, 121.8, 114.5, 55.6; MS (EI, 70 eV): m/z (%) 342 (2), 341 (14), 340 (93), 338 (100), 325 (22), 323(22), 297 (15), 295 (15), 216 (10), 216 (37), 213 (8), 189 (8), 170 (5); HR-MS (EI+) calculated for C₁₉H₁₅⁷⁹BrO (M⁺) 338.0306, found 338.0310

3-methyl-[1,1';3',1"] terphenyl

Colorless oil, 21 mg, Yield 84%; IR (FT-IR): 3031, 2920, 1599, 1474, 1093, 1022, 893, 784, 755, 699, 629 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (t, *J* = 1.6 Hz, 1H), 7.69 (dd, *J* = 5.1, 3.4 Hz, 2H), 7.60 (dd, *J* = 6.8, 1.5 Hz, 2H), 7.57-7.45 (m, 5H), 7.44-7.35 (m, 2H), 7.22 (d, *J* = 7.5 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 141.9, 141.4, 141.4, 138.6, 129.3, 129.0, 128.9, 128.3, 128.3, 127.6, 127.5, 126.4, 126.3, 126.2, 124.6, 21.8; MS (EI, 70 eV): m/z (%) 246 (1), 245 (15), 244 (100), 243 (8), 229 (5), 228 (11), 202 (3), 165(6), 152 (2); HR-MS (EI+) calculated for C₁₉H₁₆ (M⁺) 244.1252, found 244.1256.

4'-methyl-[1,1';3',1"] terphenyl

4m

Colorless oil, 25 mg, Yield 97%; IR (FT-IR): 3057, 3026, 1600, 1479, 1442, 825, 759, 698, 585 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.62 (m, 2H), 7.57-7.51 (m, 2H), 7.50-7.32 (m, 9H), 2.35 (s, 3H); ³C NMR (101 MHz, CDCl₃) δ 142.5, 134.7, 131.0, 129.4, 128.9, 128.8, 128.3, 128.3, 127.3, 127.2, 127.1, 126.0, 20.3; MS (EI, 70 eV): m/z (%) 246 (1), 245 (15), 244 (100), 243 (22), 239 (5), 239 (5), 229 (13), 228 (13), 165 (16), 152 (3), 115 (3); HR-MS (EI+) calculated for C₁₉H₁₆ (M⁺) 244.1252, found 244.1256.

4'-hexyl-[1,1';3',1"] terphenyl

4n

Colorless oil, 32 mg, Yield 92%; IR (FT-IR): 3058, 3027, 2926, 2856, 1600, 1479, 1378, 1073, 895, 829, 760, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.61 (m, 2H), 7.57 (dd, *J* = 7.9, 2.0 Hz, 1H), 7.51-7.42 (m, 5H), 7.42-7.31 (m, 5H), 2.72 -2.53 (m, 2H), 1.58-1.44 (m, 2H), 1.29-1.12 (m, 6H), 0.86 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.4, 142.1, 141.0, 139.8, 138.6, 129.9, 129.5, 128.9, 128.9, 128.2, 127.3, 127.2, 127.0, 126.1, 32.9, 31.7, 31.5, 29.3, 22.7, 14.3; MS (EI, 70 eV): m/z (%) 315 (6), 314 (28), 244 (15), 243 (100), 242 (5), 241 (10), 228 (10), 215 (4), 202 (3), 165 (12); HR-MS (EI+) calculated for C₂₄H₂₆ (M⁺) 314.2035, found 314.2039.

2-(biphenyl-3-yl)thiophene

4p

White solid, 15 mg, Yield 56%; m.p. 67-68 °C; IR (FT-IR): 3059, 1595, 1571, 797, 770, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 1.5 Hz, 1H), 7.63 (ddd, J = 10.3, 7.9, 1.3 Hz, 3H), 7.55-7.44 (m, 4H), 7.43-7.36 (m, 2H), 7.32 (dd, J = 5.1, 0.9 Hz, 1H), 7.12 (dd, J = 5.0, 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 142.2, 141.1, 135.1, 129.5, 129.0, 128.2, 127.7, 127.4, 126.6, 125.2, 125.1, 125.1, 123.5; MS (EI, 70 eV): m/z (%) 238 (3), 237 (10), 236 (100), 235 (5), 234 (6), 203 (3), 202 (7), 191 (3), 189 (5), 165 (2), 149 (2); HR-MS (EI+) calculated for C₁₆H₁₂S (M⁺) 236.0660, found 236.0664.

1-(biphenyl-3-yl)naphthalene

4q

White solid, 26 mg, Yield 87%; IR (FT-IR): 3057, 2923, 1595, 1479, 1392, 1019, 799, 779, 755, 704, 613 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.3 Hz, 1H), 7.93 (dd, *J* = 15.7, 8.1 Hz, 2H), 7.78 (s, 1H), 7.75-7.66 (m, 3H), 7.64-7.44 (m, 8H), 7.39 (t, *J* = 6.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 141.4, 141.2, 140.3, 134.0, 131.8, 129.2, 129.1, 129.0, 128.9, 128.5, 128.0, 127.6, 127.4, 127.2, 126.3, 126.2, 126.0, 125.6; MS (EI, 70 eV): m/z (%) 281 (14), 280 (100), 279 (35), 276
(10), 252 (5), 228 (10), 203 (10), 202 (11), 191(4), 138(3); HR-MS (EI+) calculated for $C_{22}H_{16}$ (M⁺) 280.1252, found 280.1255.

3-methylbiphenyl

4r

Colorless oil, 17 mg, Yield 79 %; IR (FT-IR): 3031, 2921, 1603, 1482, 1075, 791, 753, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ 7.6-7.58 (m, 2H), 7.50-7.40 (m, 4H), 7.40-7.33 (m, 2H), 7.19 (d, J = 7.3 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 141.4, 141.3, 138.4, 128.7, 128.0, 127.2, 124.3, 21.6. GC-MS (EI, 70 eV): m/z (%) = 169 (14), 168 (100) [M⁺], 167 (67), 165 (20), 153 (22). Spectral data obtained for the compound are in agreement with the data reported.¹²

6'-methyl-4-methoxyl-[1,1';3',1"] terphenyl

4s

Colorless oil, 24 mg, Yield 91%; IR (FT-IR): 3030, 2925, 1609, 1514, 1481, 1245, 1176, 1030, 832, 761, 698, 576 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.3 Hz, 2H), 7.52 (d, *J* = 6.3 Hz, 2H), 7.46 (t, *J* = 7.2 Hz, 2H), 7.36 (t, *J* = 7.7 Hz, 4H), 7.01 (d, *J* = 7.5 Hz, 2H), 3.89 (s, 3H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 142.1, 141.1, 138.9, 134.8, 134.4, 131.0, 130.5, 128.9, 128.9, 127.3, 127.2, 125.8, 113.7, 55.5, 20.4; GC-MS (EI, 70 eV): m/z (%) 276 (1), 275 (13), 274 (100), 273 (4), 259 (10), 241 (5), 228 (4), 216 (6), 215 (12), 202 (5), 165 (5); HR-MS (EI+) calculated for C₂₀H₁₈O (M⁺) 274.1358, found 274.1362.

4"-bromo-4'-deuterium-4-methoxyl-[1,1';3',1"] terphenyl

10 mol% PtI₂ without additive; White solid, 48 mg, Yield 78%; m.p. 141-142 °C; IR (FT-IR): 2927,

1606, 1513, 1033, 913, 830, 744 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.71 (d, *J* = 1.7 Hz, 1H), 7.60-7.53 (m, 5H), 7.50 (dd, *J* = 11.9, 8.0 Hz, 3H), 7.00 (d, *J* = 8.6 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 141.7, 140.6, 140.3, 133.6, 132.1, 129.4, 129.0, 128.5, 126.3, 125.6, 121.8, 114.5, 55.6; MS (EI, 70 eV): m/z (%) 343 (2), 342 (14), 341 (96), 339 (100), 326 (23), 324 (22), 298 (14), 296 (15), 217 (9), 216 (32), 202 (9), 190 (7); HR-MS (EI+) calculated for C₁₉H₁₄²HO⁷⁹Br (M⁺) 339.0369, found 339.0365.

A mixture of 2-methylbiphenyl and 3-methylbiphenyl

4u (left) / 4r (right) = 10/1

Colorless oil, 10 mg, Total yield 57%; IR (FT-IR): 3060, 3022, 2924, 2853, 1600, 1479, 1380, 1010, 774, 748, 725, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.3 Hz, 0H), 7.46 (dd, *J* = 8.5, 6.5 Hz, 3H), 7.39 (td, *J* = 6.4, 1.7 Hz, 3H), 7.35-7.27 (m, 4H), 2.47 (s, 0H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 142.1, 130.5, 130.0, 129.4, 128.2, 127.4, 126.9, 126.0, 20.7; GC-MS (EI, 70 eV): t_{R major} = 6.1 min, m/z (%) 169 (14), 168 (100) [M⁺], 167 (84), 165 (25), 153 (36), t_{R minor} = 6.8 min, m/z (%) 169 (14), 168 (100) [M⁺], 167 (67), 165 (24), 153 (23); Spectral data obtained for the compound are in agreement with the data reported.¹²

4'-methoxy-2-methylbiphenyl

4v

Colorless oil, 20 mg, Yield 90%; IR (FT-IR): 2926, 2835, 1612, 1515, 1484, 1243, 1177, 1039, 834, 761, 731 cm⁻¹; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 (dd, *J* = 10.5, 4.9 Hz, 6H), 6.87 (d, *J* = 7.6 Hz, 2H), 3.77 (s, 3H), 2.20 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 141.6, 135.5, 134.4, 130.3, 130.3, 129.9, 127.0, 125.8, 113.5, 77.4, 77.1, 76.7, 55.3, 20.6; GC-MS (EI, 70 eV): m/z (%) 199 (16), 198 (100) [M⁺], 183 (15), 167 (18), 155 (14), 115 (2). Spectral data obtained for the compound are in agreement with the data reported.¹³

3-phenylcyclohexa-1,4-dienyl acetate

2

Colorless oil, 6 mg, Yield 13%; IR (FT-IR): 2829, 1757, 1698, 1457, 1362, 1218, 1122 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.18 (m, 6H), 5.78-5.67 (m, 2H), 5.46 (dd, *J* = 3.6, 1.5 Hz, 1H), 4.24-4.16 (m, 1H), 3.00-2.84 (m, 2H), 2.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 144.9, 142.8, 127.6, 127.2, 126.9, 125.6, 120.8, 114.80, 42.4, 26.7, 20.0. Spectral data obtained for the compound are in agreement with the data reported.⁵

Biphenyl

4x

White solid, 2 mg, Yield 6%, m.p 68-69; ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.56 (m, 4H), 7.50-7.41 (m, 4H), 7.40-7.31 (m, 2H). GC-MS (EI, 70 eV): m/z (%) 155 (13), 154 (100), 153 (39), 152 (32), 128 (2), 76 (2). Spectral data obtained for the compound are in agreement with the data reported.¹²

A mixture of 3,4-dimethylbiphenyl and 2,3-dimethylbiphenyl

4w (left) / 4w' (right) $\approx 1/1.2$

Colorless oil, 30mg, Total yield 81%; IR (FT-IR): 3025, 2923, 2856, 1602, 1486, 1466, 759, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52, 7.52, 7.50, 7.50, 7.36, 7.36, 7.35, 7.35, 7.33, 7.31, 7.28, 7.27, 7.26, 7.24, 7.24, 7.22, 7.16, 7.14, 7.12, 7.09, 7.07, 7.05, 7.03, 7.01, 7.01, 2.27, 2.26, 2.24, 2.09; ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 142.3, 141.3, 138.9, 137.2, 136.9, 135.7, 134.0, 130.1, 129.4, 128.9, 128.7, 128.5, 128.0, 127.7, 127.0, 126.9, 126.6, 125.3, 124.5, 20.8, 20.0, 19.5, 17.0; GC-MS (EI, 70 eV): m/z (%) 183 (13) 182 (100) [M⁺], 167 (77), 152 (11), 115 (2). Spectral data obtained for the compound are in agreement with the data reported.¹⁴

White solid, 26 mg, Yield 66%; m.p. 203-205 °C; IR (FT-IR): 3026, 2963, 2921, 1595, 802, 757, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 4H), 7.48 (d, *J* = 1.8 Hz, 2H), 7.44 (dd, *J* = 7.8, 1.9 Hz, 2H), 7.40 – 7.31 (m, 8H), 7.27 (dd, *J* = 12.5, 7.6 Hz, 5H), 2.30 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ = 142.0, 140.9, 140.5, 138.8, 134.6, 130.9, 129.0, 128.8, 128.7, 127.2, 127.1, 125.9, 20.3, 1.1; MS (EI, 70 eV): m/z (%) = 412 (5), 411 (29), 410 (100), 334 (13), 319 (5), 241 (9), 205 (6), 165 (9), 91 (8); HR-MS (EI+) calculated for C₃₂H₂₆ (M⁺) 410.2035, found 410.2030.

A mixture of (1E,3E)/ (1E,3Z)-hexa-1,3-dien-5-yne-1,6-diyldibenzene 5 and 6

Under the protection of nitrogen, FeCl₃·6H₂O (50 mol %, 21.5 mg) was added to a solution of 3-OAc-1-en-5-yne **3a** (0.16 mmol, 47 mg) in anhydrous toluene (3 mL). The reaction mixture was stirred at 30 °C until complete disappearance of **3a** was observed by TLC. Solvent was removed under reduced pressure and the crude mixture was purified by flash chromatography on silica gel. Yellow oil, Mixture, 37 mg, total yield 48%; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.11 (m, 19H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.93 (dq, *J* = 5.9, 3.0 Hz, 2H), 6.80-6.70 (m, 1H), 6.63 (d, *J* = 15.7 Hz, 1H), 6.59 – 6.55 (m, 1H), 6.54-6.45 (m, 1H), 5.88-5.79 (m, 1H), 5.62 (d, *J* = 10.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 109.3, 111.4, 126.2, 126.7, 126.9, 127.6, 128.0, 128.1, 128.1, 128.2, 128.3, 128.3, 128.4, 128.4, 128.6, 128.8, 131.5, 134.8, 135.0, 135.5, 140.0, 141.9; MS (EI, 70 eV): m/z (%) 231 (12), 230 (74) [M⁺], 229 (100), 215 (50), 202 (17).¹⁵

V The X-ray structure of compound 4a

Table S2. Crystal data and structure refinement for **4a**.

Identification code	4a
Empirical formula	C18 H14
Formula weight	230.29
Temperature	113(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 6.84(2) A alpha = 89.97(10) deg.
	b = 7.37(2) A beta = 89.69(8) deg.
	c = 24.89(7) A gamma = 89.72(7) deg.
Volume	1255(6) A^3
Z, Calculated density	4, 1.219 Mg/m^3
Absorption coefficient	0.069 mm^-1
F(000)	488
Crystal size	0.20 x 0.18 x 0.12 mm

Theta range for data collection	1.64 to 25.02 deg.
Limiting indices	-8<=h<=8, -8<=k<=8, -29<=l<=29
Reflections collected / unique	10505 / 4369 [R(int) = 0.0808]
Completeness to theta $= 25.02$	99.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9918 and 0.9864
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4369 / 0 / 325
Goodness-of-fit on F^2	0.818
Final R indices [I>2sigma(I)]	R1 = 0.0411, wR2 = 0.0752
R indices (all data)	R1 = 0.0781, wR2 = 0.0827
Largest diff. peak and hole	0.183 and -0.212 e.A^-3

VI References

(1) Zhang, Y.; Zhang, H.; Liu, L. Y.; Wang, X.; Chang, W. X.; Li, J. Chem. J. Chin. U. 2012, 33, 2447.

- (2) Nag, S.; Lehmann, L.; Kettschau, G.; Toth, M.; Heinrich, T.; Thiele, A.; Varrone, A.; Halldin, C. Bioorg. Med. Chem. 2013, 21, 6634.
- (3) Wang, X.; Liu, L.; Chang, W.; Li, J. Eur. J. Org. Chem. 2010, 2010, 5391.
- (4) Dobbs, A. P.; Guesne, S. J. J.; Parker, R. J.; Skidmore, J.; Stephenson, R. A.; Hursthouse, M. B. Org. & Biomol. Chem. 2010, 8, 1064.
- (5) Wang, S. Z.; Zhang, L. M. J. Am. Chem. Soc. 2006, 128, 14274.
- (6) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
- (7) Tsuchimoto, T.; Matsubayashi, H.; Kaneko, M.; Shirakawa, E.; Kawakami, Y. Angew. Chem. Int. Edit. 2005, 44, 1336.
- (8) Yoshikai, N.; Matsuda, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 9590.
- (9) Miguez, J. M. A.; Adrio, L. A.; Sousa-Pedrares, A.; Vila, J. M.; Hii, K. K. J. Org. Chem. 2007, 72,

7771.

- (10)Garcia-Garcia, P.; Fernandez-Rodriguez, M. A.; Aguilar, E. Angew. Chem. Int. Edit. 2009, 48, 5534.
- (11) Beaumard, F.; Dauban, P.; Dodd, R. H. Org. Lett. 2009, 11, 1801.
- (12) Sun, C. L.; Li, H.; Yu, D. G.; Yu, M. A.; Zhou, X. A.; Lu, X. Y.; Huang, K.; Zheng, S. F.; Li, B. J.;
 - Shi, Z. J. Nat. Chem. 2010, 2, 1044.
- (13) Denmark, S. E.; Smith, R. C.; Chang, W. T. T.; Muhuhi, J. M. J. Am. Chem. Soc. 2009, 131,

3104.

(14) Kawai, H.; Kobayashi, Y.; Oi, S.; Inoue, Y. Chem. Commun. 2008, 1464.

(15) Zhu, Y.; Li, T. Y.; Qu, X. M.; Sun, P.; Yang, H. L.; Mao, J. C. Org. & Biomol. Chem. 2011, 9, 7309.

VII Computational results for PtI2-Catalyzed Cyclization of 3-Acyloxy-1,5-Enynes

Contents

General remarks

Figure S2. Calculation result of IRC (intrinsic reaction coordinate) for TS5a.

Scheme S2. Gibbs free energy profiles of the PtI₂-catalyzed cyclization of ACE b

Scheme S3. Gibbs free energy profile of pathway D, in which elimination of acetic acid takes place at the last aromatization step of the PtI2-catalyzed cyclization of ACE

a.

Figure S3. Other possible pathways E and F that involves one [1,2]-H shift prior to acid elimination

Scheme S4. Gibbs free energy profiles of 1,2-methyl shift (in green line) and 1,2-hydrogen shift (in blue line) from intermediate 9b

Scheme S5. 3D structures of some selected transition states involved in PtI_2 -catalyzed cyclization of ACE *a*

Scheme S6. 3D structures of some selected transition states involved in PtI2-catalyzed cyclization of ACE b

Scheme S7. 3D structures of some selected transition states involved in pathway D of PtI2-catalyzed cyclization of ACE a

Table S3. The B3LYP/SDD-6-31G(d) computed energies, enthalpies, free energies of all stationary points discussed in the text and in the supporting information

Table S4. The B3LYP/SDD-6-311+G(d,p)/SMD(toluene)//B3LYP/SDD-6-31G(d) computed energies, enthalpies, free energies of all stationary points discussed in the text and in the supporting information

References

The Cartesian Coordinates of the stationary points discussed in the text and in the supporting information

General remarks:

All geometry optimizations, frequency and solvation energy calculations were performed with the B3LYP¹ functional in Gaussian 09.² All the transition states have been verified by IRC (intrinsic reaction coordinate)³ calculations. The Stuttgart/Dresden effective core potential⁴ was used on rhodium and iodine, and the 6-31G(d) basis set was employed for other atoms. Solvation free energy corrections in toluene solvent were computed on gas-phase optimized geometries by single point SMD calculations⁵ at the B3LYP/6-311+G(d,p) level (SDD for Rh and I). Since dispersion interactions were expected to be essential in the regiochemical control in some reaction systems, Grimme's DFT-D3(BJ)⁶ dispersion corrections were calculated using the DFTD3 program.⁷ Single point dispersion energy corrections were calculated and added to the B3LYP Gibbs free energies in solution. Entropic contributions to the reported free energies were calculated from partition functions evaluated using Truhlar's quasiharmonic approximation.⁸ Figures of three-dimensional molecular structures were prepared using CYLView.⁹

Figure S2. Calculation result of IRC (intrinsic reaction coordinate) for **TS5a**. (a) Dependence of total energy on the intrinsic reaction coordinate. (b) Dependence of bond length of C1-C2, C1-C5 and C1-C6 on the intrinsic reaction coordinate.

The calculation result of IRC (intrinsic reaction coordinate) confirms the connection of **TS5a** to the intermediates **4a** and **5a** on the energy profile in Figure S2.

Scheme S2. Gibbs free energy profiles of the PtI2-catalyzed cyclization of ACE b. Energies are in kcal/mol and calculated using B3LYP/SDD-6-311+G(d,p)/SMD(toluene)//B3LYP/SDD-6-31G(d) withDFT-D3(BJ)dispersiondispersioncorrection.

The reaction initiates from the PtI₂-ACE π complex 1b-1. The cyclopropanation of 1b-1 requires an overall activation free energy of 21.9 kcal/mol (from 1b-1 to TS1b). Next, acid elimination takes pace with an energy barrier of 20.3 kcal/mol (TS2b) to afford intermediate 4b-1. We also considered pathway C, in which acid elimination occurs prior to cyclopropanation with a very high energy barrier of 39.1 kcal/mol (from 1b-1 to TS3b). Thus pathway C should be ruled out from the favored pathways. Then shift of elayl group from 4b-1 via transition state TS5b leads to the zwitterioncharacterized intermediate 5b. This step is the rate-determining step with an energy barrier of 24.5 kcal/mol, which is higher than that of each of the other steps in pathways A and B. Subsequent cyclopropanation and ring expansion take place from the intermediate **5b** via two distinct pathways: cyclopropanation by bonding between atom C1 and atom C4 forms the intermediate 6b, which then isomerizes to carbene 7b by ring expansion (pathway A, in blue line), or concerted bonding and ring expansion by simultaneous formation of C1-C6 bond and rupture of C6-C5 bond lead to carbene 9b (pathway **B**, in black line). The computed activation barrier of bonding C1 to C4 (**TS6b**) is 4.8 kcal/mol higher than that for bonding C1 to C6 (TS9b), indicating the formation of carbene 9b is kinetically favoured over the formation of carbene 7b. Moreover, the computed potential energy profile indicates the formation of C1-C4 or C1-C6 bond to form carbene 7b or 9b is irreversible and thus is the regioselectivity-determining step. Thus the favored pathway (B) will lead to the major product, 2-methylbiphenyl. This prediction is consistent with the experimental observation. 1,2hydrogen shift via TS8b leads to the formation of the product complex 8b. The free energy barrier for this step is 11.8 kcal/mol. Ligands exchange of 8b to release product A-b, the 3-methylbiphenyl, is highly exothermic. Similarly, 1,2-hydrogen shift via TS10b affords product complex 10b, requiring 16.3 kcal/mol free energy of activation. Then the exchange of ligands produces product B-b, the 2methylbiphenyl.

The above results indicated that, different from the case of ACE **a**, the preferred pathway for cyclization of ACE **b** is pathway **B** (black line), which involves cyclopropanation, acid elimination, elayl migration, concerted cyclopropanation and ring expansion (i.e. simultaneous formation of C1-C6 bond and rupture of C5-C6 bond) of the zwitterion-characterized intermediate, and 1,2-hydrogen shift to form the 2-methylbiphenyl product. The elayl migration is found to be the rate-determining step of the catalytic cycle. The concerted bonding and ring expansion of the zwitterion-characterized intermediate is the regioselectivity-determining step.

Scheme S3. Gibbs free energy profile of pathway **D**, in which elimination of acetic acid takes place at the last aromatization step of the PtI₂-catalyzed cyclization of ACE **a**. For comparison, the Gibbs free energy profile of the most favored pathway (pathway **A**) is also shown.

We have also considered another possible pathway, pathway **D**, that leads to the major product *m*-terphenyl. In pathway **D**, elimination of acetic acid takes place at the last aromatization step. The energy barrier of the rate-determining benzal migration of pathway **D** is 30.2 kcal/mol, and much higher than that of the rate-determining step of pathway **A**. Thus, Pathway **D** should be ruled out from the favored pathway. This result also implies that elimination of acetic acid should take place at an early stage (**TS2a** in pathway **A**) instead of the last aromatization step.

Figure S3. Other possible pathways E and F that involves one [1,2]-H shift prior to acid elimination.

Actually, we had considered other possible 1,2-*H* migration (Path E and F in Figure S3). And we designed the deuterated labeling experiment using **3t** as substrate. It was found that only one deuterium atom exists in the newly formed central benzene ring that is adjacent to the *p*-bromophenyl group in the *m*-terphenyls **4t**. This experiment indicated that the elimination of DOAc and the following benzyl carbon cation migration occurred instead of the D-migration predicted. Moreover, from the deuterated experiment we could see that no [1,2]-H shift occurred in our protocol. In addition, the possibility of another pathway involving the [1,2]-*H* shift process (from C4 to C5) followed by further transformations was also considered. The result shows that an intermediate **15a** with quite high energy would be generated in this pathway. Therefore, we deduce that this pathway is not preferred.

Scheme S4. Gibbs free energy profiles of 1,2-methyl shift (in green line) and 1,2-hydrogen shift (in blue line) from **7b**. Energies (in kcal/mol) are relative to **1b-1** in Scheme S2 and calculated using B3LYP/SDD-6-311+G(d,p)/SMD(toluene)//B3LYP/SDD-6-31G(d) method with DFT-D3(BJ) dispersion correction.

The activation barrier leading to the product **B-b** (**TS11b**, ΔG^{\neq} = 28.3 kcal/mol) is much higher than that leading to the product **A-b** (**TS8b**, ΔG^{\neq} = 11.8 kcal/mol), and also higher than that of the ratedetermining elayl migration step (see Scheme S2). This implies that product **B-b** can not be produced through 1,2-methyl shift from **7b**.

Scheme S5. 3D structures of some selected transition states involved in PtI₂-catalyzed cyclization of ACE a.

Scheme S6. 3D structures of some selected transition states involved in PtI₂-catalyzed cyclization of ACE b.

Scheme S7. 3D structures of some selected transition states involved in pathway D of PtI₂-catalyzed cyclization of ACE a

Table S3. The B3LYP/SDD-6-31G(d) computed energies, enthalpies, free energies of all stationary points discussed in the text and in the supporting information

	B3LYP/SDD-6-31G(d)					
	Е	Н	G	G(qh)	G(D3(BJ))	
ACE a	-923.343198	-922.996773	-923.074307	-923.064942	-923.143762	
АсОН	-229.077610	-229.010061	-229.043019	-229.042453	-229.049454	
product A-a	-694.348851	-694.071267	-694.127178	-694.125360	-694.196985	
product B-a	-694.342593	-694.065261	-694.121163	-694.119375	-694.194844	
1a-1	-1065.674241	-1065.319000	-1065.410049	-1065.400802	-1065.519827	
1a-2	-1065.654109	-1065.299021	-1065.396797	-1065.382414	-1065.491722	
2a-1	-1065.686997	-1065.331226	-1065.421885	-1065.410958	-1065.528693	
3a-1	-836.559387	-836.275282	-836.359227	-836.348485	-836.443853	
4a-1	-836.589320	-836.304184	-836.381453	-836.373554	-836.475590	
5a	-836.558651	-836.274459	-836.351250	-836.345077	-836.453739	
6a	-836.569377	-836.284409	-836.361070	-836.354460	-836.458616	
	-836.606409	-836.321441	-836.398698	-836.391133	-836.497433	

8a	-836.644292	-836.358019	-836.435248	-836.427594	-836.525771
9a	-836.613752	-836.328010	-836.405785	-836.397895	-836.501649
10a	-836.631787	-836.345877	-836.421568	-836.415770	-836.525774
11a	-1065.659952	-1065.304376	-1065.394249	-1065.384676	-1065.514405
12a	-1065.695391	-1065.339067	-1065.42908	-1065.418696	-1065.543568
13a	-1065.699223	-1065.343195	-1065.432457	-1065.422761	-1065.545986
TS1a	-1065.643166	-1065.289440	-1065.381701	-1065.370582	-1065.489607
TS2a	-1065.644814	-1065.294313	-1065.383691	-1065.372756	-1065.492826
TS3a	-1065.612773	-1065.263864	-1065.357444	-1065.345530	-1065.455439
TS4a	-836.536894	-836.254401	-836.335513	-836.326066	-836.427256
TS5a	-836.546695	-836.263371	-836.338911	-836.332551	-836.439551
TS6a	-836.551195	-836.267828	-836.342894	-836.336953	-836.442657
TS7a	-836.560566	-836.277258	-836.352847	-836.346473	-836.450406
TS8a	-836.578456	-836.297530	-836.373202	-836.366823	-836.472735
TS9a	-836.548079	-836.265242	-836.341886	-836.334899	-836.439329
TS10a	-836.577615	-836.296723	-836.373489	-836.366395	-836.470308
TS11a	-836.5714389	-836.287582	-836.362832	-836.3568836	-836.463088
TS12a	-1065.630173	-1065.275883	-1065.362666	-1065.354807	-1065.481106
TS13a	-1065.638941	-1065.285183	-1065.374883	-1065.36507	-1065.489961
TS14a	-1065.644148	-1065.292576	-1065.380655	-1065.371888	-1065.501063
TS15a	-1065.653814	-1065.30282	-1065.391332	-1065.381862	-1065.508511
ACE b	-731.607908	-731.317698	-731.385798	-731.3800842	-731.437677
product A-b	-502.613695	-502.392402	-502.441717	-502.440259	-502.490730
product B-b	-502.609575	-502.388320	-502.436639	-502.435839	-502.487973
1b-1	-873.940482	-873.641566	-873.724150	-873.717425	-873.816352
1b-2	-873.917035	-873.618406	-873.707977	-873.696211	-873.785719
2b-1	-873.954854	-873.655166	-873.737954	-873.728995	-873.825610
3b-1	-644.824137	-644.596408	-644.671267	-644.664067	-644.740986

4b-1	-644.856655	-644.627761	-644.697281	-644.691247	-644.772503
5b	-644.820772	-644.592965	-644.661757	-644.657407	-644.742102
6b	-644.838179	-644.609419	-644.678383	-644.673335	-644.756775
7b	-644.878544	-644.649493	-644.718401	-644.713198	-644.797605
8b	-644.910388	-644.680576	-644.750192	-644.744714	-644.823871
9b	-644.887031	-644.657016	-644.726800	-644.720931	-644.800632
10b	-644.903776	-644.673817	-644.743917	-644.737790	-644.817009
TS1b	-873.904881	-873.607646	-873.691511	-873.683159	-873.781501
TS2b	-873.913836	-873.619383	-873.701269	-873.691897	-873.791234
TS3b	-873.876286	-873.583759	-873.669035	-873.659680	-873.752123
TS4b	-644.797966	-644.571932	-644.643888	-644.637784	-644.719285
TS5b	-644.808566	-644.582114	-644.650114	-644.645643	-644.729796
TS6b	-644.807623	-644.581419	-644.649364	-644.644879	-644.730049
TS7b	-644.832963	-644.605693	-644.673607	-644.668906	-644.752237
TS8b	-644.852845	-644.628035	-644.696143	-644.691446	-644.775343
TS9b	-644.817577	-644.590919	-644.658741	-644.654323	-644.739120
TS10b	-644.852804	-644.627901	-644.697073	-644.691781	-644.770828
TS11b	-644.829584	-644.601982	-644.669888	-644.665037	-644.750697

E is the electronic energy without zero-point energy (ZPE) correction; H and G are the enthalpy and free energy at 298 K, respectively. G(qh) is the Gibbs free energy computed from Truhlar's quasiharmonic approximation. $G(D3(BJ)) = G(qh) + E_{disp}$, where E_{disp} refers to B3LYP-D3(BJ) dispersion energy correction. The unit of all the energies in this table is Hartree.

Table S4. The B3LYP /SDD-6-311+G(d,p)/SMD(toluene)//B3LYP/SDD-6-31G(d) computed energies, enthalpies, free energies of all stationary points discussed in the text and in the supporting information

	B3LYP /SDD-6-311+G(d,p)/SMD(toluene)//B3LYP/SDD-6-31G(d)				
	Е	Н	G	G(qh)	G(D3(BJ))
ACE a	-923.634498	-923.288073	-923.365607	-923.356242	-923.435062
АсОН	-229.171121	-229.103573	-229.136530	-229.135965	-229.142965
product A-a	-694.553605	-694.276273	-694.332175	-694.330387	-694.405856

product B-a	-694.546864	-694.269280	-694.325191	-694.323373	-694.394999
1a-1	-1065.956690	-1065.601448	-1065.692498	-1065.683251	-1065.802275
1a-2	-1065.938754	-1065.583665	-1065.681442	-1065.667059	-1065.776367
2a-1	-1065.964995	-1065.609224	-1065.699883	-1065.688956	-1065.806691
3a-1	-836.764791	-836.480686	-836.564631	-836.553889	-836.649256
4a-1	-836.789565	-836.504429	-836.581698	-836.573799	-836.675834
5a	-836.760151	-836.475959	-836.552750	-836.546577	-836.655240
6a	-836.770144	-836.485176	-836.561837	-836.555227	-836.659383
7a	-836.808348	-836.523380	-836.600637	-836.593072	-836.699372
8a	-836.846123	-836.559849	-836.637078	-836.629424	-836.727601
9a	-836.815814	-836.530072	-836.607847	-836.599958	-836.703712
10a	-836.831667	-836.545757	-836.621448	-836.615650	-836.725654
11a	-1065.937602	-1065.582026	-1065.671900	-1065.662326	-1065.792055
12a	-1065.973312	-1065.616988	-1065.707001	-1065.696617	-1065.821489
13a	-1065.978526	-1065.622497	-1065.71176	-1065.702064	-1065.825289
TS1a	-1065.925642	-1065.571915	-1065.664177	-1065.653058	-1065.772082
TS2a	-1065.925523	-1065.575022	-1065.664401	-1065.653465	-1065.773535
TS3a	-1065.897847	-1065.548938	-1065.642518	-1065.630603	-1065.740512
TS4a	-836.743021	-836.460528	-836.541640	-836.532192	-836.633383
TS5a	-836.747333	-836.464009	-836.539549	-836.533189	-836.640189
TS6a	-836.752902	-836.469535	-836.544601	-836.538660	-836.644365
TS7a	-836.761453	-836.478146	-836.553735	-836.547360	-836.651293
TS8a	-836.783147	-836.502221	-836.577893	-836.571514	-836.677425
TS9a	-836.749889	-836.467052	-836.543696	-836.536709	-836.641139
TS10a	-836.783161	-836.502269	-836.579035	-836.571941	-836.675855
TS11a	-836.7735663	-836.489709	-836.564959	-836.559011	-836.665216
TS12a	-1065.907595	-1065.553305	-1065.640088	-1065.63223	-1065.758528
TS13a	-1065.920884	-1065.567127	-1065.656826	-1065.647013	-1065.771905
TS14a	-1065.92413	-1065.572559	-1065.660637	-1065.65187	-1065.781044

TS15a	-1065.937206	-1065.586212	-1065.674725	-1065.665254	-1065.791903
ACE b	-731.843979	-731.553769	-731.621869	-731.616155	-731.673748
product A-b	-502.764558	-502.543265	-502.592580	-502.591122	-502.641593
product B-b	-502.760484	-502.539229	-502.587548	-502.586748	-502.638882
1b-1	-874.169246	-873.870330	-873.952915	-873.946189	-874.045117
1b-2	-874.148269	-873.849641	-873.939212	-873.927445	-874.016954
2b-1	-874.179301	-873.879614	-873.962401	-873.953442	-874.050057
3b-1	-644.975629	-644.747900	-644.822759	-644.815560	-644.892479
4b-1	-645.003391	-644.774498	-644.844018	-644.837983	-644.919239
5b	-644.969592	-644.741785	-644.810577	-644.806227	-644.890923
6b	-644.985917	-644.757157	-644.826121	-644.821073	-644.904513
7b	-645.026996	-644.797944	-644.866853	-644.861650	-644.946057
8b	-645.058728	-644.828915	-644.898531	-644.893054	-644.972211
9b	-645.035505	-644.805489	-644.875274	-644.869405	-644.949106
10b	-645.051378	-644.821419	-644.891518	-644.885392	-644.964611
TS1b	-874.133720	-873.836485	-873.920350	-873.911998	-874.010340
TS2b	-874.140408	-873.845955	-873.927842	-873.918469	-874.017807
TS3b	-874.107013	-873.814486	-873.899762	-873.890407	-873.982851
TS4b	-644.950601	-644.724567	-644.796523	-644.790419	-644.871920
TS5b	-644.958989	-644.732537	-644.800537	-644.796066	-644.880218
TS6b	-644.957824	-644.731621	-644.799566	-644.795080	-644.880250
TS7b	-644.980570	-644.753300	-644.821213	-644.816512	-644.899843
TS8b	-645.004639	-644.779829	-644.847937	-644.843240	-644.927137
TS9b	-644.966352	-644.739695	-644.807516	-644.803099	-644.887895
TS10b	-645.005115	-644.780211	-644.849384	-644.844092	-644.923138
TS11b	-644.979877	-644.752275	-644.820181	-644.815331	-644.900991

E is the electronic energy without zero-point energy (ZPE) correction; H and G are the enthalpy and free energy at 298 K, respectively. G(qh) is the Gibbs free energy computed from Truhlar's quasiharmonic approximation. $G(D3(BJ)) = G(qh) + E_{disp}$, where E_{disp} refers to B3LYP-D3(BJ) dispersion energy correction. The unit of all the energies in this table is Hartree.

References

- (1) (a) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648. (b) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785.
- (2) M. J. Frisch, et al. Gaussian 09, revision B.01; Gaussian, Inc.: Wallingford, CT, 2010.
- (3) K. Fukui, Acc. Chem. Res. 1981, 14, 363.
- (4) D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123.
- (5) A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- (6) S. Grimme, S. Ehrlich, L. J. Goerigk, Comput. Chem. 2011, 32, 1456.
- (7) S. Grimme, DFTD3, V2.0 Rev 1; University Münster: Münster, Germany, 2010.
- (8) R. F. Ribeiro, A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2011, 115, 14556.
- (9) C. Y. Legault, CYLview, 1.0b; Université de Sherbrooke: Sherbrooke, Québec, Canada, 2009 (http://www.cylview.org)

The Cartesian Coordinates of the stationary points discussed in the text and in

the supporting information

For transition state structures, one imaginary frequency was observed and given below. For all minimum structures, no imaginary frequency was observed.

ACE a

Н

0.36765600

1.93755100

-2.76763600

ACE	a			С	1.48656400	1.01640400	-1.23459200
АТО	м х	Y	Z	С	2.16833500	0.10107500	-0.82550400
С	-1.56061300	1.09069800	-0.96975200	С	2.95611700	-0.98928000	-0.34234600
С	-1.96978800	0.37043100	0.08333900	С	4.36271900	-0.94451300	-0.39893900
Н	-1.85505000	0.81858900	-1.98240500	С	2.33291200	-2.13102800	0.19916200
Н	-1.63046000	0.67977900	1.06899500	С	5.12133000	-2.01349200	0.07284900
С	-2.83452600	-0.81959400	0.06508500	Н	4.84739200	-0.06682300	-0.81568200
С	-3.06727800	-1.49961700	1.27385900	С	3.09891900	-3.19500500	0.66968900
С	-3.44633200	-1.32058100	-1.09972200	Н	1.24871300	-2.16825800	0.24350300
С	-3.87082400	-2.63827200	1.32165600	С	4.49393700	-3.14123600	0.60842800
Н	-2.60603500	-1.12665300	2.18555200	Н	6.20593100	-1.96624200	0.02247100
С	-4.24916900	-2.45670300	-1.05407500	Н	2.60539800	-4.06983900	1.08465800
Н	-3.29810900	-0.81516300	-2.04978500	Н	-5.09376000	-4.00921700	0.18836600
С	-4.46552500	-3.12323800	0.15634200	Н	5.08860300	-3.97332600	0.97558300
Н	-4.03245500	-3.14514400	2.26941700	С	0.25420000	4.01302900	2.24279300
Н	-4.71145400	-2.82415800	-1.96660800	Н	0.51296100	5.04893300	2.46429800
С	-0.66727400	2.29596700	-0.91098200	Н	-0.62220200	3.71379000	2.82704700
Н	-1.17570400	3.16861800	-1.33889600	Н	1.07926700	3.35241700	2.52908000
0	-0.36425600	2.59080000	0.46711000				
С	-0.02998700	3.87042700	0.76647800	АсОН			
0	0.02938800	4.76198100	-0.05226100	ATOM	I X	Y	Z
С	0.64575100	2.10848400	-1.71748400	С	1.39746600	-0.10997000	0.00000600
Н	1.19143200	3.05916400	-1.69445400	Н	1.68544800	-0.69065000	0.88258100

Н

1.68543100

-0.69283500

-0.88111300

Н	1.91738200	0.84813400	-0.00109500
С	-0.09243800	0.12560800	-0.00015200
0	-0.64546700	1.20210000	0.00003500
0	-0.77886000	-1.04658800	0.00000700
Н	-1.72381700	-0.80257000	0.00017400

product A-a

ATO	M X	Y	Z
С	-1.21000200	2.11387500	0.41781900
С	-1.22716400	0.73392800	0.15447700
Н	-2.14712400	2.64749800	0.54764800
Н	-0.00010100	-0.99001800	-0.23019200
С	-2.51160900	0.00151300	0.00392600
С	-3.60574700	0.59077300	-0.65267000
С	-2.66741500	-1.29853100	0.51463400
С	-4.81189900	-0.09460100	-0.79363400
Н	-3.49973100	1.58476300	-1.07837800
С	-3.87273700	-1.98528100	0.37306000
Н	-1.84339500	-1.76337200	1.04883800
С	-4.95098300	-1.38622100	-0.28151500
Н	-5.64162000	0.37833800	-1.31258000
Н	-3.97228200	-2.98703700	0.78293900
С	0.00011200	2.79339100	0.54682900
Н	0.00014800	3.85764600	0.76755100
С	1.21014100	2.11377700	0.41791000
Н	2.14733000	2.64720900	0.54807400
С	1.22714500	0.73386300	0.15432400
С	-0.00004100	0.06538600	0.02599000
С	2.51157000	0.00140900	0.00388300
С	3.60581200	0.59083600	-0.65239400

С	2.66725100	-1.29878000	0.51423700
С	4.81198700	-0.09450200	-0.79332200
Н	3.49983400	1.58493300	-1.07787400
С	3.87259900	-1.98549500	0.37269600
Н	1.84311700	-1.76377800	1.04812200
С	4.95097000	-1.38625600	-0.28151100
Н	5.64180900	0.37855200	-1.31200400
Н	3.97205200	-2.98736900	0.78230600
Н	-5.89056000	-1.92092800	-0.39144900
Н	5.89057000	-1.92092800	-0.39142900

product B-a

ATC	OM X	Y	Z
С	1.38221200	2.43441200	-0.02948300
С	-1.38272900	2.43410600	0.02951000
Н	2.46746000	2.43153500	-0.08263700
Н	-2.46798000	2.43096200	0.08262100
С	-1.53046900	-0.04218400	0.10099400
С	-2.61283800	-0.22922300	-0.77468100
С	-1.28938100	-1.02080700	1.07971900
С	-3.42480900	-1.36049400	-0.68129400
Н	-2.80781400	0.51378000	-1.54372300
С	-2.10315100	-2.14860800	1.17672900
Н	-0.46325700	-0.88999000	1.77173800
С	-3.17320600	-2.32465100	0.29593100
Н	-4.25229500	-1.48836000	-1.37446000
Н	-1.90268300	-2.89049100	1.94536300
С	0.69675400	3.64704900	-0.01143900
Н	1.24885400	4.58295400	-0.02544400
С	-0.69754600	3.64689400	0.01144500

Н	-1.24984700	4.58267800	0.02541100	Н	-1.06732500	-3.13021900	-4.70123900	
С	-0.70858000	1.20087500	0.02167100	Н	-3.91660700	-3.99861700	-1.59400600	
С	0.70835200	1.20102800	-0.02161000	С	-2.04858700	2.03909000	0.16502900	
С	1.53052100	-0.04187100	-0.10100200	Н	-2.06327500	2.17571200	1.24868100	
С	2.61281200	-0.22883100	0.77479700	0	-3.32010600	2.49322200	-0.35826600	
С	1.28970000	-1.02045200	-1.07982300	С	-3.83969800	3.61771100	0.21286200	
С	3.42499400	-1.35994900	0.68138400	0	-3.26050500	4.25905100	1.05960600	
Н	2.80755100	0.51409000	1.54397500	С	-0.88699900	2.87939200	-0.41936600	
С	2.10368600	-2.14809900	-1.17686200	Н	-0.74649900	3.77073900	0.19904400	
Н	0.46360000	-0.88974600	-1.77190300	Н	-1.14817700	3.21866400	-1.43025000	
С	3.17367400	-2.32404600	-0.29597400	С	0.33988300	2.06210000	-0.48282700	
Н	4.25240100	-1.48774000	1.37465800	С	1.33799900	1.47619500	-0.94733400	
Н	1.90342800	-2.88992500	-1.94560800	С	2.56718300	1.20473000	-1.63966100	
Н	3.80557300	-3.20496100	-0.37160700	С	2.91210600	-0.09560600	-2.05011400	
Н	-3.80495700	-3.20567800	0.37153900	С	3.42360100	2.28095000	-1.94559500	
				С	4.08930700	-0.31055600	-2.76142600	
19-1				Н	2.26342200	-0.92555500	-1.78944300	
14-1								
ATO	M X	Y	Z	C	4.59677800	2.05403800	-2.65982900	
ATO C	M X -1.96494900	Y 0.55299900	Z -0.13666300	С Н	4.59677800 3.16505700	2.05403800 3.28118700	-2.65982900 -1.61239000	
ATO C C	M X -1.96494900 -1.51917500	Y 0.55299900 0.00806600	Z -0.13666300 -1.34896900	С Н С	4.59677800 3.16505700 4.93230700	2.05403800 3.28118700 0.76059400	-2.65982900 -1.61239000 -3.06923500	
ATO C C H	M X -1.96494900 -1.51917500 -2.63260200	Y 0.55299900 0.00806600 -0.04130200	Z -0.13666300 -1.34896900 0.47983400	С Н С Н	4.596778003.165057004.932307004.35309600	2.05403800 3.28118700 0.76059400 -1.31833200	-2.65982900 -1.61239000 -3.06923500 -3.06867300	
ATO C C H H	M X -1.96494900 -1.51917500 -2.63260200 -1.02947800	Y 0.55299900 0.00806600 -0.04130200 0.67816300	Z -0.13666300 -1.34896900 0.47983400 -2.05064800	С Н С Н Н	 4.59677800 3.16505700 4.93230700 4.35309600 5.25457400 	2.05403800 3.28118700 0.76059400 -1.31833200 2.88742900	-2.65982900 -1.61239000 -3.06923500 -3.06867300 -2.88930900	
ATO C C H H C	M X -1.96494900 -1.51917500 -2.63260200 -1.02947800 -1.87599100	Y 0.55299900 0.00806600 -0.04130200 0.67816300 -1.28811400	Z -0.13666300 -1.34896900 0.47983400 -2.05064800 -1.93747700	C H C H H Pt	4.59677800 3.16505700 4.93230700 4.35309600 5.25457400 0.13084000	2.05403800 3.28118700 0.76059400 -1.31833200 2.88742900 0.02761800	-2.65982900 -1.61239000 -3.06923500 -3.06867300 -2.88930900 0.37633800	
ATO C C H H C C	M X -1.96494900 -1.51917500 -2.63260200 -1.02947800 -1.87599100 -1.24928600	Y 0.55299900 0.00806600 -0.04130200 0.67816300 -1.28811400 -1.65949500	Z -0.13666300 -1.34896900 0.47983400 -2.05064800 -1.93747700 -3.14286800	C H C H H Pt I	4.59677800 3.16505700 4.93230700 4.35309600 5.25457400 0.13084000 2.34083400	2.05403800 3.28118700 0.76059400 -1.31833200 2.88742900 0.02761800 0.01133800	-2.65982900 -1.61239000 -3.06923500 -3.06867300 -2.88930900 0.37633800 1.92170500	
ATO C C H H C C C	M X -1.96494900 -1.51917500 -2.63260200 -1.02947800 -1.87599100 -1.24928600 -2.84615800	Y 0.55299900 0.00806600 -0.04130200 0.67816300 -1.28811400 -1.65949500 -2.14892300	Z -0.13666300 -1.34896900 0.47983400 -2.05064800 -1.93747700 -3.14286800 -1.39141200	C H C H H Pt I I	4.59677800 3.16505700 4.93230700 4.35309600 5.25457400 0.13084000 2.34083400 -0.74948300	2.05403800 3.28118700 0.76059400 -1.31833200 2.88742900 0.02761800 0.01133800 -2.13327100	-2.65982900 -1.61239000 -3.06923500 -3.06867300 -2.88930900 0.37633800 1.92170500 1.71336900	
ATO C C H H C C C C C C	M X -1.96494900 -1.51917500 -2.63260200 -1.02947800 -1.87599100 -1.24928600 -2.84615800 -1.56423100	Y 0.55299900 0.00806600 -0.04130200 0.67816300 -1.28811400 -1.65949500 -2.14892300 -2.85936600	Z -0.13666300 -1.34896900 0.47983400 -2.05064800 -1.93747700 -3.14286800 -1.39141200 -3.77400900	C H C H H Pt I I I H	4.59677800 3.16505700 4.93230700 4.35309600 5.25457400 0.13084000 2.34083400 -0.74948300 5.85227600	2.05403800 3.28118700 0.76059400 -1.31833200 2.88742900 0.02761800 0.01133800 -2.13327100 0.58724700	-2.65982900 -1.61239000 -3.06923500 -3.06867300 -2.88930900 0.37633800 1.92170500 1.71336900 -3.62037200	
ATO C C H H C C C C H	M X -1.96494900 -1.51917500 -2.63260200 -1.02947800 -1.87599100 -1.24928600 -2.84615800 -1.56423100 -0.50691200	Y 0.55299900 0.00806600 -0.04130200 0.67816300 -1.28811400 -1.65949500 -2.14892300 -2.85936600 -0.99639700	Z -0.13666300 -1.34896900 0.47983400 -2.05064800 -1.93747700 -3.14286800 -1.39141200 -3.77400900	C H C H H Pt I I H H	4.59677800 3.16505700 4.93230700 4.35309600 5.25457400 0.13084000 2.34083400 -0.74948300 5.85227600 -2.77525500	2.05403800 3.28118700 0.76059400 -1.31833200 2.88742900 0.02761800 0.01133800 -2.13327100 0.58724700 -4.64378600	-2.65982900 -1.61239000 -3.06923500 -3.06867300 -2.88930900 0.37633800 1.92170500 1.71336900 -3.62037200 -3.70610700	
ATO C C H H C C C C H C C H C C	M X -1.96494900 -1.51917500 -2.63260200 -1.02947800 -1.87599100 -1.24928600 -2.84615800 -1.56423100 -0.50691200 -3.16431400	Y 0.55299900 0.00806600 -0.04130200 0.67816300 -1.28811400 -1.65949500 -2.14892300 -2.85936600 -0.99639700 -3.34577700	Z -0.13666300 -1.34896900 0.47983400 -2.05064800 -1.93747700 -3.14286800 -1.39141200 -3.77400900 -3.58145500 -2.02718800	C H C H H Pt I I H H C	4.59677800 3.16505700 4.93230700 4.35309600 5.25457400 0.13084000 2.34083400 2.34083400 -0.74948300 5.85227600 -2.77525500 -5.20404500	2.05403800 3.28118700 0.76059400 -1.31833200 2.88742900 0.02761800 0.01133800 -2.13327100 0.58724700 -4.64378600 3.92356400	-2.65982900 -1.61239000 -3.06923500 -3.06867300 -2.88930900 0.37633800 1.92170500 1.71336900 -3.62037200 -3.70610700 -0.35390200	
ATO C C H H C C C C H C C H C H H C C H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H H C C H	M X -1.96494900 -1.51917500 -2.63260200 -1.02947800 -1.87599100 -1.24928600 -1.56423100 -0.50691200 -3.16431400 -3.35544700	Y 0.552999000 0.008066000 -0.041302000 0.678163000 -1.28811400 -1.659495000 -2.148923000 -2.859366000 -0.996397000 -3.345777000 -1.88245100	Z -0.13666300 -1.34896900 0.47983400 -2.05064800 -1.93747700 -3.14286800 -1.39141200 -3.77400900 -3.58145500 -2.02718800 -0.47248300	C H C H H Pt I I H H C H	4.59677800 3.16505700 4.93230700 4.35309600 5.25457400 0.13084000 2.34083400 2.34083400 5.85227600 5.85227600 -2.77525500 -5.20404500 -5.16236000	2.05403800 3.28118700 0.76059400 -1.31833200 2.88742900 0.02761800 0.01133800 -2.13327100 0.58724700 -4.64378600 3.92356400 3.96776400	-2.65982900 -1.61239000 -3.06923500 -3.06867300 -2.88930900 0.37633800 1.92170500 1.71336900 -3.62037200 -3.70610700 -0.35390200 -1.44666900	

Н	-5.55835600	4.87327100	0.04798000	С	-1.00303500	-1.43501400	2.46453700
				С	0.76332200	-0.89383300	4.57498000
1a-2				Н	1.84815600	0.32509700	3.15998000
ATO	м х	Y	Z	С	-1.22101800	-1.99857300	3.71748300
С	-2.85026100	1.63816600	0.04171900	Н	-1.67633500	-1.63886400	1.63881500
С	-3.06821400	0.41635300	-0.46961000	C	-0.34012900	-1.73138700	4.77036300
Н	-3.60019600	2.12675600	0.65889400	Н	1.44718500	-0.69290600	5.39417100
Н	-2.29757300	-0.04539600	-1.08544200	Н	-2.07523200	-2.65082800	3.87237100
С	-4.26166600	-0.42420000	-0.28365400	Pt	1.79609000	-0.45354200	-0.53323500
С	-4.28945500	-1.69178600	-0.89325400	Ι	3.67762200	1.24350000	0.29847700
С	-5.37891200	-0.02792900	0.47617600	Ι	0.43158500	-2.40348900	-1.73736800
С	-5.39113600	-2.53532400	-0.75149100	Н	-0.51107400	-2.18084100	5.74461000
Н	-3.43537900	-2.01374500	-1.48490700	Н	-7.35123300	-2.78069200	0.11697000
С	-6.47842400	-0.86926500	0.61681200	C	-2.73941900	5.80691900	-1.38642500
Н	-5.38894300	0.94426400	0.96009900	Н	-1.79472700	6.10788200	-1.85088100
С	-6.49052000	-2.12715700	0.00445700	Н	-3.40181600	5.46214300	-2.18732000
Н	-5.38922700	-3.50951100	-1.23278000	Н	-3.18932700	6.65682100	-0.87231800
Н	-7.33138100	-0.54377300	1.20641900				
С	-1.61606000	2.47454000	-0.16363300	2a-1			
Н	-1.28721800	2.87160300	0.80232100	ATC	M X	Y	Z
0	-1.92987000	3.62239700	-1.00982800	С	-2.12826100	1.38206600	0.44208000
С	-2.50187800	4.69088100	-0.39722000	С	-2.37599100	0.15421700	-0.33959400
0	-2.77720900	4.72032600	0.78212400	Н	-2.75062200	1.60982000	1.29986300
С	-0.43243200	1.79931100	-0.87822600	Н	-2.16384400	0.20678700	-1.40357800
Н	0.32702600	2.56127400	-1.08537600	С	-3.35679400	-0.90319600	0.00438300
Н	-0.74681500	1.39753000	-1.84799800	С	-3.56876600	-1.93229400	-0.92894300
С	0.17931400	0.72617000	-0.06650000	С	-4.09702900	-0.91119400	1.19748900
С	0.29962500	0.03220500	0.98886900	C	-4.49946000	-2.93901500	-0.68100900
С	0.10145700	-0.57955400	2.26594700	Н	-2.99547200	-1.93998300	-1.85293100
С	0.99013100	-0.31766800	3.32993100	C	-5.02795800	-1.91868600	1.44413900

Н	-3.95051600	-0.13259200	1.93892600	Н	-3.68854900	5.04649200	-2.62158000
С	-5.23254200	-2.93476800	0.50772500	Н	-4.62094700	3.54995900	-2.68354300
Н	-4.65122400	-3.72529500	-1.41500300	Н	-5.16462300	4.88869600	-1.62543500
Н	-5.59554600	-1.90847600	2.37032300				
С	-1.54205000	2.54928300	-0.34368000	3a-1			
Н	-1.27777200	3.35472400	0.34666900	АТО	M X	Y	Z
0	-2.42896800	3.07792700	-1.34623500	С	-2.55160600	-1.12399000	2.46825600
С	-3.47946900	3.81000900	-0.88166500	С	-3.07449100	-0.12542500	1.71077100
0	-3.69411400	3.98061100	0.29750700	Н	-3.19305200	-1.95234600	2.76333700
С	-0.29576800	1.97553300	-1.05037600	Н	-2.47580400	0.76952700	1.55798800
Н	0.54336900	2.67516400	-1.08213900	C	-4.41941700	-0.07966600	1.14139100
Н	-0.51399600	1.70579300	-2.09310000	C	-4.92903500	1.15740700	0.69900600
С	0.06411800	0.73271900	-0.26992800	С	-5.23605800	-1.22174200	1.01268800
С	-1.02707100	0.31166300	0.57981200	С	-6.21308200	1.25617100	0.16806000
С	-0.84345600	-0.55915800	1.78203200	Н	-4.30786900	2.04590600	0.78189000
С	-0.90974000	0.00399900	3.06274500	C	-6.51719200	-1.12196300	0.48046700
С	-0.56675000	-1.92686400	1.64799600	Н	-4.85559600	-2.19390600	1.31137500
С	-0.70139200	-0.78634700	4.19443600	C	-7.01298100	0.11675900	0.05913600
Н	-1.11092700	1.06610900	3.17602400	Н	-6.58943300	2.22092500	-0.16070800
С	-0.35644200	-2.71422400	2.77966800	Н	-7.13048300	-2.01353700	0.38412400
Н	-0.51189100	-2.37134400	0.65922900	C	-1.21756600	-1.15831700	3.01502700
С	-0.42328300	-2.14676900	4.05436300	Н	-1.10358900	-1.72155500	3.94023100
Н	-0.74952800	-0.33594000	5.18188800	C	-0.06958800	-0.60133300	2.52583000
Н	-0.14106200	-3.77272500	2.66390300	Н	0.84625600	-0.71043000	3.10180600
Pt	1.72348400	-0.07991400	-0.44047000	C	0.08365900	0.05434000	1.28378400
Ι	3.16535300	1.26063600	1.33880600	C	0.05311900	0.83300300	0.27700900
Ι	1.13854500	-1.77604600	-2.41095900	C	-0.39505300	1.97572000	-0.48341100
Н	-0.25805000	-2.76236800	4.93428100	С	-1.64476200	1.94483200	-1.13130800
Н	-5.95900400	-3.71840000	0.70385100	С	0.41591300	3.12320600	-0.57610000
С	-4.29747500	4.36057700	-2.02285400	C	-2.08537600	3.06201700	-1.83681400

Н	-2.24942800	1.04535100	-1.08511300
С	-0.03604600	4.23263400	-1.28508800
Н	1.38948800	3.12678300	-0.09600600
С	-1.28473800	4.20529900	-1.91369800
Н	-3.04958100	3.03520300	-2.33613700
Н	0.58930400	5.11800700	-1.35245900
Pt	1.57127200	-0.50873200	-0.19331600
Ι	0.08873500	-2.11877500	-1.71032000
Ι	3.60973700	0.73154000	1.01991400
Н	-1.62933200	5.07145200	-2.47176200
Н	-8.01327600	0.18951000	-0.35843700

4a-1

ATON	1 X	Y	Z
С	1.75741800	0.87764500	2.32148600
С	2.31829700	-0.19104300	1.36517700
Н	2.40243200	1.71140200	2.57817200
Н	2.01196500	-1.20662600	1.59955000
С	3.64558200	-0.10533900	0.71781400
С	4.23905300	-1.30280000	0.27954900
С	4.34968700	1.09876500	0.53831800
С	5.49549800	-1.29912300	-0.32268000
Н	3.70402300	-2.24014400	0.40884900
С	5.60711700	1.10008700	-0.06091800
Н	3.91496500	2.04080300	0.85632300
С	6.18437300	-0.09666500	-0.49371400
Н	5.93553000	-2.23444000	-0.65646400
Н	6.13745600	2.03915600	-0.19147900
С	0.80731700	0.30639500	3.29556700
Н	1.02173000	0.20960100	4.35577100

С	-0.30430900	-0.17269200	2.66759800
Н	-1.12842000	-0.70230400	3.12758900
С	-0.18484400	0.05420400	1.24889100
С	1.10281300	0.75178500	0.97346200
С	1.23469900	1.74518100	-0.14139400
С	1.15771400	3.11718900	0.12783600
С	1.39166800	1.31259400	-1.46510500
С	1.23692100	4.04636300	-0.91142900
Н	1.02200300	3.45995900	1.15045900
С	1.46809200	2.24199600	-2.50206300
Н	1.44949700	0.24983300	-1.67929300
С	1.39154600	3.60968800	-2.22804300
Н	1.17023300	5.10817600	-0.69127400
Н	1.58798600	1.89618400	-3.52492000
Pt	-1.41977500	-0.53343100	-0.01833000
Ι	-3.22282300	1.40855900	0.04928500
Ι	-0.25819200	-2.83366000	-0.69771200
Η	1.44995600	4.33169700	-3.03785400
Н	7.16503600	-0.09071400	-0.96119000

5a

ΑΤΟΙ	M X	Y	Z
С	1.16636900	1.41932400	2.71797600
С	1.01296200	-1.28510200	1.33996100
Н	1.81456600	2.18523600	3.13193200
Н	1.22767600	-1.58061200	2.36814500
С	1.71335300	-2.02871000	0.34867400
С	1.50895100	-1.87015800	-1.04603900
С	2.69228000	-2.95728400	0.79443600
С	2.27250500	-2.59626000	-1.94901100

ATO	м х	Y	Z	Н	-1.19028600	4.27796600	-1.63950800	
6a				Н	-4.67551700	4.11123700	0.88923600	
Н	3.818/4900	-4.0//40100	-2.2013/400	H C	-0.20709500	4 32767200	-0.31043900	
н	2.26097700	2.066/4400	-1.000/9000	C	-1./4545400	5.81/49500	-0.82/98800	
1	-2.10898900	-2.34517300	-0.05205200	Н	-3.74543000	2.15804700	2.05154500	
I	-1.16986100	2.81727000	-0.65105600	C	-3.70379900	3.72396300	0.59782000	
Pt 1	-1.25422900	0.19960600	-0.18724800	C	-1.21879300	2.70244000	-0.18/49200	
H	3.32842000	1.70384500	-2.69385300	C	-3.17162300	2.62576300	1.25885000	
H	5.81934500	1.85390100	0.81151400	С	-1.91789500	2.08840900	0.87562800	
C 	4.70464300	1.81365200	-1.03770800	C	-1.37238700	0.94528000	1.57849800	
Н	1.37269600	1.17414900	-1.28332200	C	-0.19650100	0.10365300	1.18105300	
C	3.45406600	1.60448000	-1.61920000	Н	0.55260700	-1./0/63600	2.33600700	
Н	3.87660400	1.26428700	2.21264000	С	0.06861500	-0.74093600	2.38867900	
С	4.84879400	1.69900100	0.34801400	Н	-1.03043900	-0.88567100	4.34217700	
С	2.34899500	1.28632900	-0.82839700	С	-0.95740600	-0.43451400	3.35696200	
С	3.75011800	1.37627300	1.13902300	Н	5.45521700	1.71173000	2.56219600	
С	2.47764100	1.17137500	0.56755200	Н	4.67736700	-1.89710800	0.34669700	
С	1.33908200	0.87284100	1.45181300	C	5.22538600	-0.11880000	1.44094100	
С	0.15133600	-0.09186800	1.24714000	Н	3.02385200	2.03489800	2.87725100	
Η	-1.49063900	-0.57903400	2.72931200	C	4.75641600	0.99192200	2.14562300	
С	-0.63082100	0.04313200	2.51935900	Н	2.25153700	-1.55016300	0.61526800	
Η	-0.37540800	1.25768400	4.32459500	C	4.31724800	-1.03859100	0.90589900	
С	-0.02582500	0.94599700	3.34710700	C	3.38661300	1.17453300	2.31955700	
Η	4.18995100	-4.39186600	0.23571700	C	2.94855000	-0.85138600	1.06797300	
Η	2.10669900	-2.47549600	-3.01506000	C	2.46231200	0.25928500	1.78249000	
С	3.23567400	-3.50154500	-1.48787600	Н	0.85505400	1.34886400	2.69678900	
Η	2.84937200	-3.08781900	1.86200200	Н	-2.61025100	0.99011800	3.43065500	
С	3.44473400	-3.68409000	-0.11396500	C	1.03308500	0.48966500	2.05255900	
Н	0.72073200	-1.20831800	-1.38849500	C	-1.80602300	0.53509000	2.86704500	

Pt	-0.17656800	-0.65300300	-0.67336400	С	3.04061300	-0.87727900	0.65927700	
Ι	1.61955800	0.75955600	-2.06918000	С	4.69692100	1.35439900	0.94782000	
Ι	-2.05588700	-2.46680500	-0.08146100	Н	3.03913500	2.26149000	1.97784000	
Н	-3.40625900	5.18889500	-0.95840600	С	4.33474900	-0.89214400	0.13886600	
Н	6.29310500	-0.26666100	1.30500200	Н	2.40579000	-1.75045200	0.55234900	
				С	5.16442200	0.22255800	0.27771800	
7a				Н	5.33178900	2.22977500	1.05257100	
АТО	M X	Y	Z	Н	4.69328700	-1.77916600	-0.37580200	
С	1.09292500	0.62071800	3.29298800	Pt	-0.00272800	-0.32493300	-0.62878700	
С	-1.32584100	-0.04299200	1.95588900	Ι	-0.54109700	-2.93866000	-0.46772400	
Н	2.01264200	0.84115300	3.82988800	Ι	0.43842100	2.03839800	-1.74771200	
Н	-1.52683300	-1.13638400	1.97197200	Н	6.16898700	0.20987300	-0.13595700	
С	-2.51756500	0.60128300	1.23573900	Н	-5.58267400	2.28354300	-0.46308300	
С	-2.58321800	1.99573100	1.11890600					
С	-3 56932400	-0 18056700	0 74801900	89				
-	-5.50752400	-0.10030700	0.74001700	0a				
С	-3.68191600	2.59800600	0.50724100	ATC	DM X	Y	Z	
C H	-3.68191600 -1.76848200	2.59800600 2.61088300	0.50724100	ATC C	DM X 1.26182000	Y 0.91253900	Z 1.64110700	
С Н С	-3.68191600 -1.76848200 -4.66926000	2.59800600 2.61088300 0.42459200	0.50724100 1.49218900 0.13685200	ATC C C	DM X 1.26182000 1.31133200	Y 0.91253900 1.92710300	Z 1.64110700 0.63265900	
C H C H	-3.68191600 -1.76848200 -4.66926000 -3.52132200	2.59800600 2.61088300 0.42459200 -1.26331900	0.50724100 1.49218900 0.13685200 0.82684300	АТС С С Н	DM X 1.26182000 1.31133200 2.18617300	Y 0.91253900 1.92710300 0.51643700	Z 1.64110700 0.63265900 2.04422100	
C H C H C	-3.68191600 -1.76848200 -4.66926000 -3.52132200 -4.72766800	2.59800600 2.61088300 0.42459200 -1.26331900 1.81361000	0.50724100 1.49218900 0.13685200 0.82684300 0.01483700	64 АТС С Н Н	DM X 1.26182000 1.31133200 2.18617300 0.14346400	Y 0.91253900 1.92710300 0.51643700 3.31825200	Z 1.64110700 0.63265900 2.04422100 -0.52217500	
С Н С Н С Н	-3.68191600 -1.76848200 -4.66926000 -3.52132200 -4.72766800 -3.71830200	2.59800600 2.61088300 0.42459200 -1.26331900 1.81361000 3.67959600	0.50724100 1.49218900 0.13685200 0.82684300 0.01483700 0.41291300	64 АТС С Н Н С	DM X 1.26182000 1.31133200 2.18617300 0.14346400 2.60932700	Y 0.91253900 1.92710300 0.51643700 3.31825200 2.38685000	Z 1.64110700 0.63265900 2.04422100 -0.52217500 0.10188900	
С Н С Н С Н Н	-3.68191600 -1.76848200 -4.66926000 -3.52132200 -4.72766800 -3.71830200 -5.47718400	2.59800600 2.61088300 0.42459200 -1.26331900 1.81361000 3.67959600 -0.19283500	0.50724100 1.49218900 0.13685200 0.82684300 0.01483700 0.41291300 -0.24570600	ба АТС С Н Н С С	DM X 1.26182000 1.31133200 2.18617300 0.14346400 2.60932700 3.74774500 	Y 0.91253900 1.92710300 0.51643700 3.31825200 2.38685000 2.45322600	Z 1.64110700 0.63265900 2.04422100 -0.52217500 0.10188900 0.92687300	
C H C H C H H C	-3.68191600 -1.76848200 -4.66926000 -3.52132200 -4.72766800 -3.71830200 -5.47718400 -0.13894700	2.59800600 2.61088300 0.42459200 -1.26331900 1.81361000 3.67959600 -0.19283500 0.68735200	0.50724100 1.49218900 0.13685200 0.82684300 0.01483700 0.41291300 -0.24570600 4.01676900	ба АТС С С Н Н С С С С	DM X 1.26182000 1.31133200 2.18617300 0.14346400 2.60932700 3.74774500 2.73256700 	Y 0.91253900 1.92710300 0.51643700 3.31825200 2.38685000 2.45322600 2.77851300	Z 1.64110700 0.63265900 2.04422100 -0.52217500 0.10188900 0.92687300 -1.24478400	
C H C H C H H C H	-3.68191600 -1.76848200 -4.66926000 -3.52132200 -4.72766800 -3.71830200 -5.47718400 -0.13894700 -0.12076200	2.59800600 2.61088300 0.42459200 -1.26331900 1.81361000 3.67959600 -0.19283500 0.68735200 0.97242000	0.50724100 1.49218900 0.13685200 0.82684300 0.01483700 0.41291300 -0.24570600 4.01676900 5.06426300	ат С С Н Н С С С С С	DM X 1.26182000 1.31133200 2.18617300 0.14346400 2.60932700 3.74774500 2.73256700 4.96459700 	Y 0.91253900 1.92710300 0.51643700 3.31825200 2.38685000 2.45322600 2.77851300 2.90780400	Z 1.64110700 0.63265900 2.04422100 -0.52217500 0.10188900 0.92687300 -1.24478400 0.42455300	
C H C H C H H C H C	-3.68191600 -1.76848200 -4.66926000 -3.52132200 -4.72766800 -3.71830200 -5.47718400 -0.13894700 -0.12076200 -1.29551400	2.59800600 2.61088300 0.42459200 -1.26331900 1.81361000 3.67959600 -0.19283500 0.68735200 0.97242000 0.37044800	0.50724100 1.49218900 0.13685200 0.82684300 0.01483700 0.41291300 -0.24570600 4.01676900 5.06426300 3.39319900	бй АТС С С Н Н С С С С Н	X 1.26182000 1.31133200 2.18617300 0.14346400 2.60932700 3.74774500 2.73256700 4.96459700 3.67292500	Y 0.91253900 1.92710300 0.51643700 3.31825200 2.38685000 2.45322600 2.77851300 2.90780400 2.17953100	Z 1.64110700 0.63265900 2.04422100 -0.52217500 0.10188900 0.92687300 -1.24478400 0.42455300 1.97487800	
C H C H C H H C H C H	-3.68191600 -1.76848200 -4.66926000 -3.52132200 -4.72766800 -3.71830200 -5.47718400 -0.13894700 -0.12076200 -1.29551400 -2.24851000	2.59800600 2.61088300 0.42459200 -1.26331900 1.81361000 3.67959600 -0.19283500 0.68735200 0.97242000 0.37044800 0.38328700	0.50724100 1.49218900 0.13685200 0.82684300 0.01483700 0.41291300 -0.24570600 4.01676900 5.06426300 3.39319900 3.91453000	ат Ат С С С Н Н С С С Н С	X1.261820001.311332002.186173000.143464002.609327003.747745002.732567004.964597003.672925003.95297200	Y 0.91253900 1.92710300 0.51643700 3.31825200 2.38685000 2.45322600 2.77851300 2.90780400 2.17953100 3.22182000	Z 1.64110700 0.63265900 2.04422100 -0.52217500 0.10188900 0.92687300 -1.24478400 0.42455300 1.97487800 -1.74760900	
С Н С Н С Н Н С Н Ц С Н С Н	-3.68191600 -1.76848200 -4.66926000 -3.52132200 -4.72766800 -3.71830200 -5.47718400 -0.13894700 -0.12076200 -1.29551400 -2.24851000 0.00090300	2.59800600 2.61088300 0.42459200 -1.26331900 1.81361000 3.67959600 -0.19283500 0.68735200 0.97242000 0.37044800 0.38328700 0.01742700	0.50724100 1.49218900 0.13685200 0.82684300 0.01483700 0.41291300 -0.24570600 4.01676900 5.06426300 3.39319900 3.91453000 1.22464700	ат С С С Н Н С С С С С С Н С Н	X 1.26182000 1.31133200 2.18617300 0.14346400 2.60932700 3.74774500 2.73256700 4.96459700 3.67292500 3.95297200 1.87635100	Y 0.91253900 1.92710300 0.51643700 3.31825200 2.38685000 2.45322600 2.77851300 2.90780400 2.17953100 3.22182000 2.69559200	Z 1.64110700 0.63265900 2.04422100 -0.52217500 0.10188900 0.92687300 -1.24478400 0.42455300 1.97487800 -1.74760900 -1.90717600	
C H C H C H H C H C H C H C C	-3.68191600 -1.76848200 -4.66926000 -3.52132200 -4.72766800 -3.71830200 -5.47718400 -0.13894700 -0.12076200 -1.29551400 -2.24851000 0.00090300 1.20458900	2.59800600 2.61088300 0.42459200 -1.26331900 1.81361000 3.67959600 -0.19283500 0.68735200 0.97242000 0.37044800 0.38328700 0.01742700 0.27837800	0.50724100 1.49218900 0.13685200 0.82684300 0.01483700 0.41291300 -0.24570600 4.01676900 5.06426300 3.39319900 3.91453000 1.22464700 1.95169500	ат С С С Н Н С С С С Н С Н С	X1.261820001.311332002.186173002.186173000.143464002.609327003.747745002.732567004.964597003.672925003.952972001.876351005.07189000	Y 0.91253900 1.92710300 0.51643700 3.31825200 2.38685000 2.45322600 2.77851300 2.90780400 2.17953100 3.22182000 2.69559200 3.29181400	Z1.641107000.632659002.04422100-0.522175000.101889000.92687300-1.244784000.424553001.97487800-1.74760900-1.90717600-0.91403300	
C H C H C H C H C H C H C H C C C C	-3.68191600 -1.76848200 -4.66926000 -3.52132200 -4.72766800 -3.71830200 -5.47718400 -0.13894700 -0.12076200 -1.29551400 -2.24851000 0.00090300 1.20458900 2.56230600	2.59800600 2.61088300 0.42459200 -1.26331900 1.81361000 3.67959600 -0.19283500 0.68735200 0.97242000 0.37044800 0.38328700 0.01742700 0.27837800 0.25717500	0.50724100 1.49218900 0.13685200 0.82684300 0.01483700 0.41291300 -0.24570600 4.01676900 5.06426300 3.39319900 3.91453000 1.22464700 1.95169500 1.33417200	ат С С С Н Н С С С С Н С Н С Н	X1.261820001.311332002.186173002.186173000.143464002.609327003.747745002.732567004.964597003.672925003.952972001.876351005.071890005.82929700	Y 0.91253900 1.92710300 0.51643700 3.31825200 2.38685000 2.45322600 2.45322600 2.77851300 2.90780400 2.17953100 3.22182000 3.22182000 3.29181400	Z1.641107000.632659002.04422100-0.522175000.101889000.92687300-1.244784000.424553001.97487800-1.74760900-1.90717600-0.914033001.07951400	

С	0.02712000	0.55168700	2.24798100	(С	-1.35925500	-0.68700900	-2.08009600	
Н	0.00085500	-0.03989600	3.15730800	(С	-1.49419600	-3.39387900	-1.41380800	
С	-1.17164900	1.00221900	1.62889800]	Н	-1.49196900	-2.73621600	0.63525300	
Н	-2.12648500	0.67969000	2.02634600	(С	-1.38897900	-1.65480000	-3.08597200	
С	-1.13654100	2.02142800	0.62210300	J	Н	-1.28996800	0.36496900	-2.34220800	
С	0.10828300	2.48997700	0.17561900	(С	-1.45655300	-3.00898500	-2.75578300	
С	-2.39212300	2.57789000	0.08201600	J	Н	-1.54086800	-4.44622300	-1.14814300	
С	-3.53003900	2.72644300	0.89705900	J	Н	-1.35488900	-1.34637900	-4.12714600	
С	-2.47387900	2.98094500	-1.26451300	(С	-1.08202500	-0.52389300	3.16992300	
С	-4.70514100	3.27145700	0.38523800	J	Н	-0.99514700	-0.74609900	4.23137800	
Н	-3.48589300	2.44483600	1.94473100	(С	0.07711200	-0.32893900	2.43984900	
С	-3.65330700	3.51482000	-1.77682900	J	Н	1.04541800	-0.39582400	2.92124600	
Н	-1.62021500	2.83667000	-1.91958200	(С	-0.00789900	-0.02288500	1.06902300	
С	-4.77141400	3.66587100	-0.95296700	(С	-2.56731200	-0.13193300	1.28698000	
Н	-5.56930000	3.38993500	1.03255400	(С	-3.91025500	0.03737200	0.70811000	
Н	-3.70305700	3.80404700	-2.82261100	(С	-5.00302700	-0.69475800	1.21619700	
Pt	-0.02687300	-0.75236400	0.50335100	(С	-4.14687400	0.94260000	-0.34548000	
Ι	-1.99741700	-2.23742700	-0.45435200	(С	-6.28177400	-0.52353700	0.69533000	
Ι	1.78618500	-2.39324000	-0.50956700]	Η	-4.83822700	-1.42846200	1.99929800	
Н	6.02339800	3.63899200	-1.30669700	(С	-5.42978700	1.11968800	-0.85729900	
Н	-5.69085300	4.08385500	-1.35298700]	Η	-3.33396100	1.53808000	-0.74774700	
				(С	-6.50116700	0.38774800	-0.34116500	
9a				1	Η	-7.10707100	-1.10752500	1.09251200	
ATC	DM X	Y	Z	1	Η	-5.59268600	1.83434600	-1.65874900	
С	-2.38716800	-0.40714800	2.61588000	1	Pt	1.54869700	0.39651200	0.08250700	
С	-1.35691100	-0.00452900	0.38171500	1	I	2.87943000	-1.89841000	0.21191200	
Н	-3.24106700	-0.49208400	3.28004900	1	Ι	0.93793800	2.92986100	-0.50483400	
Н	-1.41184600	0.97280500	-0.11966500	1	Н	-7.50001500	0.52372900	-0.74586400	
С	-1.40142800	-1.07081000	-0.73657200]	Н	-1.47602200	-3.76123700	-3.53924900	

C -1.46758800 -2.42908600 -0.40710600

10a			
ATC	OM X	Y	Z
С	-2.75467900	2.10598400	0.78532800
С	-0.91463200	0.99499800	2.52758700
Н	-3.45824600	2.55514400	0.09136100
Н	-0.27105100	0.55499000	3.27859200
С	-1.02938600	-1.26980000	1.45352500
С	-1.79168500	-2.30322300	0.83968600
С	0.22335400	-1.64180100	2.05261700
С	-1.31177200	-3.59590100	0.77585000
Н	-2.76842400	-2.07825800	0.43590600
С	0.69610100	-2.97231200	1.95060100
Н	0.73313300	-1.00127300	2.76269500
С	-0.04907900	-3.93553800	1.30549900
Н	-1.92298400	-4.36364000	0.30973600
Н	1.64842000	-3.22100500	2.40785500
С	-2.19723600	2.89104400	1.80216700
Н	-2.49015900	3.93228200	1.89946900
С	-1.27292700	2.33462700	2.67456000
Н	-0.83270200	2.92327000	3.47291000
С	-1.44906900	0.16897700	1.49186500
С	-2.40765100	0.76999500	0.59007600
С	-3.05254200	0.08731400	-0.57372100
С	-4.44726100	-0.07866800	-0.58391100
С	-2.31298300	-0.31953400	-1.69650200
С	-5.08594100	-0.66385200	-1.67897700
Н	-5.02992600	0.24139400	0.27618300
С	-2.95548600	-0.89637800	-2.79184900
Н	-1.23688700	-0.17283400	-1.70855900
С	-4.34099900	-1.07591900	-2.78524100

Н	-6.16483200	-0.79315000	-1.66668300
Н	-2.36919700	-1.19963600	-3.65480300
Pt	0.62190400	0.04433700	0.40886000
Ι	1.21033500	2.36681600	-0.70219600
Ι	2.54249900	-1.19611100	-0.92464800
Н	-4.83732300	-1.52720100	-3.63999200
Н	0.31472500	-4.95587700	1.23203200

11a

АТО	M X	Y	Z		
С	1.64730600	1.25911000	1.94985100		
С	1.22937600	-1.05742500	-0.34147700		
Н	2.19302500	2.13048100	2.29399300		
Н	1.89243600	-1.75151700	0.17346700		
С	1.72676200	-0.65291900	-1.64824800		
С	0.97715000	0.11079900	-2.56664900		
С	3.03473200	-1.05081900	-1.99925300		
С	1.53581800	0.49336000	-3.77921800		
Н	-0.05016800	0.36440500	-2.32630800		
С	3.59474600	-0.65570300	-3.21001300		
Н	3.61198100	-1.65807700	-1.30649000		
С	2.84505800	0.11701900	-4.10119600		
Н	0.95037700	1.08132600	-4.47932100		
Н	4.60726100	-0.95580800	-3.46306900		
С	1.56436400	0.00261000	2.76395700		
С	0.46060200	-0.79047500	2.06106900		
Н	0.62745200	-1.87023100	2.09494200		
С	0.40120400	-0.23319300	0.61044600		
С	1.02623700	1.17427400	0.75403600		
С	1.13700300	2.25577300	-0.25775300		

С	2.40783300	2.80886600	-0.50632000	C	-0.089613	-2.65579200	-0.63558600	
С	0.03346300	2.79481100	-0.93954200	C	0.71191	-2.66460800	-1.78591100	
С	2.57117700	3.85995600	-1.40667600	C	0.04192	-3.70131600	0.28602300	
Н	3.27421000	2.39430000	0.00121200	C	1.63495	-3.68885300	-1.99796000	
С	0.19764400	3.85214300	-1.83494700	Н	0.63281	900 -1.86285200	-2.51421100	
Н	-0.95747000	2.40248600	-0.75045600	C	0.96389	-4.72776300	0.07453800	
С	1.46441600	4.38715800	-2.07561900	Н	-0.57382	-3.70829700	1.18211800	
Н	3.56331600	4.26580900	-1.58558600	C	1.76448	-4.72313500	-1.06826700	
Н	-0.67351900	4.26201200	-2.33909600	Н	2.25482	800 -3.67478200	-2.89012300	
Pt	-1.54537900	-0.46279500	-0.00833100	Н	1.05609	500 -5.52706900	0.80465100	
Ι	-3.06700500	1.43369200	1.01084900	C	-3.385358	-0.68666100	-1.22911900	
Ι	-0.58390100	-2.88370700	-0.84620900	Н	-4.026784	-0.54840600	-2.10432600	
Н	1.58834600	5.20946400	-2.77526900	C	-2.230438	-1.62722300	-1.52366700	
Н	3.27504700	0.41508200	-5.05343000	Н	-1.776383	-1.33956000	-2.47891800	
Н	-0.48792800	-0.58624000	2.56321600	C	-0.685234	-0.16058600	-0.19865900	
Н	1.38041200	0.17725600	3.82579400	C	-1.673014	0.91648100	-0.24895100	
0	2.80889500	-0.77056800	2.66069700	C	-1.351377	2.31602500	0.16843800	
С	3.84408500	-0.33825300	3.42271600	С	-1.552318	3.36838900	-0.73752800	
0	3.79441800	0.64757600	4.12480100	C	-0.912808	2.61030300	1.46870100	
С	5.03929000	-1.25286700	3.27891200	C	-1.306455	4.68782900	-0.35707400	
Н	4.78815500	-2.25703200	3.63705300	Н	-1.879419	3.14872800	-1.75010500	
Н	5.32637300	-1.34288700	2.22616200	С	-0.676171	.00 3.93146800	1.84848300	
Н	5.87214700	-0.85342900	3.85860700	Н	-0.761984	1.80968900	2.18518500	
				C	-0.867457	4.97220400	0.93704300	
12a				Н	-1.453308	5.49054300	-1.07419800	
АТС	OM X	Y	Z	Н	-0.34123	4.14499900	2.85961000	
С	-2.92038100	0.65035500	-0.72914000	Pt	1.099169	00 0.20923000	0.16278400	
С	-1.15173000	-1.58898000	-0.41136000	Ι	1.391713	00 -0.55447600	2.69302000	
Н	-3.66116000	1.44543400	-0.73195200	Ι	2.007521	00 1.23793800	-2.11267900	
Н	-1.65936600	-1.82724300	0.53887800	Н	-0.67453	5.99937700	1.23395500	

Н	2.48434700	-5.51983400	-1.23446100		0	-3.33394500	1.60262500	-1.54576000	
Н	-2.60113900	-2.65064400	-1.63188900		С	-0.68804900	2.45797300	-0.15545200	
0	-4.20034600	-1.30964100	-0.18795700		Н	-0.25490600	3.42809900	-0.41057400	
С	-5.49175400	-0.88637200	-0.10170400		Н	-0.92897900	1.94944900	-1.10352300	
0	-5.95355800	-0.01689700	-0.80626500		С	0.30405800	1.63012900	0.67770400	
С	-6.23299400	-1.64373500	0.97242200		С	-0.24017800	0.57574300	1.46253900	
Η	-6.19542800	-2.71938600	0.77242300		С	1.64426300	2.21886300	0.94371100	
Н	-5.75819000	-1.47479700	1.94471100		С	2.36111200	2.84589600	-0.09200300	
Н	-7.26901600	-1.30523800	1.00289800		С	2.20969000	2.19316100	2.22904300	
					С	3.61110100	3.40960200	0.14700400	
13a					Н	1.94956300	2.86363600	-1.09740600	
ATO	M X	Y	Z		С	3.45816200	2.76687000	2.46951000	
С	-2.53137300	1.35335200	1.16275600		Н	1.66532100	1.73897800	3.05120400	
С	-1.70125700	0.37206900	1.58735300		С	4.16472100	3.37285000	1.42993200	
Η	-3.60471100	1.26888100	1.29999900		Н	4.15611000	3.87476600	-0.66950700	
Η	0.39209800	0.10992500	2.21097600		Н	3.87529400	2.74303500	3.47235200	
С	-2.21648900	-0.88656900	2.18803400		Pt	0.27795000	-0.24855600	-0.47772400	
С	-3.36863800	-1.49613400	1.66200700		Ι	0.04104100	-1.58862500	-2.73362300	
С	-1.58311000	-1.48853200	3.28764600		Ι	2.42094500	-1.50128600	0.42265800	
С	-3.87773800	-2.66416400	2.22689900		Н	-3.63691600	-4.16208300	3.76213400	
Η	-3.84617500	-1.06603700	0.78619900		Н	5.13824400	3.81705000	1.61728400	
С	-2.09501100	-2.65617800	3.85325300		С	-4.53434900	3.67401200	-1.92384000	
Η	-0.69576100	-1.03733200	3.72250200		Н	-3.99394200	4.52982000	-2.34239900	
С	-3.24388800	-3.24804100	3.32580700		Н	-5.04141800	3.13214200	-2.72271000	
Η	-4.76229500	-3.12665300	1.79773400		Н	-5.26562000	4.06709500	-1.21045000	
Н	-1.59334400	-3.10301000	4.70715100						
С	-2.00466400	2.64793100	0.61007800]	FS1a				
Н	-1.82722900	3.33960500	1.44519200	I	magi	nary frequency:	-250.54 cm ⁻¹		
0	-2.97798000	3.37604500	-0.17457200	P	ATO	M X	Y	Z	
С	-3.56757900	2.74716100	-1.22697200		С	1.80746200	2.01989300	-1.08583700	

С	2.67277700	1.04236600	-1.49600400
Н	2.09398700	2.74485900	-0.32984100
Н	2.35543700	0.39997500	-2.31641600
С	3.99441000	0.74807000	-0.96613000
С	4.69926600	-0.35114200	-1.49912000
С	4.60520000	1.50914900	0.05279100
С	5.96920700	-0.67943400	-1.03382300
Н	4.23912700	-0.94625700	-2.28402800
С	5.87220100	1.17699800	0.51822800
Н	4.08878000	2.36373700	0.47768000
С	6.55829700	0.08379500	-0.02293500
Н	6.49816700	-1.52810600	-1.45729100
Н	6.33104600	1.77216600	1.30236400
С	0.52385000	2.30795500	-1.82030100
Н	0.70647600	2.71228200	-2.82226700
0	-0.15133300	3.31404600	-1.04279700
С	-1.09616700	4.04991200	-1.69801700
0	-1.32503000	3.92544100	-2.87982000
С	-0.33675600	1.03348000	-1.91271600
Н	-1.37752600	1.29733100	-2.10642500
Н	-0.02158600	0.39341200	-2.74742600
С	-0.18563300	0.27540000	-0.61968700
С	0.85073300	0.35516900	0.17384200
С	1.62668000	0.04050400	1.32288000
С	1.64500100	0.92358700	2.42768900
С	2.37092200	-1.16058600	1.38163600
С	2.37887500	0.60327400	3.56356000
Н	1.05679900	1.83476400	2.38228500
С	3.09787200	-1.47291400	2.52502200
Н	2.33392000	-1.84344700	0.53960200

С	3.10437700	-0.59315200	3.61245800
Н	2.37815800	1.27520700	4.41668900
Н	3.65413200	-2.40417200	2.57391300
Pt	-1.60787600	-0.89145700	0.03701600
Ι	-2.94690900	0.94057300	1.44076100
Ι	-0.68699700	-3.06211900	-1.22418100
Н	3.67065200	-0.84368700	4.50541000
Н	7.54995100	-0.16885800	0.34167700
С	-1.79550000	4.98595500	-0.74736800
Н	-1.07139600	5.53018000	-0.13387700
Н	-2.42710100	4.39852500	-0.07051800
Н	-2.41523500	5.68211300	-1.31357500

TS2a

Imaginary frequency: -897.83 cm⁻¹

ATO	M X	X Y		
С	-1.53656200	1.83030000	1.28628800	
С	-2.22551300	0.51400900	1.05178300	
Н	-2.06732500	2.74734700	1.05343700	
Н	-2.00316500	-0.27358700	1.76884500	
С	-3.60149000	0.40701700	0.48539000	
С	-4.29388500	-0.80019500	0.67082500	
С	-4.24052800	1.44557200	-0.20905700	
С	-5.58935300	-0.96422700	0.18188300	
Н	-3.80616000	-1.61682800	1.19717400	
С	-5.53601500	1.28115300	-0.69849100	
Н	-3.72815000	2.38659900	-0.38398300	
С	-6.21662800	0.07767600	-0.50333800	
Н	-6.10691600	-1.90677900	0.33754400	
Н	-6.01361500	2.09705700	-1.23425300	

С	-0.55824100	1.83627800	2.43624500	TS3a				
Н	-1.00675300	1.67689700	3.41801800	Imagi	inary frequency:	-1208.73 cm ⁻¹		
0	-0.07174200	3.29128600	2.62117000	ATO	M X	Y	Z	
С	1.08581800	3.70249600	2.21432000	С	-3.16469800	-0.97660600	-0.83486800	
0	1.95449800	2.95743800	1.67517200	С	-4.43513200	-1.01345100	-1.26876600	
С	0.51999700	0.85778900	2.04060300	Н	-2.86713500	-0.40542400	0.04115500	
Н	1.10922600	0.33145800	2.78759000	Н	-4.65289800	-1.60857000	-2.15703100	
Н	1.50813700	1.90287800	1.64354800	С	-5.59867100	-0.32794900	-0.69362800	
С	0.23325000	0.29439100	0.79060300	С	-6.85122100	-0.49523200	-1.31031200	
С	-0.98881900	0.91814600	0.18881500	С	-5.52145200	0.49191800	0.44842400	
С	-1.10613100	1.19090900	-1.27926000	С	-7.99036300	0.13136400	-0.80737900	
С	-0.91341800	2.48297600	-1.78204200	Н	-6.92788100	-1.12446600	-2.19420900	
С	-1.38399700	0.14725000	-2.17292500	С	-6.65849500	1.11635000	0.95126100	
С	-0.99331800	2.73259800	-3.15360700	Н	-4.56862700	0.64400500	0.94655200	
Н	-0.69190100	3.29935300	-1.09834200	С	-7.89753600	0.93979200	0.32618500	
С	-1.46075100	0.39524000	-3.54280300	Н	-8.94789100	-0.01151200	-1.30043600	
Н	-1.53185900	-0.85782200	-1.79047500	Н	-6.57938100	1.74480300	1.83394800	
С	-1.26618600	1.68743400	-4.03688100	С	-2.05648200	-1.66319200	-1.55400100	
Н	-0.83771900	3.74019700	-3.52964700	Н	-2.42791300	-2.20239700	-2.43044900	
Н	-1.67386200	-0.42303500	-4.22496100	0	-1.56522400	-2.75258400	-0.63601900	
Pt	1.22078200	-1.10531000	-0.01934400	С	-0.39921300	-3.31070000	-0.83159900	
Ι	-0.27591700	-3.13726600	0.86064000	0	0.40201100	-2.92041200	-1.72079500	
Ι	3.16037900	0.37464800	-1.09253600	С	-0.89650900	-0.75380900	-1.99682200	
Н	-1.32610300	1.87790900	-5.10494700	Н	-0.92453100	-0.48815600	-3.05840800	
Н	-7.22652900	-0.04709400	-0.88422500	Н	0.02294700	-1.78428800	-2.01007700	
С	1.38002500	5.15773600	2.39848100	С	-0.31505900	0.12844900	-1.13637300	
Н	0.63411700	5.62703100	3.04062500	С	0.29382200	0.89973400	-0.29114500	
Н	2.38365400	5.27282000	2.81681500	С	-0.09033400	2.23724700	0.19378300	
Н	1.37584700	5.64142600	1.41479900	С	-0.84179800	3.08503000	-0.64165700	
				С	0.26838400	2.68125000	1.47718600	
С	-1.23768700	4.34297700	-0.19456200	Н	4.25949800	-2.02615900	-1.21239200	
----	-------------	-------------	-------------	----	-------------	-------------	-------------	--
Н	-1.09639000	2.75802200	-1.64583000	С	6.65782200	-0.02155900	0.12103100	
С	-0.13278400	3.94140400	1.91788400	Н	6.65354000	2.13653100	0.07056600	
Н	0.85515300	2.03289600	2.11808100	Н	6.39614600	-2.16079100	0.00602600	
С	-0.88549200	4.77436700	1.08712300	С	0.88702800	-0.36663600	-3.15341800	
Н	-1.81254200	4.99053800	-0.85084500	Н	1.00476200	-0.39504300	-4.23414000	
Н	0.14969700	4.27400700	2.91274700	С	-0.26073200	-0.01758700	-2.55109300	
Pt	1.94740700	-0.05759800	0.24159400	Н	-1.16948300	0.25405000	-3.07365900	
Ι	3.41204200	0.79074300	-1.80452900	С	-0.22874300	-0.04183800	-1.08845100	
Ι	0.99839800	-1.22299000	2.46602700	С	0.86716300	-0.28974900	-0.39896700	
С	-0.04822800	-4.42679300	0.09215800	С	1.60620500	-0.42069400	0.80891500	
Н	0.64075200	-5.11317600	-0.40375200	С	1.99560500	-1.69864500	1.27266600	
Н	0.46112900	-3.98099900	0.95786800	С	1.93341500	0.72295600	1.57525900	
Н	-0.94511400	-4.94205900	0.43998600	С	2.67871600	-1.82699000	2.47678200	
Н	-1.18861800	5.75895900	1.43254900	Н	1.72347400	-2.57506700	0.69309300	
Н	-8.78243700	1.43055500	0.72164400	С	2.61167400	0.58228600	2.78021100	
				TT	1 (00(0200	1 (00(4200	1 22744700	

TS4a

Imaginary frequency: -282.08 cm⁻¹

ATO	M X	Y	Z
С	2.03711000	-0.68262100	-2.27577100
С	2.95372400	0.29004200	-1.96048700
Н	2.24194800	-1.73143500	-2.05962700
Н	2.70097400	1.30722100	-2.25831600
С	4.21088600	0.14193100	-1.25281200
С	4.91464600	1.30888800	-0.88559500
С	4.76720700	-1.11242300	-0.92042200
С	6.12511000	1.22866500	-0.20491500
Н	4.49779600	2.28003100	-1.14013900
С	5.97665100	-1.18962300	-0.23982900

S73	

С	6.65782200	-0.02155900	0.12103100
Н	6.65354000	2.13653100	0.07056600
Н	6.39614600	-2.16079100	0.00602600
С	0.88702800	-0.36663600	-3.15341800
Н	1.00476200	-0.39504300	-4.23414000
С	-0.26073200	-0.01758700	-2.55109300
Н	-1.16948300	0.25405000	-3.07365900
С	-0.22874300	-0.04183800	-1.08845100
С	0.86716300	-0.28974900	-0.39896700
С	1.60620500	-0.42069400	0.80891500
С	1.99560500	-1.69864500	1.27266600
С	1.93341500	0.72295600	1.57525900
С	2.67871600	-1.82699000	2.47678200
Н	1.72347400	-2.57506700	0.69309300
С	2.61167400	0.58228600	2.78021100
Н	1.60968300	1.69864200	1.22744700
С	2.98677100	-0.68896300	3.22965100
Н	2.96070300	-2.81182000	2.83725800
Н	2.84210400	1.46061000	3.37578500
Pt	-1.83661600	0.13294400	0.00869500
Ι	-2.45923900	-2.45914500	0.05139500
Ι	-1.68990900	2.79066400	0.25559000
Н	3.51303100	-0.79368400	4.17452100
Н	7.60512400	-0.08785800	0.64866600

TS5a

Imaginary frequency: -140.63cm⁻¹

ATO	M X	Y	Ζ
С	-0.10171800	2.42714100	2.45952600

С	1.42676300	0.80048900	1.58187600	Ι	-3.29827300	0.19272300	-0.18195900
Н	0.24534500	3.40907100	2.76219700	Ι	1.04577900	-2.73709600	-0.43413600
Н	1.55659600	0.68801200	2.65217000	Н	1.04998700	5.25227800	-2.90498600
С	2.59787900	0.43843200	0.80795000	Н	5.92319700	-0.45355700	-1.01310700
С	2.69132400	0.52263000	-0.59913800				
С	3.72965900	0.00402500	1.53667800	TS6	a		
С	3.88384700	0.20939000	-1.24052600	Imag	ginary frequency:	-65.33 cm ⁻¹	
Н	1.82789500	0.81181100	-1.18339000	ATC	DM X	Y	Z
С	4.91722900	-0.31186200	0.88990200	С	-1.70254500	0.86962600	2.77197300
Н	3.66489200	-0.08013800	2.61860300	С	0.55974100	1.87794200	0.98948700
С	4.99694000	-0.20448600	-0.50276600	Н	-2.60311200	1.07901100	3.33682500
Н	3.94070400	0.27043000	-2.32294900	Н	0.17121500	2.58504100	1.72230800
Н	5.77705200	-0.64365400	1.46412200	C	1.56630100	2.42527400	0.13327300
С	-0.83456600	1.54146900	3.21191700	C	1.87902500	1.88801900	-1.13952300
Н	-1.22259100	1.71293400	4.20904300	C	2.20680600	3.62411700	0.54617500
С	-0.91178600	0.32072300	2.50240700	C	2.80292100	2.52734600	-1.95821000
Н	-1.36689500	-0.59031100	2.87335400	Н	1.37303000	0.98874400	-1.47172400
С	-0.27638000	0.41095700	1.21918700	С	3.14916200	4.23706000	-0.26285200
С	0.31068100	1.79509300	1.17656600	Н	1.95895800	4.04967400	1.51533700
С	0.51614700	2.71070700	-0.00603300	С	3.44633500	3.68796100	-1.51907500
С	1.56550400	3.64134900	0.04680700	Н	3.02995400	2.11430300	-2.93603600
С	-0.34236900	2.70978600	-1.10993900	Н	3.64723000	5.14317400	0.06825200
С	1.75644800	4.55350800	-0.98963100	C	-0.46793100	0.50801100	3.36431500
Н	2.24532400	3.64470400	0.89589100	Н	-0.31536900	0.34332200	4.42619300
С	-0.14420400	3.62208200	-2.15016500	C	0.49826600	0.34335500	2.38660300
Н	-1.16005600	2.00094200	-1.15759300	Н	1.51700800	0.00536300	2.50450300
С	0.90109600	4.54433200	-2.09433000	C	-0.14510000	0.57627200	1.03484700
Н	2.57527800	5.26578400	-0.93661600	С	-1.57730500	0.96661400	1.39089300
Н	-0.81722500	3.60893800	-3.00285800	С	-2.53765100	1.58571400	0.47251000
Pt	-0.83272100	-0.87769300	-0.16336700	С	-3.76938900	2.07937500	0.94827500

С	-2.25329100	1.72939600	-0.90015800
C	-4.68172000	2.68104600	0.08639800
Н	-4.02290300	1.98964100	1.99962500
С	-3.15854400	2.34751900	-1.75682600
Н	-1.32906600	1.32673300	-1.29919300
С	-4.37929100	2.82245300	-1.26998500
Н	-5.62826000	3.04507900	0.47596000
Н	-2.91766000	2.44224500	-2.81179400
Pt	0.24419200	-1.05553600	-0.10810400
Ι	-2.20552500	-1.95631900	-0.59438800
Ι	2.92949300	-1.26845900	0.08674200
Н	-5.08981600	3.29512900	-1.94224800
Н	4.17678500	4.17493700	-2.15936000

TS7a

Imaginary frequency: -334.87 cm⁻¹

АТО	M X	Y	Z
С	-2.06398900	0.17543000	2.56219800
С	0.75957900	0.77911100	1.93541200
Н	-3.03079500	0.33133500	3.02659600
Н	0.39358400	1.61805700	2.53623100
С	2.24346300	0.83255700	1.75207300
С	2.98159600	-0.17794900	1.11829700
С	2.92321800	1.94016300	2.27882800
С	4.36759700	-0.07507300	1.01256300
Н	2.47307000	-1.03599400	0.68853700
С	4.30894500	2.04744400	2.16327200
Н	2.36258800	2.72641600	2.77932000
С	5.03524800	1.03702700	1.53152600
Н	4.92533800	-0.86293400	0.51447600

Н	4.81826000	2.91619200	2.57078200
С	-1.06714300	-0.71078100	3.08250300
Н	-1.30640100	-1.52400900	3.76337300
С	0.19451900	-0.57747700	2.55176600
Н	0.92719400	-1.37452500	2.58324300
С	-0.25576300	0.30134100	1.00473600
С	-1.64536100	0.78996600	1.41415500
С	-2.31925500	1.91232300	0.75940300
С	-3.13829000	2.77343200	1.52473400
С	-2.19942500	2.15605500	-0.62302800
С	-3.81769000	3.82723400	0.92593200
Н	-3.21508600	2.62545300	2.59765400
С	-2.88331200	3.21432100	-1.21842500
Н	-1.59114500	1.49794000	-1.23120800
С	-3.69350800	4.05126500	-0.45004500
Н	-4.43707200	4.48265000	1.53169100
Н	-2.78214200	3.37926000	-2.28706400
Pt	-0.03784500	-0.72834300	-0.60986600
Ι	1.27272700	0.93761100	-2.21574800
Ι	-1.21348400	-3.00816400	0.10280000
Н	-4.22328700	4.87714300	-0.91661000
Н	6.11531800	1.11472900	1.44335700

TS8a

Imaginary frequency: -855.05 cm⁻¹

ATC	M X	Y	Z
С	1.22192400	0.22166200	3.33450300
С	-1.15495700	-0.41455100	1.95802700
Н	2.12477600	0.47589300	3.88120400
Н	-0.19668300	-1.29339000	1.50416400

С	-2.47012200	-0.70266400	1.30663700	Н	-5.98383300	-1.35624400	-0.22360300
С	-3.54935600	0.13283500	1.62970800				
С	-2.67141900	-1.78543400	0.43956700	TS9a	a		
С	-4.80761400	-0.09928000	1.07447700	Imag	ginary frequency	-323.93cm ⁻¹	
Н	-3.39762100	0.98230200	2.28956900	АТС	OM X	Y	Z
С	-3.93449600	-2.01792300	-0.10368400	С	1.04371400	1.96058000	-1.74083300
Н	-1.84822000	-2.44495800	0.18409000	С	1.75081800	0.13954700	0.12358700
С	-5.00332300	-1.17519100	0.20752700	Н	0.96344300	3.01246700	-2.00263600
Н	-5.63099400	0.56613200	1.31727400	Н	1.61532400	0.16444900	1.20253000
Н	-4.07859700	-2.86113000	-0.77290700	С	3.15505000	-0.11789900	-0.32063900
С	0.04916800	-0.08663900	4.05169700	С	4.17307600	0.78900100	0.01381100
Н	0.07038900	-0.08253100	5.13769100	С	3.48559500	-1.30585400	-0.98822900
С	-1.11134100	-0.40136800	3.38726600	С	5.49347000	0.52332700	-0.33804500
Н	-2.01932500	-0.65562400	3.92293500	Н	3.92415900	1.70453300	0.54400100
С	0.04962000	-0.06921100	1.19437500	С	4.81261900	-1.57257600	-1.33355400
С	1.26665300	0.23991000	1.94750600	Н	2.71369400	-2.04011500	-1.19652000
С	2.55874000	0.56226800	1.29126400	С	5.81565800	-0.65747800	-1.01623300
С	3.70912800	-0.14672900	1.67926900	Н	6.27411600	1.23299700	-0.07889800
С	2.68074800	1.58948800	0.34029200	Н	5.05853900	-2.49901000	-1.84452300
С	4.94804500	0.14553400	1.11157000	С	1.00168400	0.91900700	-2.72816600
Н	3.62411700	-0.95461800	2.40102400	Н	1.14656500	1.08253500	-3.78939700
С	3.92645000	1.89103300	-0.20936100	С	0.77284700	-0.27278100	-2.12771000
Н	1.80988500	2.16500100	0.04904000	Н	0.78814400	-1.25115200	-2.59177200
С	5.05983700	1.16725200	0.16638900	С	0.57370100	-0.12729700	-0.65087500
Н	5.82285800	-0.42802500	1.40450900	С	1.00293200	1.55935100	-0.41456800
Н	4.00715500	2.69548300	-0.93483300	С	0.75460300	2.50849400	0.70743800
Pt	-0.00865400	0.04803600	-0.75458700	С	1.42001500	3.74629000	0.69936900
Ι	1.06555500	-2.38386200	-1.12505200	С	-0.09433600	2.20448100	1.78350800
Ι	-1.14594400	2.45444000	-0.94796900	С	1.22767000	4.66431000	1.73163400
Н	6.02563000	1.39831900	-0.27440000	Н	2.10320000	3.98624600	-0.11158200

С	-0.27866000	3.12305000	2.81635000
Н	-0.63476800	1.26212600	1.79009800
С	0.37765700	4.35535200	2.79474900
Н	1.75043900	5.61646700	1.70714600
Н	-0.94956300	2.87555000	3.63407000
Pt	-1.16529700	-0.75053900	-0.03812800
Ι	-0.20201800	-2.84216000	1.29631900
Ι	-2.81430100	1.04137300	-1.12034600
Н	0.22854300	5.06851100	3.60048100
Н	6.84752800	-0.86525600	-1.28516700

TS10a

Imaginary frequency: -871.33cm⁻¹

AT(DM X	Y	Z
С	-2.28093500	-0.23401800	-2.73419700
С	-1.32960100	-0.20937900	-0.49104000
Н	-3.15011900	-0.27997200	-3.38366500
Н	-0.43587400	-1.31571000	-0.76816100
С	-1.48437600	-0.08218100	0.99096500
С	-2.05749900	1.09597000	1.49044300
С	-1.06788900	-1.08071800	1.88080400
С	-2.20253400	1.27303500	2.86544800
Н	-2.37321100	1.87749400	0.80665200
С	-1.22481300	-0.90095600	3.25521700
Н	-0.61133600	-1.99270900	1.50776300
С	-1.78922300	0.27549900	3.75052400
Н	-2.63539900	2.19490100	3.24266300
Н	-0.89835500	-1.68192900	3.93572500
С	-0.99489400	-0.19795900	-3.31410100
Н	-0.89598100	-0.18707300	-4.39562200

С	0.12430800	-0.20336200	-2.52045900
Η	1.11950100	-0.19654700	-2.94833200
С	0.00966500	-0.18800000	-1.08042700
С	-2.48149900	-0.26214100	-1.36127500
С	-3.87396000	-0.32806900	-0.83806800
С	-4.84220100	0.55604800	-1.34216400
С	-4.26488400	-1.29517700	0.10244100
С	-6.16755700	0.47820600	-0.91467300
Н	-4.54895800	1.32240500	-2.05491800
С	-5.59141200	-1.37642200	0.52098900
Н	-3.53283600	-1.99025600	0.50043400
С	-6.54615500	-0.48999200	0.01645300
Н	-6.90103800	1.17733500	-1.30626400
Н	-5.87960100	-2.13580000	1.24227800
Pt	1.64766000	0.10940200	-0.05736800
Ι	1.50801100	2.76397400	-0.01596700
Ι	2.26747200	-2.50305300	0.03980700
Н	-7.57817400	-0.55261100	0.34977500
Н	-1.90399200	0.41601000	4.82158200

TS11a

Imaginary frequency: -351.59 cm⁻¹

ATO	M X	Y	Z
С	2.39758000	0.70489200	2.31078800
С	1.42843600	0.30201200	0.14012400
Н	3.25367200	0.76525300	2.97689700
Н	1.56530500	-0.12379000	-0.84344900
С	0.42268900	1.80327600	-0.29650100
С	0.73015300	3.03237000	0.31544300
С	0.05107500	1.77254000	-1.65651800

С	0.63173200	4.21028100	-0.41385700	Imag	inary frequency:	-253.76 cm ⁻¹		
Н	1.02805800	3.06451100	1.35680000	ATC	M X	Y	Z	
С	-0.03898600	2.95794900	-2.37724300	С	-2.22495900	1.13362900	-1.06957400	
Н	-0.20136100	0.82496100	-2.12012600	С	-1.64154500	-0.36355500	0.08470300	
С	0.24536600	4.17827900	-1.75903800	Н	-3.14284800	1.67612700	-0.87180100	
Н	0.85043900	5.15807200	0.06886800	Н	-2.26326200	-1.04196700	-0.50091900	
Н	-0.34358800	2.92753700	-3.41872200	С	-2.01514800	-0.35039900	1.51641200	
С	1.08467900	0.82994000	2.86652200	С	-1.08150900	-0.28195100	2.56246400	
Н	0.98401700	1.00037400	3.93491700	С	-3.38171800	-0.47099900	1.83167500	
С	-0.03035500	0.72117700	2.08780400	С	-1.51085900	-0.31971100	3.88904200	
Н	-1.02403400	0.82683000	2.50653600	Н	-0.02319600	-0.25693300	2.33376100	
С	0.08438600	0.41469300	0.65987400	С	-3.80743700	-0.49871100	3.15596100	
С	2.60240900	0.47048300	0.97006500	Н	-4.11262300	-0.53925800	1.02899800	
С	3.95236100	0.33264000	0.37721800	С	-2.86961800	-0.42020300	4.18987800	
С	5.00522700	1.15788700	0.81021100	Н	-0.77606900	-0.28346200	4.68802100	
С	4.21380800	-0.62537700	-0.61908900	Н	-4.86604300	-0.58854600	3.38205300	
С	6.28157500	1.02859200	0.26578600	С	-2.01595800	0.37615700	-2.36543800	
Н	4.81439800	1.92199700	1.55895700	С	-0.63511500	-0.28758900	-2.13725700	
С	5.49225000	-0.75389300	-1.15952900	Н	0.13267700	0.15861600	-2.77134900	
Н	3.42738000	-1.30095600	-0.94506300	С	-0.32831200	0.00662700	-0.64578400	
С	6.52946900	0.07222600	-0.72121500	С	-0.99867500	1.36079600	-0.40926800	
Н	7.08046000	1.68132200	0.60660300	С	-0.75225900	2.42330300	0.55034500	
Н	5.67887900	-1.50817200	-1.91863100	С	-1.62478300	3.53550700	0.58814100	
Pt	-1.38792100	-0.72828200	-0.01868400	С	0.36712700	2.41030700	1.40698100	
Ι	-3.37714700	1.05044400	0.15262400	С	-1.38980700	4.58884100	1.46168700	
Ι	0.11210500	-2.92152400	-0.33458600	Н	-2.47169200	3.58863600	-0.08825800	
Н	7.52420400	-0.02842900	-1.14606100	С	0.59532600	3.46781700	2.28272200	
Н	0.16411600	5.10394200	-2.32131500	Н	1.05744600	1.57620500	1.36397300	
				С	-0.28041600	4.55449700	2.31451300	
TS1	2a			Н	-2.06283700	5.44084500	1.47421700	

TS12a

Н	1.46512300	3.44627300	2.93214000	С	2.49353600	-3.89437500	3.01875100	
Pt	1.49212000	-0.60447400	-0.14349300	Н	2.56741300	-4.36591600	0.91327300	
Ι	2.84550600	1.44187800	-1.22216400	Н	2.25778000	-3.17306300	5.04135200	
Ι	0.79815000	-3.03387300	0.72807100	С	-2.72065100	-0.01035700	0.88866800	
Н	-0.09508700	5.38181600	2.99405500	Н	-3.20569700	-0.25239500	-0.06457300	
Н	-3.19787000	-0.45021800	5.22513000	С	-1.54598100	-0.95986400	1.14064100	
Н	-0.67086400	-1.36171500	-2.33032800	Н	-1.38808400	-1.75685600	0.42004500	
Н	-2.03696000	1.07951200	-3.20307100	С	-0.14159100	0.15313600	0.71631600	
0	-3.01272300	-0.63857900	-2.61312900	С	-0.85119300	1.48875100	0.78388200	
С	-4.24695300	-0.19567400	-2.99053600	С	-0.13166500	2.78010800	0.70266900	
0	-4.54014200	0.97836100	-3.03079000	С	-0.66840000	3.82729400	-0.06652300	
С	-5.14651600	-1.35126100	-3.34873600	C	1.04728200	3.01084200	1.42862000	
Н	-4.78691400	-1.82345100	-4.26975000	С	-0.04991000	5.07568000	-0.09429500	
Н	-5.12718900	-2.11362400	-2.56410100	Н	-1.56021400	3.64811400	-0.66006500	
Н	-6.16317500	-0.98695600	-3.49960600	C	1.65982400	4.26294700	1.40598800	
				Н	1.49296200	2.21259400	2.01352400	
TS13	a			C	1.11387700	5.29852900	0.64540900	
Imag	inary frequency:	: -302.18 cm ⁻¹		Н	-0.47261800	5.87161200	-0.70108600	
АТО	M X	Y	Ζ	Н	2.57045700	4.42466700	1.97577800	
С	-2.18689700	1.38458900	0.88809600	Pt	0.66253300	-0.18942600	-1.05106800	
С	0.26568200	-0.43513400	1.94420900	Ι	3.16551200	0.47733800	-0.40838400	
Н	-2.86354000	2.23004100	0.93419000	Ι	-1.38113000	-1.04415700	-2.56023100	
Н	-0.04903700	0.12178100	2.82849600	Н	1.59851000	6.27061300	0.62053500	
С	1.02947200	-1.63285000	2.24761200	Н	3.06606800	-4.76922300	3.31415300	
С	1.49110400	-2.54699700	1.27667300	Н	-1.64979300	-1.37927500	2.14318000	
С	1.30388300	-1.88320700	3.61041600	0	-3.67118100	-0.24562200	1.96185800	
С	2.21252400	-3.66953500	1.66679700	С	-4.93878800	0.20464900	1.74620100	

С

Н

O -5.26707800

-5.84141700

-6.82775800

0.81777000

-0.17300300

0.26440100

0.75687500

2.89610800

2.73873900

Н

С

Η

1.29242100

2.04048100

0.94502200

-2.35658100

-2.99837300

-1.18739200

0.22608100

3.99201500

4.36523700

Η	-5.92773700	-1.26310600	2.96023000
Н	-5.42063900	0.17924500	3.84325200

TS14a

Imaginary frequency: -714.60 cm⁻¹

АТО	M X	Y	Z
С	0.93750300	2.21968400	-2.13167200
С	-1.41706200	1.09644400	-0.86335000
Н	1.80929900	2.61639000	-2.64440000
Н	-0.37232700	1.50404000	0.15282700
С	-2.64302800	0.73058900	-0.12666000
С	-3.86405500	0.68920700	-0.82960300
С	-2.64587100	0.44050700	1.25142000
С	-5.04127200	0.32096000	-0.18406600
Н	-3.89264300	0.89589500	-1.89440300
С	-3.83377500	0.10959400	1.89694500
Н	-1.72872000	0.49947100	1.82492700
С	-5.03115900	0.03389200	1.18245500
Н	-5.96608100	0.26103300	-0.75015400
Н	-3.81757200	-0.09440800	2.96335700
С	-0.34328700	2.96887800	-2.30553800
Н	-0.44001100	3.28387100	-3.34684000
С	-1.57254200	2.12303300	-1.96231200
Н	-1.80049700	1.52946100	-2.86165400
С	-0.12201600	0.56663800	-0.60510500
С	1.05442500	1.09117800	-1.40404100
С	2.39215700	0.43509400	-1.31760800
С	3.48449200	1.17244700	-0.83640200
С	2.60363800	-0.87541500	-1.77471400
С	4.76046000	0.60932200	-0.79832400

Н	3.32451700	2.18069300	-0.46520700
С	3.88279200	-1.43087500	-1.74589000
Н	1.77274700	-1.45650600	-2.15946700
С	4.96265300	-0.69412300	-1.25375600
Н	5.59256300	1.18824800	-0.40717400
Н	4.03255200	-2.44401600	-2.10863800
Pt	0.15455800	-1.06273400	0.46617100
Ι	1.28844900	0.06326200	2.61541800
Ι	-1.00756100	-2.69319600	-1.30881900
Н	5.95558400	-1.13458700	-1.22453500
Н	-5.95226700	-0.24169400	1.68807700
Н	-2.43346200	2.76854900	-1.77630900
0	-0.31556500	4.28171800	-1.64544500
С	-0.29257400	4.37598700	-0.30246900
0	-0.38928200	3.42962700	0.45702700
С	-0.13050700	5.80860800	0.14037600
Н	-0.80708100	6.46437900	-0.41476300
Н	-0.31985400	5.88032100	1.21174900
Н	0.89353200	6.13793600	-0.06930800

TS15a

Imaginary frequency: -765.32 cm⁻¹

АТОМ	X	Y	Z
С	2.59219600	0.73806600	0.12077500
С	1.47509400	1.15368300	-0.51712900
Н	3.35203600	1.44808900	0.43257000
Н	-0.19472900	0.46430000	-1.70412200
С	1.34116100	2.56822900	-0.95487700
С	2.45539400	3.24263900	-1.48611700
С	0.12186800	3.25993500	-0.85947000

С	2.35936100	4.57069200	-1.89665200	Н	1.067
Н	3.39666200	2.71134400	-1.59918800	Н	-2.3196
С	0.02944200	4.59073600	-1.26759400	С	6.1542
Н	-0.74801400	2.76105000	-0.44558800	Н	6.684
С	1.14457000	5.25107000	-1.78619700	Н	6.378
Н	3.23046200	5.07087500	-2.31155100	Н	6.477
Н	-0.92036100	5.11009600	-1.17625800		
С	2.77664100	-0.66898900	0.55264200	ACE	b
Н	2.74914600	-0.79016000	1.64334600	ATC	M X
0	4.28074900	-1.00524400	0.30367700	С	-1.65040
С	4.67903100	-1.39097300	-0.85815600	С	-2.57859
0	3.88806800	-1.66727300	-1.81610200	Н	-0.61304
С	1.91198500	-1.65531200	-0.17244000	Н	-3.60809
Н	2.02067700	-2.70218000	0.11042400	С	-1.87819
Н	2.84367200	-1.67108000	-1.37710200	Н	-1.66094
С	0.71091600	-1.24501900	-0.74219700	0	-3.26622
С	0.37191200	0.18855100	-0.81502100	С	-3.81105
С	-0.16154800	-2.26460200	-1.37685900	0	-3.19888
С	-0.43138100	-3.47770700	-0.71967600	С	-1.00176
С	-0.68465000	-2.05825600	-2.66368500	Н	-1.27206
С	-1.20870100	-4.45672800	-1.33384200	Н	-1.2615
Н	-0.07138300	-3.62967300	0.29369800	С	0.4300
С	-1.44601100	-3.04774100	-3.28252400	С	1.6149
Н	-0.49064100	-1.12841700	-3.18907700	С	3.0131
С	-1.71347800	-4.24712200	-2.61938000	С	3.7874
Н	-1.42830200	-5.37944500	-0.80428500	С	3.6401
Н	-1.83805100	-2.87609000	-4.28080200	С	5.1493
Pt	-0.99898300	0.14109200	0.74922800	Н	3.3085
Ι	0.18729600	-0.29281400	3.13023600	С	5.0024
Ι	-3.06443000	0.61430400	-0.88151000	Н	3.0473

Н	1.06721900	6.28620700	-2.10755800
Н	-2.31962500	-5.01088300	-3.09842300
С	6.15422100	-1.50853200	-1.06948100
Н	6.68492700	-1.43543800	-0.11968500
Н	6.37880800	-2.45302600	-1.57203900
Н	6.47759900	-0.69525400	-1.72997400

ATO	M X	Y	Z
С	-1.65040000	1.44060100	-0.34645400
С	-2.57859600	2.39759100	-0.28783600
Н	-0.61304700	1.69694200	-0.55828400
Н	-3.60809900	2.11827200	-0.07165100
С	-1.87819200	-0.03040600	-0.13826200
Н	-1.66094100	-0.58967900	-1.05464900
0	-3.26622700	-0.24566600	0.20098300
С	-3.81105600	-1.44117300	-0.13834200
0	-3.19888900	-2.33617000	-0.67814000
С	-1.00176700	-0.62160900	0.99922800
Н	-1.27206000	-1.67854500	1.11259700
Н	-1.26151600	-0.10948800	1.93470600
С	0.43006900	-0.50647000	0.73336300
С	1.61496400	-0.41191600	0.49092000
С	3.01313100	-0.30768300	0.21075500
С	3.78740700	0.71547700	0.79213800
С	3.64015800	-1.22762100	-0.65246900
С	5.14931900	0.81228500	0.51611200
Н	3.30859000	1.42639300	1.45864800
С	5.00241200	-1.12360000	-0.92396400
Н	3.04731800	-2.01803500	-1.10247100

С	5.76147700	-0.10513200	-0.34183100
Н	5.73498600	1.60619700	0.97186900
Н	5.47337500	-1.83990100	-1.59184200
Н	6.82401400	-0.02685600	-0.55539500
С	-5.27201400	-1.48630300	0.24530200
Н	-5.39443000	-1.24705500	1.30640400
Н	-5.83096400	-0.73665000	-0.32531600
Н	-5.67131400	-2.47926900	0.03607100
С	-2.30901100	3.85955400	-0.50311400
Н	-1.25072200	4.05047000	-0.71072800
Н	-2.89679900	4.25108100	-1.34456900
Н	-2.59486100	4.44923600	0.37858700

product A-b

ATC	DM X	Y	Z
С	3.15053400	0.71290400	-0.15160700
С	2.65573300	-0.56672100	0.13460100
Н	4.22511800	0.87755900	-0.18923800
Н	0.87635300	-1.73739600	0.40953300
С	2.27582400	1.77313600	-0.38888000
Н	2.67077800	2.75921300	-0.61985600
С	0.89686700	1.57288400	-0.34768800
Н	0.22311400	2.39728900	-0.56330600
С	0.37119400	0.30092500	-0.06816300
С	1.26984800	-0.75264200	0.16852400
С	-1.09669700	0.07317900	-0.02614400
С	-1.96042400	1.03406300	0.52742900
С	-1.66176500	-1.10784400	-0.53741800
С	-3.33807600	0.82224400	0.56863600
Н	-1.54348700	1.94319100	0.95187800

С	-3.03919100	-1.32122200	-0.49558500
Н	-1.01631300	-1.85281700	-0.99438800
С	-3.88422800	-0.35700300	0.05773600
Н	-3.98510200	1.57653600	1.00900900
Н	-3.45370200	-2.23909100	-0.90455400
Н	-4.95768700	-0.52282200	0.09009900
С	3.59696700	-1.71144600	0.43436400
Н	3.90034400	-1.71145800	1.48998800
Н	3.12894100	-2.68022800	0.23041100
Н	4.51213900	-1.64471400	-0.16440800

product B-b

ATC	OM X	Y	Z
С	-3.47222900	-0.46031200	-0.12353400
С	-2.8739200	0 0.76011500	0.18701300
Н	-4.5556220	0 -0.54443600	-0.14476200
С	-2.6711630	0 -1.56900600	-0.39526200
Н	-3.1197500	0 -2.52904100	-0.63629300
С	-1.2847060	0 -1.43661100	-0.35806200
Н	-0.6544660	0 -2.29370400	-0.58040200
С	-0.6699870	0 -0.20853700	-0.06035900
С	-1.4812170	0 0.91463400	0.22462600
С	0.8210880	-0.15163800	-0.04051000
С	1.5502430	-1.05331900	0.75290800
С	1.5359790	0 0.76017400	-0.83453800
С	2.9454360	-1.03974900	0.75894500
Н	1.0125960	-1.76019700	1.37936400
С	2.9310110	0 0.77326100	-0.83209500
Н	0.9937140	0 1.44938500	-1.47561900
С	3.6417020	-0.12545000	-0.03375300

Н	3.48817600	-1.74238200	1.38608900	С	-4.17322900	3.63705700	0.14932700	
Н	3.46328800	1.48264400	-1.46062100	Н	-2.38403400	3.74511500	-1.05087000	
Н	4.72836100	-0.11400800	-0.03082300	С	-4.82899300	2.97700600	1.19199200	
С	-0.90362900	2.26354000	0.59812100	Н	-4.71149200	1.39999700	2.66067900	
Н	-0.64667900	2.86056900	-0.28645500	Н	-4.66362400	4.45199100	-0.37524200	
Н	-1.62985500	2.84383000	1.17692000	Pt	0.05968900	-0.27830100	0.11638900	
Н	0.00935400	2.16607800	1.19307800	Ι	-1.91823300	-0.91854000	-1.60366000	
Н	-3.50075900	1.61865400	0.41852000	Ι	0.53022500	-2.90869800	0.46440700	
				Н	-5.83140100	3.28011300	1.48068600	
1b-1				С	6.06893600	2.55711600	-0.16396300	
АТС	M X	Y	Z	Н	5.91438700	3.21579700	0.69622100	
С	2.15335500	0.16035400	0.71385900	Н	6.58146800	1.65967000	0.19929700	
С	1.39209700	0.44705200	1.85199400	Н	6.68631900	3.05373300	-0.91303700	
Н	2.71760300	-0.76909000	0.70478600	С	1.38274100	-0.39055200	3.10106000	
Н	1.03781700	1.46664200	1.98962300	Н	0.38487100	-0.42498400	3.55006700	
С	2.63066600	1.16991100	-0.31381000	Н	1.71566400	-1.41304200	2.91638800	
Н	2.80669800	0.65223900	-1.25980500	Н	2.05712300	0.07461500	3.83486100	
0	3.90146100	1.66844700	0.16580400					
С	4.74609400	2.17383600	-0.77944700	1b-2				
0	4.44492600	2.28173600	-1.94605800	ATC	OM X	Y	Z	
С	1.64529500	2.33562600	-0.56819200	С	3.56761700	1.25016600	0.05356900	
Н	1.80078900	2.71959500	-1.58064400	С	2.90843300	2.32779600	-0.38255300	
Н	1.85546900	3.15565000	0.13054600	Н	4.47714800	1.37528800	0.63973100	
С	0.25538100	1.87634200	-0.37259800	Н	1.99466000	2.21356100	-0.96581400	
С	-0.91111900	1.84094400	0.06454300	С	3.20204300	-0.18971500	-0.18994400	
С	-2.25134400	2.18781600	0.44123700	Н	3.22044700	-0.73558300	0.75868700	
С	-2.91769100	1.52470300	1.48779000	0	4.20245000	-0.80698500	-1.05430000	
С	-2.89252500	3.24650100	-0.23180400	С	5.31640200	-1.29275000	-0.44771800	
С	-4.19946500	1.92124400	1.85719100	0	5.51690700	-1.22362100	0.74484300	
Н	-2.43125000	0.69191400	1.98545500	С	1.86952000	-0.45062500	-0.91502900	

Н	1.82775600	-1.51139300	-1.18571900	С	-2.81130600	0.43975000	0.51000600	
Н	1.82183600	0.11616900	-1.85182900	C	-2.40981000	-0.55190200	1.52654200	
С	0.69821000	-0.12762200	-0.07671000	Н	-3.40753800	1.29496800	0.80992400	
С	0.11262100	0.30541800	0.96270300	Н	-2.33535800	-1.58909400	1.20825000	
С	-0.15051200	0.79501100	2.28226900	C	-2.92653000	-0.06164800	-0.92230400	
С	0.29512400	0.05423400	3.39675900	Н	-3.04755100	0.78759300	-1.59996100	
С	-0.83181100	2.01423400	2.47598300	0	-4.02129100	-0.97343800	-1.13345200	
С	0.08405400	0.54486300	4.68161200	С	-5.26174000	-0.41175700	-1.16301900	
Н	0.80076700	-0.89315700	3.24065400	0	-5.45725100	0.76644700	-0.96519300	
С	-1.04515900	2.48743300	3.76635800	С	-1.60856200	-0.81490100	-1.19258200	
Н	-1.19061600	2.56548100	1.61240800	Н	-1.25112400	-0.71468200	-2.21989500	
С	-0.58650500	1.75745100	4.86800200	Н	-1.71932600	-1.89255700	-1.00401800	
Н	0.43431200	-0.02275100	5.53854500	С	-0.62494200	-0.23803800	-0.20254200	
Н	-1.57147700	3.42559400	3.91510900	С	-1.30474200	0.40977200	0.90479400	
Pt	-1.29882600	-0.31841500	-0.55804700	C	-0.64223400	1.43369000	1.77674100	
Ι	-1.57009000	-2.83356400	0.26392700	C	-0.96558600	2.78992900	1.64717400	
Ι	-1.58662800	2.04843900	-1.76562600	С	0.31828900	1.04607400	2.72245000	
Н	-0.75795900	2.13107100	5.87361800	С	-0.33757200	3.74576000	2.44814400	
С	6.24630300	-1.91296900	-1.46331900	Н	-1.70236100	3.10257000	0.91216500	
Н	5.73221800	-2.70939500	-2.01108700	C	0.94658700	2.00267900	3.51978100	
Н	6.55495100	-1.15977700	-2.19588400	Н	0.58048400	-0.00292100	2.82444800	
Н	7.12239700	-2.31557900	-0.95397600	C	0.62002400	3.35405800	3.38487100	
С	3.33012300	3.74461400	-0.11994300	Н	-0.59389200	4.79524000	2.33398500	
Н	4.25374600	3.79173800	0.46606300	Н	1.69136000	1.69040100	4.24649500	
Н	3.49191800	4.28396500	-1.06263500	Pt	1.20264100	-0.34924400	-0.47339200	
Н	2.54877200	4.29236900	0.42322300	Ι	1.65515300	1.79946000	-1.96335500	
				Ι	1.69361400	-2.63834500	0.79413200	
2b-1				Н	1.11038400	4.09793000	4.00663700	
				С	-6.31331600	-1.44536800	-1.48073500	
АТО	M X	Y	Z	Н	-6.16917200	-1.81889600	-2.50052200	

Н	-6.22540400	-2.30124800	-0.80441500
Н	-7.30244500	-0.99506800	-1.39270500
С	-2.76223900	-0.37639000	2.98544500
Н	-2.83354200	0.67732600	3.26574100
Н	-3.73360700	-0.84967000	3.17401800
Н	-2.02111500	-0.85425600	3.63378300

3b-1

ATC	OM X	Y	Z	4b-1			
С	-2.91399100	-0.84980500	2.81848900	АТОМ	м х	Y	Z
С	-3.39674500	-0.13956100	1.77056900	С	2.14024600	-1.49549000	2.22732800
Н	-3.61316800	-1.48106600	3.36579700	С	1.58891500	-2.52725500	1.23345600
Н	-2.74037800	0.54069800	1.23475800	Н	3.20168000	-1.53023500	2.45322700
С	-1.56647900	-0.86057100	3.33315000	Н	0.60565100	-2.92281500	1.47756200
Н	-1.45677800	-1.36397200	4.29269300	С	1.14814200	-1.06966000	3.23320300
С	-0.39418100	-0.36510600	2.81878000	Н	1.22239100	-1.31445600	4.28897500
Н	0.51625000	-0.51870700	3.39726800	С	0.09509800	-0.43098100	2.64830200
С	-0.22915400	0.29183600	1.59303000	Н	-0.80090300	-0.07661900	3.14106100
С	-0.04444700	1.06879500	0.59477800	С	0.31075400	-0.36533100	1.22406300
С	-0.09450700	2.42920300	0.09861400	С	1.62032300	-1.00566500	0.89516400
С	-0.04113100	2.71179500	-1.27624900	С	2.49189900	-0.49875800	-0.21755500
С	-0.20684600	3.48725200	1.02254200	С	3.61110000	0.29405200	0.06322100
С	-0.10729100	4.03180300	-1.71818000	С	2.17437300	-0.78694400	-1.55282600
Н	0.04924900	1.89308300	-1.98223600	С	4.40286400	0.79255100	-0.97324700
С	-0.27331500	4.80129900	0.57031700	Н	3.85843400	0.53299900	1.09414700
Н	-0.23326400	3.27038100	2.08651400	С	2.96573500	-0.28749000	-2.58703700
С	-0.22397000	5.07714600	-0.79976200	Н	1.30155900	-1.39254900	-1.77866100
Н	-0.06569800	4.24241900	-2.78283000	С	4.08139700	0.50272300	-2.29998600
Н	-0.35813700	5.61235600	1.28803800	Н	5.26548900	1.41125200	-0.74200900
Pt	0.51813600	-0.66010100	-0.31768400	Н	2.70847300	-0.51483400	-3.61777800

-1.77284900

3.07765100

-0.27222200

-4.81529600

-5.28045600

-4.85604700

-5.41436800

-1.19619300

-0.59899600

6.10489800

-0.19576000

0.79831500

-0.49867500

-0.89682300

-1.57115600

0.41501500

-1.14844800

1.30614200

1.36237000

0.25217700

1.89540700

Ι

I

Н

С

Н

Н

Н

Pt	-0.91554100	0.32913300	0.00842000
Ι	-0.42792200	2.92938100	0.15702500
Ι	-2.09395000	-1.93545500	-0.74895400
Н	4.69528800	0.89284100	-3.10703900
C	2.50521100	-3.48831700	0.52100500
Н	3.48320000	-3.04703000	0.31110800
Н	2.65036200	-4.38550600	1.13494800
Н	2.06341400	-3.80416700	-0.43064000

5b

ATO	M X	Y	Z	6b					
С	2.08284100	-0.35568200	2.46795000	AT	ОМ	X	Y	Z	
С	0.43410800	-2.06988400	1.24287600	С	-2.8	2827300	0.04521000	1.77234600	
Н	3.12314100	-0.27158200	2.76920700	С	-0.0	2925800	0.47839400	2.66877500	
Н	0.43090900	-2.50032700	2.24540000	Н	-3.8	8064200	0.29735500	1.77948600	
С	0.99450100	0.08113400	3.25074200	Н	-0.6	53911600	1.24488700	3.14833800	
Н	1.06271800	0.44956800	4.26713800	С	-2.2	3401600	-0.84472300	2.64260400	
С	-0.15895800	-0.11305800	2.52211600	Н	-2.7	7040400	-1.43486200	3.38060300	
Н	-1.17908600	-0.05679000	2.88307600	C	-0.8	30547700	-0.88611900	2.44423400	
С	0.15791600	-0.62724900	1.16642700	Н	-0.2	21791100	-1.77393700	2.64773800	
С	1.68450400	-0.82937300	1.18787200	С	-0.5	0532500	0.04132600	1.29105400	
С	2.66863100	-1.07455400	0.09342400	С	-1.8	3437900	0.66543000	0.97005500	
С	3.86549300	-1.74171100	0.40643200	С	-2.0	6965000	1.81677000	0.12567300	
С	2.44789100	-0.67085200	-1.23167700	С	-3.3	9125800	2.25958200	-0.13237300	
С	4.82651200	-1.98189500	-0.57385100	С	-0.9	9575900	2.53610500	-0.44856900	
Н	4.04137900	-2.08703400	1.42283900	С	-3.6	2424100	3.36917600	-0.93221200	
С	3.40853300	-0.92127100	-2.21310800	Н	-4.2	23803200	1.71949100	0.27617100	
Н	1.53393400	-0.14612000	-1.48632700	C	-1.2	3506700	3.65923000	-1.23024800	
С	4.60002000	-1.57150000	-1.88955300	Н	0.0	02170000	2.20048800	-0.28866000	

Н	5.74667200	-2.49639200	-0.31107200
Н	3.22388900	-0.59389200	-3.23231700
Pt	-0.88061100	0.45301500	-0.15522100
Ι	0.62852500	2.65791700	-0.19337200
Ι	-2.89673200	-1.26775500	-0.42275800
Н	5.34676900	-1.75894600	-2.65601800
С	0.39920200	-3.05587400	0.12157800
Н	1.23913400	-3.75668800	0.19487100
Н	-0.53061600	-3.63016000	0.21451100
Н	0.39662200	-2.57478400	-0.85656800

С	-2.54646300	4.07583200	-1.47940200	
Н	-4.64306000	3.68680400	-1.13240300	
Н	-0.39695400	4.19938900	-1.65973300	
Pt	0.63878900	-0.57962400	-0.23296500	
Ι	2.74509700	1.07197700	-0.26664500	
Ι	-1.07243100	-2.52291100	-0.91855300	
Н	-2.73108600	4.94464800	-2.10515100	
С	1.39177400	0.41541300	3.15672600	
Н	1.90583500	1.35647700	2.93500200	
Н	1.40541100	0.26550600	4.24371500	
Н	1.95174600	-0.38587700	2.66969800	

С 3.59952500 -2.08981900 -2.24180600 Н 5.19968500 -1.62882300-0.86925600 Н 1.80081800 -2.50785000-3.35814200 Pt -0.478872000.52528900 -0.23450800I -2.69199500 -0.70042300-1.08664600 I 1.37152900 2.41085000 0.02511900Н 4.25952400 -2.23069400 -3.09324000 С -1.48728000 0.77327000 2.84460100 -2.18907500 3.67932800 Н 0.67492600 Н -0.63458600 1.37794000 3.16498000 Η -1.98402500 1.28673000 2.01995300

-2.17856200

-1.42846300

Н

0.29698500

7b

ATO	M X	Y	Z	8b			
С	1.29761600	-2.28627700	2.28976300	ATC	OM X	Y	Z
С	-1.01233400	-0.63519700	2.39601800	С	-0.21966200	2.42985700	-0.90395700
Н	2.15731300	-2.95139200	2.25410300	С	0.53011200	2.83737200	0.24923100
Н	-1.92068300	-1.14893600	2.00593500	Н	-1.13263300	2.96081900	-1.15288000
С	0.53950300	-2.23176900	3.50107100	Н	2.34130800	2.56641100	1.36107500
Н	0.85195100	-2.83651200	4.34688100	С	0.33752300	1.51961600	-1.84328800
С	-0.56348000	-1.45253300	3.55984000	Н	-0.10310800	1.38418900	-2.82554300
Н	-1.17949700	-1.41228200	4.45487200	С	1.50847800	0.80739800	-1.46046900
С	-0.09916000	-0.64972600	1.19459100	Н	1.90026500	0.03926300	-2.11671900
С	1.00562300	-1.55697800	1.14487300	С	2.24149700	1.17932900	-0.29637900
С	1.89027300	-1.71245100	-0.04581200	С	1.75514700	2.23472500	0.51068100
С	3.27939300	-1.57385100	0.09840700	С	3.49359100	0.48251100	0.05298300
С	1.36712800	-2.05122700	-1.30392200	С	4.36897200	0.01817700	-0.94697500
С	4.12793400	-1.75592400	-0.99356500	С	3.84049900	0.27125400	1.40119600
Н	3.69384100	-1.29201300	1.06286900	С	5.55671300	-0.62527700	-0.60865500
С	2.21933100	-2.24046500	-2.39194200	Н	4.13575800	0.19146100	-1.99322300

С	5.02216400	-0.38473800	1.73628800	
Н	3.15971600	0.58652500	2.18586900	
С	5.88597400	-0.83107900	0.73323100	
Н	6.22677600	-0.96486100	-1.39318800	
Н	5.26433400	-0.55590100	2.78114500	
Pt	-0.58791500	0.16580500	-0.39913600	
Ι	-0.47042900	-2.43180300	0.08042000	
Ι	-3.07356000	0.29372300	0.49520900	
Н	6.80889500	-1.34040200	0.99564500	
С	-0.03931700	3.89641700	1.14977900	
Н	-0.98593300	3.54833200	1.58314900	
Н	0.64365600	4.14278200	1.96690100	
Н	-0.26040200	4.81345500	0.58999700	

9b

АТО	M X	Y	Z
С	2.63465400	1.37531400	1.93862200
С	0.20128800	0.48513300	0.72799100
Н	3.52254800	1.66708800	2.48991700
Н	1.58476100	-0.62808600	-0.40822800
С	1.36493600	1.54743800	2.55345600
Н	1.32992300	2.01560100	3.53482200
С	0.17979600	1.10824500	1.98837000
Н	-0.75644800	1.22395200	2.52146000
С	1.49050300	0.40486500	-0.04750900
С	2.74388400	0.78858300	0.70569300
С	4.05478600	0.55736400	0.07527700
С	5.11704300	1.46151400	0.28387700
С	4.28907100	-0.57108900	-0.73648600
С	6.36470300	1.24222800	-0.29163800

Н	4.94890400	2.35887600	0.87158700
С	5.54226700	-0.79235400	-1.30306500
Н	3.50102000	-1.29969400	-0.89968800
С	6.58349200	0.11220900	-1.08443800
Н	7.16528800	1.95812300	-0.12901800
Н	5.70591500	-1.67631500	-1.91244400
Pt	-1.38010200	-0.24916600	-0.00679900
Ι	-0.69815200	-2.82299800	0.12281000
Ι	-2.74759700	1.97799000	-0.49984400
Н	7.55837200	-0.05993200	-1.53149300
С	1.37764100	1.30171700	-1.33109100
Н	0.51153600	0.98617900	-1.91572900
Н	1.24946400	2.35199600	-1.05478200
Н	2.28698700	1.19558000	-1.92760800

10b

ATO	M X	Y	Z
С	-0.14362500	-2.06694900	0.94845100
С	-1.07113800	-1.60407800	1.92771100
Н	0.71121000	-2.65775900	1.25949400
С	-0.49668800	-1.98694300	-0.42897700
Н	0.08743100	-2.51306000	-1.17651200
С	-1.75892300	-1.42880400	-0.78388300
Н	-2.03653400	-1.38085100	-1.83227900
С	-2.61624100	-0.90572200	0.17230800
С	-2.26719100	-1.00537000	1.57521600
С	-3.90352000	-0.29988900	-0.27188200
С	-4.80937900	-1.05653900	-1.03293300
С	-4.21978200	1.03781800	0.01762800
С	-6.00409100	-0.49435800	-1.48396300

Н	-4.57926800	-2.09467700	-1.25750300	Н	-0.45852500	0.23581400	-2.84153800
С	-5.40944100	1.60143600	-0.44242100	С	-0.22591800	0.38899900	-0.72419000
Н	-3.51837400	1.64744400	0.58015600	С	0.10627400	1.51533800	-0.14479100
С	-6.30718400	0.83616200	-1.19029900	С	0.75154300	2.29991100	0.85677300
Н	-6.69712300	-1.09706000	-2.06452000	C	-0.00024000	2.89287000	1.89532800
Н	-5.63142800	2.64173600	-0.22130800	С	2.15573400	2.46958500	0.83108000
Pt	0.70417300	-0.12705600	0.10564900	С	0.63890000	3.63262400	2.88367600
Ι	1.46068500	2.37761700	0.06932800	Н	-1.07571900	2.74880600	1.91764800
Ι	3.03900300	-1.16238900	-0.51664000	С	2.78611500	3.19973300	1.83381600
Н	-7.23540700	1.27574800	-1.54452300	Н	2.73110200	1.98370400	0.04903700
С	-3.21148800	-0.52712500	2.65085200	С	2.03011300	3.78457900	2.85497700
Н	-3.24072100	0.56724600	2.70824000	Н	0.05887600	4.07973100	3.68542900
Н	-4.23694400	-0.86073900	2.46034200	Н	3.86646100	3.30892500	1.82365500
Н	-2.89922000	-0.90012300	3.63050100	Pt	0.50166000	-1.19445600	0.15363800
Н	-0.82045700	-1.72244500	2.97800100	Ι	-1.50048900	-1.61226900	1.86247600

TS1b

Imaginary frequency: -240.21 cm⁻¹

АТО	M X	Y	Z
С	-1.38230000	2.70397000	-1.50763900
С	-0.16105700	3.09941200	-1.96076900
Н	-1.94940700	3.34785200	-0.83900700
Н	0.35680500	2.47950000	-2.69119700
С	-2.06982300	1.45499600	-1.98272100
Н	-2.47796400	1.57304900	-2.99327300
0	-3.16402100	1.23931900	-1.07349000
С	-4.18422200	0.45510100	-1.53236600
0	-4.21631600	0.01053600	-2.65725900
С	-1.09572200	0.26156600	-1.94742600
Н	-1.65608200	-0.67427100	-1.94537700

С	0.10627400	1.51533800	-0.14479100
С	0.75154300	2.29991100	0.85677300
С	-0.00024000	2.89287000	1.89532800
С	2.15573400	2.46958500	0.83108000
С	0.63890000	3.63262400	2.88367600
Н	-1.07571900	2.74880600	1.91764800
С	2.78611500	3.19973300	1.83381600
Н	2.73110200	1.98370400	0.04903700
С	2.03011300	3.78457900	2.85497700
Η	0.05887600	4.07973100	3.68542900
Η	3.86646100	3.30892500	1.82365500
Pt	0.50166000	-1.19445600	0.15363800
Ι	-1.50048900	-1.61226900	1.86247600
Ι	2.71637100	-1.24802700	-1.34569700
Η	2.52660100	4.35451500	3.63543600
С	-5.20530400	0.22390800	-0.44981900
Н	-5.47466400	1.16536300	0.03793800
Η	-4.77065500	-0.43145100	0.31426100
Н	-6.08870200	-0.25005500	-0.87898800
С	0.49690100	4.39275700	-1.60746800
Н	1.50479000	4.22449800	-1.20857400
Н	0.61165600	5.00543500	-2.51162100
Н	-0.07905700	4.96089700	-0.87170900

TS2b

Imaginary frequency: -913.07 cm⁻¹

ATOM	I X	Y	Ζ
С	-1.77887500	2.37533200	-0.78395200

С	-0.41979600	2.93786800	-0.47711000	Н -5.76054
Н	-2.65333300	2.89478100	-0.40388200	С -0.29033
Н	0.33491600	2.85430700	-1.25812200	Н -0.38325
С	-1.89339500	1.61625000	-2.08316600	Н -1.05763
Н	-1.74282900	2.22067200	-2.97925400	Н 0.68893
0	-3.37739900	1.24688800	-2.28186200	
С	-3.84360300	0.06309200	-2.04359100	TS3b
0	-3.13518200	-0.91706600	-1.67392600	Imaginary freque
С	-0.96657300	0.43365000	-1.93364900	ATOM X
Н	-0.51703500	-0.04759100	-2.79891000	C -3.9013440
Н	-2.05034000	-0.54190600	-1.63173700	C -5.0846670
С	-0.32631000	0.46800900	-0.68928100	Н -3.449664
С	-0.84163700	1.59573500	0.15216000	Н -5.501236
С	-1.04701900	1.46372800	1.63186900	C -3.0995320
С	-2.33077100	1.31271700	2.16909100	Н -3.606736
С	0.05457800	1.47979800	2.50031400	O -3.111842
С	-2.51568900	1.17788600	3.54668700	С -2.2239740
Н	-3.19288200	1.29564400	1.50669300	O -1.277372
С	-0.12927400	1.34367900	3.87598100	C -1.660710
Н	1.05469600	1.58838600	2.09147300	Н -1.526014
С	-1.41425100	1.19242500	4.40303200	Н -1.191582
Н	-3.51850100	1.05769900	3.94772900	C -0.8366440
Н	0.73345100	1.35396900	4.53635400	С -0.0281700
Pt	1.04761900	-0.72192400	-0.15076400	C 0.105656
Ι	3.10978500	0.84943300	-0.79977100	C -0.2112980
Ι	-0.47523500	-2.77613900	0.59970100	C 0.533249
Н	-1.55540000	1.08515400	5.47502500	C -0.1161490
С	-5.31666300	-0.12374500	-2.22671100	Н -0.514460
Н	-5.77889400	0.78340300	-2.61655600	C 0.624467
Н	-5.48845500	-0.96542500	-2.90459100	Н 0.786476

Н	-5.76054800	-0.38681300	-1.26041100
С	-0.29033300	4.17880400	0.37913800
Н	-0.38325900	5.07562200	-0.24491600
Н	-1.05763500	4.22034800	1.15774500
Н	0.68893100	4.20732300	0.86808000

Imaginary frequency: -1198.88 cm⁻¹

ATO	M X	Y	Z
С	-3.90134400	0.62351900	-1.02322300
С	-5.08466700	1.06374600	-1.46130000
Н	-3.44966400	1.02621200	-0.11800000
Н	-5.50123600	0.63324000	-2.37411500
С	-3.09953200	-0.40600200	-1.74629300
Н	-3.60673600	-0.72995400	-2.65983200
0	-3.11184200	-1.63120900	-0.87067300
С	-2.22397400	-2.57756400	-1.02773900
0	-1.27737200	-2.49482100	-1.85340000
С	-1.66071000	0.00341000	-2.10522100
Н	-1.52601400	0.26923700	-3.15862000
Н	-1.19158200	-1.29374300	-2.11437200
С	-0.83664400	0.59048000	-1.19183600
С	-0.02817000	1.06395900	-0.29647400
С	0.10565600	2.44445400	0.20095900
С	-0.21129800	3.51858100	-0.65178600
С	0.53324900	2.71253400	1.51171000
С	-0.11614900	4.83079600	-0.19580400
Н	-0.51446000	3.31743300	-1.67540900
С	0.62446700	4.02894600	1.96120000
Н	0.78647600	1.88638900	2.16667000

С	0.30077600	5.08986900	1.11257700	С	-2.99879100	-1.35386300	-0.84478400	
Н	-0.35759900	5.65173000	-0.86543000	С	-2.56210400	0.99378400	-1.34605800	
Н	0.95522800	4.22455100	2.97728500	С	-3.77941500	-1.44868100	-1.99187700	
Pt	1.09052600	-0.46250000	0.29797600	Н	-2.83537400	-2.22105700	-0.21285800	
Ι	2.91010300	-0.22602000	-1.62121700	С	-3.33698000	0.88519700	-2.49666800	
Ι	-0.40208800	-1.19330000	2.40640400	Н	-2.05842200	1.92313200	-1.09867100	
С	-2.37431200	-3.76372100	-0.13712800	С	-3.94829400	-0.33166000	-2.81747500	
Н	-1.94973400	-4.64515700	-0.62126000	Н	-4.24433200	-2.39463100	-2.25309600	
Н	-1.80297100	-3.55409500	0.77780900	Н	-3.45939700	1.74559300	-3.14778200	
Н	-3.42051300	-3.91973100	0.13137800	Pt	1.14048800	-0.00868800	-0.07548200	
Н	0.38155300	6.11441400	1.46524700	Ι	1.33548200	-2.66506400	-0.14840900	
С	-5.90683600	2.12806600	-0.79891400	Ι	1.38024600	2.63850600	-0.35895900	
Н	-6.07257900	2.97415800	-1.47869000	Н	-4.55133400	-0.41234800	-3.71762500	
Н	-6.89855000	1.74120600	-0.53067800	С	-4.56410500	0.79173000	1.62509200	
Н	-5.42678900	2.50488200	0.10922400	Н	-4.56206700	1.31497100	0.66028100	
				Н	-4.92606200	-0.22840600	1.47254400	

TS4b

Imaginary frequency: -276.54 cm⁻¹

ATO	M X	Y	Z	
С	-2.49298000	-0.25971900	2.65767800	
С	-3.20974400	0.82826200	2.24437200	
Н	-2.92201300	-1.25855500	2.56428700	
Н	-2.77313500	1.81194500	2.41615100	
С	-1.21862700	-0.08409800	3.38793700	
Н	-1.20797100	-0.08695800	4.47493700	
С	-0.12386200	0.12082700	2.63890300	
Н	0.86798500	0.29298900	3.03770300	
С	-0.33885100	0.07088400	1.19085900	
С	-1.53984700	-0.03608300	0.64591900	
С	-2.37716500	-0.13092400	-0.50874600	

Н -5.27494800

Imaginary frequency: -113.62 cm⁻¹

ATO	M X	Y	Z
С	2.32340100	-0.58070100	2.53498200
С	1.14976400	-2.07374800	1.27656600
Н	3.30560700	-0.92904400	2.82724700
Н	0.73349200	-2.32955800	2.24228800
С	1.33704100	-0.08102400	3.35275400
Н	1.42226400	0.08619500	4.42063900
С	0.16657500	0.14072400	2.58937700
Н	-0.76275800	0.53883700	2.97861500
С	0.37072200	-0.15972500	1.22209700

1.32466900

2.27134300

С	1.78695600	-0.72407600	1.13999600	Н	1.25209100	0.76841300	2.73742100
С	2.75240100	-0.54733700	-0.01751000	C	-0.24444100	0.85297800	1.02999700
С	3.99198000	-1.20606000	0.04369500	C	-1.76404800	0.82138800	1.12629000
С	2.45896800	0.23636700	-1.13690900	C	-2.70700900	1.05797700	0.02735500
С	4.91751700	-1.08094100	-0.99042400	C	-4.03430200	1.44329000	0.30472900
Н	4.24266300	-1.82551400	0.90214100	C	-2.31764500	0.92488200	-1.32069900
С	3.38879200	0.36023000	-2.17340500	C	-4.94237200	1.66944800	-0.72533200
Н	1.50816100	0.75107400	-1.20155800	Н	-4.35659800	1.58007600	1.33259400
С	4.61738800	-0.29461200	-2.10549300	C	-3.22544400	1.16725800	-2.34876300
Н	5.87154700	-1.59652900	-0.92371500	Н	-1.31038700	0.59176700	-1.55252800
Н	3.14327400	0.97716000	-3.03303500	C	-4.54105400	1.53422500	-2.05704500
Pt	-0.93484800	0.28827700	-0.12913800	Н	-5.96201000	1.96011000	-0.48882900
Ι	-0.40708400	2.91059300	-0.07180200	Н	-2.90709200	1.04970900	-3.38060800
Ι	-2.20738300	-2.02308600	-0.51287100	Pt	0.79336500	-0.43623600	-0.12210200
Н	5.33764500	-0.19463000	-2.91261100	Ι	-0.98737000	-2.42190100	-0.01331500
С	1.21867500	-3.12394000	0.23731400	Ι	3.18706900	0.71914700	-0.47333300
Н	1.12765400	-2.70495900	-0.76827300	Н	-5.24999600	1.71138900	-2.86092000
Н	2.21471500	-3.59544100	0.29617700	C	0.48744900	3.18749500	-0.01340300
Н	0.45963800	-3.89201400	0.39427900	Н	0.37984400	4.25080400	0.21039300
				Н	1.54361300	2.91662600	-0.15555000

TS6b

Imaginary frequency: -173.92cm⁻¹

ATC	OM X	Y	Z
С	-2.07518700	0.69054800	2.48667600
С	-0.14127100	2.32921300	1.00051800
Н	-3.07949300	0.60083700	2.88493100
Н	-0.69703400	2.82955000	1.79098400
С	-0.90521100	0.65233000	3.27391800
Н	-0.88748800	0.53861300	4.35249800
С	0.20875500	0.75518100	2.45439900

TS7b

Н

Imaginary frequency: -312.36 cm⁻¹ATOMXY

0.01873400

С	-0.91494400	-2.84758700	1.11269100
С	-0.50661500	-0.27438500	2.52405400
Н	-1.39511400	-3.79311900	0.88893900
Н	-1.43388200	-0.67451400	2.94872100
С	0.23365300	-2.72238300	1.95314700

2.95716400

-0.98586900

Z

Н	0.89716900	-3.55814200	2.16190500	Н	-0.57496500	0.97385400	1.88239600
С	0.54950200	-1.44117100	2.35871500	С	-0.81481600	-0.93859400	3.93851400
Н	1.55476200	-1.16603800	2.65856100	Н	-1.10363600	-1.28498000	4.92658800
С	-0.37544000	-0.52556000	1.10117100	С	0.14614300	0.03257200	3.80197400
С	-1.31960500	-1.62976000	0.63228300	Н	0.63349700	0.46761000	4.66858700
С	-2.57513700	-1.35430100	-0.06162800	С	-0.08005200	-0.09019600	1.31956300
С	-3.67146500	-2.23334900	0.09618700	С	-1.12225200	-1.09904000	1.50885300
С	-2.73092100	-0.23286400	-0.90155900	С	-1.87826800	-1.69583000	0.37905400
С	-4.86846000	-2.00312400	-0.56960800	С	-3.28340400	-1.67487300	0.42228700
Н	-3.58620200	-3.08261500	0.76701400	С	-1.24008700	-2.31941000	-0.70605400
С	-3.93495600	-0.00576100	-1.56502300	С	-4.03369000	-2.24098800	-0.60701700
Н	-1.89705000	0.44241900	-1.05211400	Н	-3.78743000	-1.18021400	1.24818200
С	-5.00481400	-0.88733700	-1.40408100	С	-1.99583500	-2.90016800	-1.72424400
Н	-5.70200000	-2.68590000	-0.43164000	Н	-0.15831800	-2.37085400	-0.74146100
Н	-4.03135600	0.86089600	-2.21229300	С	-3.39081600	-2.85606000	-1.68318600
Pt	0.74886000	0.40979500	-0.16644700	Η	-5.11842500	-2.19591200	-0.56981700
Ι	-0.23491200	2.88450400	-0.07889700	Н	-1.48846300	-3.38776500	-2.55175500
Ι	2.37307700	-1.56607800	-0.90654200	Pt	0.53431500	0.45262300	-0.45476800
Н	-5.94291700	-0.70738500	-1.92173100	Ι	-1.32966300	2.36297300	-0.65742300
С	0.01704100	0.94810100	3.24487000	Ι	2.68616600	-1.12363400	-0.60588700
Н	-0.70988800	1.76114100	3.16117100	Η	-3.97444200	-3.29935400	-2.48523600
Н	0.16939400	0.72177600	4.30613200	С	1.65729300	1.49803100	2.38743000
Н	0.95623900	1.29776600	2.80911800	Η	1.77059000	2.06509000	3.31616700
				Н	2.58994900	0.96211600	2.17703800

TS8b

Imaginary frequency: -863.83 cm⁻¹

ATO	M X	Y	Z	TS9b
С	-1.44374900	-1.48697600	2.80109300	Imaginary frequency: -321.19cm ⁻¹
С	0.53806500	0.49299900	2.50648100	ATOM X Y Z
Н	-2.20251200	-2.25205400	2.93487900	C 2.11528300 -0.06708400 2.33296500

Н

1.49170300

2.18409500

1.55329400

С	0.49645900	-1.94409700	1.34712300	АТ	ГОМ	X	Y	Ζ	
Н	3.13249600	0.29992800	2.44671100	С	-().20570800	3.32338000	0.97161100	
Н	0.55064900	-2.35050800	2.36189800	С		1.27074300	1.19802700	1.96928000	
С	1.04491400	0.33276100	3.20442300	Н	[_(0.76084300	4.17282400	0.58482100	
Н	1.18877500	0.79701900	4.17291700	Н		1.92735600	0.38587100	2.25600000	
С	-0.14299000	0.02144800	2.63227000	C		0.82909500	3.56032300	1.91343500	
Н	-1.12617400	0.07109300	3.08715900	Н		1.03632100	4.58086500	2.22282300	
С	0.02151800	-0.59265500	1.27676800	C		1.56349600	2.51777600	2.41780000	
С	1.75418900	-0.81842300	1.22502400	Н		2.36405300	2.67009200	3.13387900	
С	2.71311800	-1.09680600	0.11717600	C		0.28621500	0.92602000	0.96099600	
С	3.95064200	-1.67090200	0.45461400	C	-().50921400	2.06550400	0.47891700	
С	2.44322600	-0.81258400	-1.23011300	С	-]	1.63085500	1.93012100	-0.48225500	
С	4.90371100	-1.93818300	-0.52789900	С	-2	2.86340300	2.53388300	-0.17011600	
Н	4.16265900	-1.91704800	1.49237300	С	-]	1.49888100	1.26388900	-1.71299200	
С	3.39643600	-1.08907200	-2.21071300	С	-3	3.93919200	2.45640900	-1.05277400	
Н	1.49922300	-0.35336700	-1.50214300	Н	[-2	2.98465300	3.04204800	0.78303000	
С	4.62805600	-1.64857800	-1.86532300	С	-2	2.57227900	1.20298000	-2.60017000	
Н	5.85629900	-2.37898900	-0.24736200	Н	-(0.54892900	0.81469000	-1.98131100	
Н	3.17566400	-0.85221900	-3.24765800	С	-3	3.79527900	1.79144500	-2.27216500	
Pt	-0.88801300	0.41491500	-0.12090600	Н		4.88889800	2.91143000	-0.78586600	
Ι	-2.95513400	-1.23104800	-0.42339700	Н	-2	2.45003000	0.69121300	-3.55035800	
Ι	0.65168400	2.58626000	-0.30606500	Pt	t 0	.45568300	-0.75743600	-0.03207100	
Н	5.36788600	-1.85748400	-2.63293700	Ι	2	.79589500	0.03810400	-1.06225800	
С	0.41324000	-2.98669300	0.26641200	Ι	-	1.68798700	-2.22154400	0.59135700	
Н	1.27968100	-3.65482000	0.29940800	Н		4.63181800	1.73183700	-2.96279100	
Н	-0.48913900	-3.57915000	0.45323700	С	-().48206700	0.60556700	2.73279300	
Н	0.32308100	-2.54885100	-0.72779000	Н	[_]	1.33851700	0.14981400	2.24214700	
				Н	[0.01869600	-0.13622600	3.35006100	
TS10	0b			Н	[_(0.72111800	1.53590900	3.24072800	

Imaginary frequency: -846.16 cm⁻¹

TS11b

Imaginary frequency: -466 56 cm⁻¹

Imaginary frequency: -466.56 cm ⁻¹				С	-1.49888100	1.26388900	-1.71299200
АТО	M X	Y	Z	С	-3.93919200	2.45640900	-1.05277400
С	-0.20570800	3.32338000	0.97161100	Н	-2.98465300	3.04204800	0.78303000
С	1.27074300	1.19802700	1.96928000	С	-2.57227900	1.20298000	-2.60017000
Н	-0.76084300	4.17282400	0.58482100	Н	-0.54892900	0.81469000	-1.98131100
Н	1.92735600	0.38587100	2.25600000	С	-3.79527900	1.79144500	-2.27216500
С	0.82909500	3.56032300	1.91343500	Н	-4.88889800	2.91143000	-0.78586600
Н	1.03632100	4.58086500	2.22282300	Н	-2.45003000	0.69121300	-3.55035800
С	1.56349600	2.51777600	2.41780000	Pt	0.45568300	-0.75743600	-0.03207100
Н	2.36405300	2.67009200	3.13387900	Ι	2.79589500	0.03810400	-1.06225800
С	0.28621500	0.92602000	0.96099600	Ι	-1.68798700	-2.22154400	0.59135700
С	-0.50921400	2.06550400	0.47891700	Н	-4.63181800	1.73183700	-2.96279100
С	-1.63085500	1.93012100	-0.48225500				

C -2.86340300 2.53388300 -0.17011600