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Figure S1. 
1
H–NMR spectrum of compound 3 (400 MHz, CDCl3, 293 K). 

 

Figure S2. 
13

C–NMR spectrum of compound 3 (100 MHz, CDCl3, 293 K). 
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Figure S3. IR spectrum of compound 3. 

 

Figure S4. Mass spectrum of compound 3. 
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Figure S5. 
1
H–NMR spectrum of compound 2 (400 MHz, CDCl3, 293 K). 

 

Figure S6. 
13

C–NMR spectrum of compound 2 (100 MHz, CDCl3, 293 K). 
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Figure S7. IR spectrum of compound 2. 

 

Figure S8. 
1
H–NMR spectrum of compound 4 (400 MHz, CDCl3, 293 K). 
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Figure S9. 
13

C–NMR spectrum of compound 4 (100 MHz, CDCl3, 293 K). 

 

Figure S10. IR spectrum of compound 4. 
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Figure S11. Mass spectrum of compound 4. 
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Figure S12 Job’s plot for complexation of (a)
1
 2 with Ag

+ 
, (b)

 
3 with Ag

+ 
ion and (c) 4 with Ag

+ 
ion. 
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Figure S13 UV titration studies of 2 (1.5  × 10
5
 M/L ) upon addition of AgClO4 in CHCl3. 

 

Figure S14  Bensei-Hilderbrand plot of 2 for various concentrations of  Ag
+
 ion at 298 K. The associate 

constant (Ka) was calculated to be 2.05  × 10
4
 ± 875  M

-1
. 
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Figure S15 UV titration studies of 3 (1.5  × 10
5
 M/L ) upon addition of AgClO4 in CHCl3. 

 

Figure S16  Bensei-Hilderbrand plot of 3 for various concentrations of  Ag
+
 ion at 298 K. The associate 

constant (Ka) was calculated to be 3.86  × 10
3
 ± 572  M

-1
. 
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Figure S17 UV titration studies of 4 (1.5  × 10
5
 M/L ) upon addition of AgClO4 in CHCl3. 

 

Figure S18  Bensei-Hilderbrand plot of 4 for various concentrations of  Ag
+
 ion at 298 K. The associate 

constant (Ka) was calculated to be 2.25  × 10
3
 ± 365 M

-1
. 
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General Description for Computational Study:   

To better understand the binding properties of receptors 2–4 with Ag
+
, a computation study was 

carried out. The molecular geometry of the individual structures in the gas-phase were fully 

optimized using Gaussian09,
2
 with the B3LYP level of DFT and the lanl2dz basis set. Significant 

conformational changes were observed for the pyridine ring protons of 2–3 after the 

complexation with Ag
+
. The conformation changes for 2 upon complexation with Ag

+
 ion can be 

seen in Fig. S1 and. Fig. S2. Fig. S1 shows the structure (right) of the 2Ag
+
 complex. The 

optimized molecular geometry suggests that the Ag
+
 binds, in accord with the 

1
H NMR complex 

study, via a N---Ag
+
---S short contact distance bond, which results in the conformation change. 

The N---N distance between the pyridine nitrogen atoms decreases from 8.001 to 3.761 (Å) 

(Table 1) since the nitrogen atoms move inwards after complexing with the Ag
+
. All four bridge 

sulphur atoms are roughly the same distance from the Ag
+
 and presumably take an equal part in 

the coordination bonding. However, a different phenomenon was observed in the complexation 

of 3 with Ag
+
. The N--N distance between the pyridine nitrogen atoms decreases from 9.305 to 

4.234 (Å) after complexing with the Ag
+
 (Fig. S3 and Fig. S4). A similar inference can also be 

made for the 4Ag
+
complex (Fig. S5 and Fig. S6). The distance between the pyridine nitrogen 

atoms decrease from 10.138 to 3.798 (Å) (Table 1) after complexation with Ag
+
. The optimized 

molecular geometry suggests that complexation of 3–4 with Ag
+
 occurs via a N---Ag

+
 short 

contact distance bond, which results in the conformation change. 
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Figure S19. Geometry-optimized (ball and stick) structures of: Left: 2 and Right: 2Ag
+
complex. Color code 

for Ag
+
 = magenta, pyridine nitrogen = blue, sulphur = yellow and oxygen atom = red. Hydrogen atoms have 

been omitted for clarity. 

 

            

Figure S20. Geometry-optimized (space fill) structures of: Left: 2 and Right: 2Ag
+
complex. Color code for 

Ag
+
 = magenta, pyridine nitrogen = blue, sulphur = yellow and oxygen atom = red. Hydrogen atoms have been 

omitted for clarity. 
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Figure S21. Geometry-optimized (ball and stick) structures of: Left: 3 and Right: 3Ag
+
complex. Color code 

for Ag
+
 = magenta, pyridine nitrogen = blue, sulphur = yellow and oxygen atom = red. Hydrogen atoms have 

been omitted for clarity. 

              

Figure S22. Geometry-optimized (space fill) structures of: Left: 3 and Right: 3Ag
+
complex. Color code for 

Ag
+
 = magenta, pyridine nitrogen = blue, sulphur = yellow and oxygen atom = red. Hydrogen atoms have been 

omitted for clarity. 
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Figure S23. Geometry-optimized (ball and stick) structures of: Left: 4 and Right: 4Ag
+
complex. Color code 

for Ag
+
 = magenta, pyridine nitrogen = blue, sulphur = yellow and oxygen atom = red. Hydrogen atoms have 

been omitted for clarity. 

                     

Figure S24. Geometry-optimized (space fill) structures of: Left: 4 and Right: 4Ag
+
complex. Color code for 

Ag
+
 = magenta, pyridine nitrogen = blue, sulphur = yellow and oxygen atom = red. Hydrogen atoms have been 

omitted for clarity. 
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Table S1 The calculated distance for selected parameters for the backbones of the 1,3-alternate-

2–4 and their complexes with Ag
+
 optimized at B3LYP/ lanl2dz level(Distance in Å). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter 2 

 (Å) 

2Ag
+
 

(Å) 

Parameter 3  

(Å) 

3Ag
+
 

(Å) 

Parameter 4 (Å) 4Ag
+
 

(Å) 

N69-N114 8.001 3.761 N68-N113 9.305 4.234 N67-N112 10.138 3.798 

N69-S9 8.188 6.841 N68-S9 6.715 7.651 N67-S9 10.536 9.319 

N69-S31 8.89 6.712 N68-S31 6.219 7.941 N67-S31 9.96 9.249 

N69-S53 5.614 5.231 N68-S53 9.431 5.966 N67-S53 6.528 6.713 

N69-S74 5.036 4.708 N68-S74 9.971 6.12 N67-S74 7.3 6.762 

N114-S9 5.614 5.512 N113-S9 9.431 5.953 N112-S9 6.528 6.942 

N114-S31 5.036 4.323 N113-S31 9.971 6.132 N112-S31 7.3 6.84 

N114-S53 8.188 6.556 N113-S53 6.715 7.654 N112-S53 10.536 7.055 

N114-S74 8.89 6.886 N113-S74 6.219 7.924 N112-S74 9.96 7.111 

N69-Ag
+
 - 2.385 N68-Ag

+
 - 2.149 N67-Ag

+
 - 2.286 

N114-Ag
+
 - 2.396 N113-Ag

+
 - 2.148 N112-Ag

+
 - 2.228 

S9-Ag
+
 - 4.98 S9-Ag

+
 - 6.811 S9-Ag

+
 - 8.857 

S31-Ag
+
 - 4.506 S31-Ag

+
 - 7.069 S31-Ag

+
 - 8.749 

S53-Ag
+
 - 4.699 S53-Ag

+
 - 6.818 S53-Ag

+
 - 7.725 

S74-Ag
+
 - 4.674 S74-Ag

+
 - 7.056 S74-Ag

+
 - 7.8 
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Calculated binding energies 

The DFT B3LYP/ lanl2dz basis set-calculated binding energies (E) of the Ag
+ 

complexes of 

thiacalix[4]arene derivatives 2-4 (Lfree + Ag
+

free L/Ag
+

complex) formed between the Ag
+
 ion and 

the free thiacalix[4]arene derivatives 2-4 in the gas phase at 298 K  are based on the equation (1),  

are listed in Table S2.  

For this system, the binding energy E can be express as follows: 

E= E(L/Ag
+

complex) - E(Lfree) - E(Ag
+

free)                       (1) 

 

Table S2  Calculated binding energies for the thiacalix[4]arene derivatives with Ag
+
.  

Parameter 2Ag
+ 

E (KJ/mole)
 

3Ag
+
 

E (KJ/mole) 

4Ag
+
 

E (KJ/mole) 

Binding energy for 

thiacalix[4]arene 

derivatives with Ag
+
 

 

-488.096 

 

-464.022 

 

-372.966 
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